587
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application

, , , , , , , , ORCID Icon, , & ORCID Icon show all

References

  • Abdelshafy, A. M., T. Belwal, Z. Liang, L. Wang, D. Li, Z. Luo, and L. Li. 2022. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Critical Reviews in Food Science and Nutrition 62 (22):6204–24. doi: 10.1080/10408398.2021.1898335.
  • Afkhami, R., M. Goli, and J. Keramat. 2018. Functional orange juice enriched with encapsulated polyphenolic extract of lime waste and hesperidin. International Journal of Food Science & Technology 53 (3):634–43. doi: 10.1111/ijfs.13638.
  • Ahmad, A., R. Prakash, M. S. Khan, N. Altwaijry, M. N. Asghar, S. S. Raza, and R. Khan. 2022. Enhanced Antioxidant Effects of Naringenin Nanoparticles Synthesized using the High-Energy Ball Milling Method. ACS Omega 7 (38):34476–34484. doi: 10.1021/acsomega.2c04148.
  • Ali, S. H., G. M. Sulaiman, M. M. F. Al-Halbosiy, M. S. Jabir, and A. H. Hameed. 2019. Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity. Artificial Cells, Nanomedicine, and Biotechnology 47 (1):378–94. doi: 10.1080/21691401.2018.1559175.
  • Ateş, F., S. Şahin, Z. İlbay, and Ş. İ. Kırbaşlar. 2019. A green valorisation approach using microwaves and supercritical CO2 for high-added value ingredients from mandarin (Citrus deliciosa Tenore) leaf waste. Waste and Biomass Valorization 10 (3):533–46. doi: 10.1007/s12649-017-0074-z.
  • Ávila-Gálvez, M. Á., J. A. Giménez-Bastida, A. González-Sarrías, and J. C. Espín. 2021. New insights into the metabolism of the flavanones eriocitrin and hesperidin: A comparative human pharmacokinetic study. Antioxidants 10 (3): 435. doi: 10.3390/antiox10030435.
  • Baky, M. H., M. Elshahed, L. Wessjohann, and M. A. Farag. 2022. Interactions between dietary flavonoids and the gut microbiome: A comprehensive review. The British Journal of Nutrition 128 (4):577–91. doi: 10.1017/S0007114521003627.
  • Bian, X., X. Xie, J. Cai, Y. Zhao, W. Miao, X. Chen, Y. Xiao, N. Li, and J.-L. Wu. 2022. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chemistry 373 (Pt A):131399. doi: 10.1016/j.foodchem.2021.131399.
  • Caballero, S., Y. O. Li, D. J. McClements, and G. Davidov-Pardo. 2022. Encapsulation and delivery of bioactive citrus pomace polyphenols: A review. Critical Reviews in Food Science and Nutrition 62 (29):8028–44. doi: 10.1080/10408398.2021.1922873.
  • Cebadera-Miranda, L., L. Domínguez, M. I. Dias, L. Barros, I. C. F. R. Ferreira, M. Igual, N. Martínez-Navarrete, V. Fernández-Ruiz, P. Morales, and M. Cámara. 2019. Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chemistry 270:395–402. doi: 10.1016/j.foodchem.2018.07.094.
  • Chang, C., T. Wang, Q. Hu, M. Zhou, J. Xue, and Y. Luo. 2017. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocolloids. 70:143–51. doi: 10.1016/j.foodhyd.2017.03.033.
  • Chen, J., F. Liu, B. B. Ismail, W. Wang, E. Xu, H. Pan, X. Ye, D. Liu, and H. Cheng. 2022. Effects of ethephon and low-temperature treatments on blood oranges (Citrus sinensis L. Osbeck): Anthocyanin accumulation and volatile profile changes during storage. Food Chemistry 393:133381. doi: 10.1016/j.foodchem.2022.133381.
  • Chen, Y., H. Pan, S. Hao, D. Pan, G. Wang, and W. Yu. 2021. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus. Food Chemistry 364:130413. doi: 10.1016/j.foodchem.2021.130413.
  • Chou, Y.-C., S. Li, C.-T. Ho, and M.-H. Pan. 2020. Preparation and evaluation of self-microemulsifying delivery system containing 5-demethyltangeretin on inhibiting xenograft tumor growth in mice. International Journal of Pharmaceutics 579:119134. doi: 10.1016/j.ijpharm.2020.119134.
  • Ciğeroğlu, Z., M. Bayramoğlu, Ş. İ. Kırbaşlar, and S. Şahin. 2021. Comparison of microwave-assisted techniques for the extraction of antioxidants from Citrus paradisi Macf. biowastes. Journal of Food Science and Technology 58 (3):1190–8. doi: 10.1007/s13197-020-04632-x.
  • Costanzo, G., M. R. Iesce, D. Naviglio, M. Ciaravolo, E. Vitale, and C. Arena. 2020. Comparative studies on different citrus cultivars: A revaluation of waste mandarin components. Antioxidants 9 (6):517. doi: 10.3390/antiox9060517.
  • Dadwal, V., R. Joshi, and M. Gupta. 2021. Formulation, characterization and in vitro digestion of polysaccharide reinforced Ca-alginate microbeads encapsulating Citrus medica L. phenolics. LWT 152:112290. doi: 10.1016/j.lwt.2021.112290.
  • Dalmau, E., C. Rosselló, V. Eim, C. Ratti, and S. Simal. 2020. Ultrasound-assisted aqueous extraction of biocompounds from orange byproduct: Experimental kinetics and modeling. Antioxidants 9 (4):352. doi: 10.3390/antiox9040352.
  • Dammak, I., and P. J. d A. Sobral. 2018. Effect of different biopolymers on the stability of hesperidin-encapsulating O/W emulsions. Journal of Food Engineering 237:33–43. doi: 10.1016/j.jfoodeng.2018.05.004.
  • Dangre, P. V., A. D. Tattu, S. P. Borikar, S. J. Surana, and S. S. Chalikwar. 2021. Development and statistical optimization of alginate-Neusilin US2 micro-composite beads to elicit gastric stability and sustained action of hesperidin. International Journal of Biological Macromolecules 171:514–26. doi: 10.1016/j.ijbiomac.2021.01.025.
  • Das, I., and A. Arora. 2021. Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocolloids. 120:106931–46. doi: 10.1016/j.foodhyd.2021.106931.
  • Ebrahimi, M. H., H. Samadian, S. T. Davani, N. R. Kolarijani, N. Mogharabian, M. S. Salami, and M. Salehi. 2020. Peripheral nerve regeneration in rats by chitosan/alginate hydrogel composited with Berberine and Naringin nanoparticles: In vitro and in vivo study. Journal of Molecular Liquids 318:114226. doi: 10.1016/j.molliq.2020.114226.
  • El Kantar, S., N. Boussetta, N. Lebovka, F. Foucart, H. N. Rajha, R. G. Maroun, N. Louka, and E. Vorobiev. 2018. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innovative Food Science & Emerging Technologies 46:153–61. doi: 10.1016/j.ifset.2017.09.024.
  • El Kantar, S., H. N. Rajha, N. Boussetta, E. Vorobiev, R. G. Maroun, and N. Louka. 2019. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry 295:165–71. doi: 10.1016/j.foodchem.2019.05.111.
  • Elmeligy, S., R. M. Hathout, S. A. M. Khalifa, H. R. El-Seedi, and M. A. Farag. 2021. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. Food Bioscience 44:101428. doi: 10.1016/j.fbio.2021.101428.
  • Feng, C. H., J. F. Garcia-Martin, M. B. Lavado, M. D. Lopez-Barrera, and P. Alvarez-Mateos. 2020. Evaluation of different solvents on flavonoids extraction efficiency from sweet oranges and ripe and immature Seville oranges. International Journal of Food Science & Technology 55 (9):3123–34. doi: 10.1111/ijfs.14576.
  • Feng, T., K. Wang, F. Liu, R. Ye, X. Zhu, H. Zhuang, and Z. Xu. 2017. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. International Journal of Biological Macromolecules 99:365–74. doi: 10.1016/j.ijbiomac.2017.03.005.
  • Foreign Agricultural Service USDA. 2022. Citrus: World Markets and Trade. https://www.fas.usda.gov/data/citrus-world-markets-and-trade.
  • Gao, Z., W. Gao, S.-L. Zeng, P. Li, and E. H. Liu. 2018. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. Journal of Functional Foods 40:498–509. doi: 10.1016/j.jff.2017.11.036.
  • Guirro, M., A. Gual-Grau, A. Gibert-Ramos, J. M. Alcaide-Hidalgo, N. Canela, L. Arola, and J. Mayneris-Perxachs. 2020. Metabolomics Elucidates Dose-Dependent Molecular Beneficial Effects of Hesperidin Supplementation in Rats Fed an Obesogenic Diet. Antioxidants 9 (1):79. doi: 10.3390/antiox9010079.
  • He, P. D., S. K. Yan, X. Wen, S. H. Zhang, Z. G. Liu, X. B. Liu, and C. X. Xiao. 2019. Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain. Journal of Cellular Biochemistry 120 (9):14756–70. doi: 10.1002/jcb.28736.
  • Huang, R., Y. Zhang, S. Shen, Z. Zhi, H. Cheng, S. Chen, and X. Ye. 2020. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chemistry 326:126785. doi: 10.1016/j.foodchem.2020.126785.
  • Hu, Y., G. Kou, Q. Chen, Y. Li, and Z. Zhou. 2019. Protection and delivery of mandarin (Citrus reticulata Blanco) peel extracts by encapsulation of whey protein concentrate nanoparticles. LWT 99:24–33. doi: 10.1016/j.lwt.2018.09.044.
  • Hu, Y., Q. Shu, F. Liu, L. Lei, B. Li, Y. Cao, and Y. Li. 2019. Ca2+-induced whey protein emulgels for the encapsulation of crystalline nobiletin: Effect of nobiletin crystals on the viscoelasticity. Food Hydrocolloids. 94:57–62. doi: 10.1016/j.foodhyd.2019.02.052.
  • Hwang, H.-J., H.-J. Kim, M.-J. Ko, and M.-S. Chung. 2021. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Science and Biotechnology 30 (2):217–26. doi: 10.1007/s10068-020-00862-z.
  • Iglesias-Carres, L., A. Mas-Capdevila, F. I. Bravo, G. Aragonès, B. Muguerza, and A. Arola-Arnal. 2019. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PloS One 14 (1):e0211267. doi: 10.1371/journal.pone.0211267.
  • Kaur, S., P. S. Panesar, and H. K. Chopra. 2023. Citrus processing by-products: An overlooked repository of bioactive compounds. Critical Reviews in Food Science and Nutrition 63 (1):67–86. doi: 10.1080/10408398.2021.1943647.
  • Ke, Z., Y. Zhao, S. Tan, H. Chen, Y. Li, Z. Zhou, and C. Huang. 2020. Citrus reticulata Blanco peel extract ameliorates hepatic steatosis, oxidative stress and inflammation in HF and MCD diet-induced NASH C57BL/6 J mice. The Journal of Nutritional Biochemistry 83:108426. doi: 10.1016/j.jnutbio.2020.108426.
  • Kim, D.-S., and S.-B. Lim. 2020a. Kinetic study of subcritical water extraction of flavonoids from citrus unshiu peel. Separation and Purification Technology 250:117259. doi: 10.1016/j.seppur.2020.117259.
  • Kim, D.-S., and S.-B. Lim. 2020b. Semi-Continuous Subcritical Water Extraction of Flavonoids from Citrus unshiu Peel: Their Antioxidant and Enzyme Inhibitory Activities. Antioxidants 9 (5):360. doi: 10.3390/antiox9050360.
  • Legua, P., G. Modica, I. Porras, A. Conesa, and A. Continella. 2022. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. Journal of the Science of Food and Agriculture 102 (7):2960–71. doi: 10.1002/jsfa.11636.
  • Liang, F., Y. Fang, W. Cao, Z. Zhang, S. Pan, and X. Xu. 2018. Attenuation of tert-Butyl Hydroperoxide (t-BHP)-induced oxidative damage in HepG2 Cells by tangeretin: Relevance of the Nrf2–ARE and MAPK signaling pathways. Journal of Agricultural and Food Chemistry 66 (25):6317–25. doi: 10.1021/acs.jafc.8b01875.
  • Liew, S. Q., G. C. Ngoh, R. Yusoff, and W. H. Teoh. 2016. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International Journal of Biological Macromolecules 93 (Pt A):426–35. doi: 10.1016/j.ijbiomac.2016.08.065.
  • Liu, Y., L. Dong, Y. Li, Q. Chen, L. Wang, M. A. Farag, L. Liu, S. Zhan, Z. Wu, and L. Liu. 2023. Soy protein isolate-citrus pectin composite hydrogels induced by TGase and ultrasonic treatment: Potential targeted delivery system for probiotics. Food Hydrocolloids. 143:108901. doi: 10.1016/j.foodhyd.2023.108901.
  • Liu, L., R. Jin, J. Hao, J. Zeng, D. Yin, Y. Yi, M. Zhu, A. Mandal, Y. Hua, C. K. Ng, et al. 2020. Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through induction of reactive oxygen species in protumor macrophages. Cancer Research 80 (12):2564–74. doi: 10.1158/0008-5472.CAN-19-3184.
  • Liu, S., Y. Lou, Y. Li, J. Zhang, P. Li, B. Yang, and Q. Gu. 2022. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Frontiers in Nutrition 9:968604. doi: 10.3389/fnut.2022.968604.
  • Liu, Y., P. Weng, Y. Liu, Z. Wu, L. Wang, and L. Liu. 2022. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocolloids. 133:107910. doi: 10.1016/j.foodhyd.2022.107910.
  • Lu, J. F., M. Q. Zhu, H. Zhang, H. Liu, B. Xia, Y. L. Wang, X. Shi, L. Peng, and J. W. Wu. 2020. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice. FASEB Journal 34 (9):12053–71. doi: 10.1096/fj.201903102RR.
  • Lü, Z., Z. Zhang, H. Wu, Z. Zhou, and J. Yu. 2016. Phenolic composition and antioxidant capacities of chinese local pummelo cultivars’ peel. Horticultural Plant Journal 2 (3):133–40. doi: 10.1016/j.hpj.2016.05.001.
  • Mahato, N., M. Sinha, K. Sharma, R. Koteswararao, and M. H. Cho. 2019. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 8 (11):523–604. doi: 10.3390/foods8110523.
  • Meng, T., D. Xiao, A. Muhammed, J. Deng, L. Chen, and J. He. 2021. Anti-inflammatory action and mechanisms of resveratrol. Molecules 26 (1):360. doi: 10.3390/molecules26010229.
  • Montero-Calderon, A., C. Cortes, A. Zulueta, A. Frigola, and M. J. Esteve. 2019. Green solvents and Ultrasound-Assisted Extraction of bioactive orange (Citrus sinensis) peel compounds. Scientific Reports 9 (1):16120. doi: 10.1038/s41598-019-52717-1.
  • Moulehi, I., S. Bourgou, I. Ourghemmi, and M. S. Tounsi. 2012. Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products 39:74–80. doi: 10.1016/j.indcrop.2012.02.013.
  • Muhammad, T., M. Ikram, R. Ullah, S. U. Rehman, and M. O. Kim. 2019. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 11 (3):648. doi: 10.3390/nu11030648.
  • Multari, S., S. Carlin, V. Sicari, and S. Martens. 2020. Differences in the composition of phenolic compounds, carotenoids, and volatiles between juice and pomace of four citrus fruits from Southern Italy. European Food Research and Technology 246 (10):1991–2005. doi: 10.1007/s00217-020-03550-8.
  • Multari, S., C. Licciardello, M. Caruso, A. Anesi, and S. Martens. 2021. Flavedo and albedo of five citrus fruits from Southern Italy: Physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization 15 (2):1754–62. doi: 10.1007/s11694-020-00787-5.
  • Nadar, S. S., P. Rao, and V. K. Rathod. 2018. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International (Ottawa, Ont.) 108:309–30. doi: 10.1016/j.foodres.2018.03.006.
  • Nipornram, S., W. Tochampa, P. Rattanatraiwong, and R. Singanusong. 2018. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry 241:338–45. doi: 10.1016/j.foodchem.2017.08.114.
  • Nishad, J., A. Dutta, S. Saha, S. G. Rudra, E. Varghese, R. R. Sharma, M. Tomar, M. Kumar, and C. Kaur. 2021. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chemistry 334:127561. doi: 10.1016/j.foodchem.2020.127561.
  • Niu, D., E.-F. Ren, J. Li, X.-A. Zeng, and S.-L. Li. 2021. Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Separation and Purification Technology 265:118480. doi: 10.1016/j.seppur.2021.118480.
  • Nunes, N. M., Y. L. Coelho, J. S. Castro, M. C. T. R. Vidigal, T. A. O. Mendes, L. H. M. da Silva, and A. C. S. Pires. 2020. Naringenin-lactoferrin binding: Impact on naringenin bitterness and thermodynamic characterization of the complex. Food Chemistry 331:127337. doi: 10.1016/j.foodchem.2020.127337.
  • Omidfar, F., F. Gheybi, J. Davoodi, M. Amirinejad, and A. Badiee. 2023. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation. Biotechnology and Applied Biochemistry 70 (2):846–56. doi: 10.1002/bab.2404.
  • Panwar, D., P. S. Panesar, and H. K. Chopra. 2021. Recent Trends on the Valorization Strategies for the Management of Citrus By-products. Food Reviews International 37 (1):91–120. doi: 10.1080/87559129.2019.1695834.
  • Papoutsis, K., P. Pristijono, J. B. Golding, C. E. Stathopoulos, M. C. Bowyer, C. J. Scarlett, and Q. V. Vuong. 2018. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Bioscience 21:20–6. doi: 10.1016/j.fbio.2017.11.001.
  • Park, J.-N., A. Ali-Nehari, H.-C. Woo, and B.-S. Chun. 2012. Thermal stabilities of polyphenols and fatty acids in Laminaria japonica hydrolysates produced using subcritical water. Korean Journal of Chemical Engineering 29 (11):1604–9. doi: 10.1007/s11814-012-0051-y.
  • Peiró, S., E. Luengo, F. Segovia, J. Raso, and M. P. Almajano. 2019. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste and Biomass Valorization 10 (4):889–97. doi: 10.1007/s12649-017-0116-6.
  • Rodsamran, P., and R. Sothornvit. 2019. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chemistry 278:364–72. doi: 10.1016/j.foodchem.2018.11.067.
  • Ruviaro, A. R., P. d P. M. Barbosa, and G. A. Macedo. 2019. Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products. Food Research International (Ottawa, Ontario) 124:213–21. doi: 10.1016/j.foodres.2018.05.004.
  • Ruviaro, A. R., P. d P. M. Barbosa, I. M. Martins, A. R. A. de Ávila, V. M. Nakajima, A. R. Dos Prazeres, J. A. Macedo, and G. A. Macedo. 2020. Flavanones biotransformation of citrus by-products improves antioxidant and ACE inhibitory activities in vitro. Food Bioscience 38:100787. doi: 10.1016/j.fbio.2020.100787.
  • Sabanci, S., M. Cevik, and A. Goksu. 2021. Investigation of time effect on pectin production from citrus wastes with ohmic heating assisted extraction process. Journal of Food Process Engineering 44 (6):13689–99. doi: 10.1111/jfpe.13689.
  • Safdar, M. N., T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, and A. A. Saddozai. 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis 25 (3):488–500. doi: 10.1016/j.jfda.2016.07.010.
  • Šafranko, S., I. Ćorković, I. Jerković, M. Jakovljević, K. Aladić, D. Šubarić, and S. Jokić. 2021. Green Extraction Techniques for Obtaining Bioactive Compounds from Mandarin Peel (Citrus unshiu var. Kuno): Phytochemical Analysis and Process Optimization. Foods 10 (5):1043. doi: 10.3390/foods10051043.
  • Sharma, P., R. Vishvakarma, K. Gautam, A. Vimal, V. Kumar Gaur, A. Farooqui, S. Varjani, and K. Younis. 2022. Valorization of citrus peel waste for the sustainable production of value-added products. Bioresource Technology 351:127064–75. doi: 10.1016/j.biortech.2022.127064.
  • Shehata, M. G., T. S. Awad, D. Asker, S. A. El Sohaimy, N. M. Abd El Aziz, and M. M. Youssef. 2021. Antioxidant and antimicrobial activities and UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current Research in Food Science 4:326–35. doi: 10.1016/j.crfs.2021.05.001.
  • Shimizu, K., Y. Egusa, S. Nishimuta, Y. Fukumura, M. Yoshimura, T. Inomoto, T. Terada, K. Tomita, and T. Nishinaka. 2021. Dietary calamondin supplementation slows the progression of non-alcoholic fatty liver disease in C57BL/6 mice fed a high-fat diet. International Journal of Food Sciences and Nutrition 72 (3):335–47. doi: 10.1080/09637486.2020.1813262.
  • Shishir, M. R. I., N. Karim, V. Gowd, J. H. Xie, X. D. Zheng, and W. Chen. 2019. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocolloids 95:432–44. doi: 10.1016/j.foodhyd.2019.04.059.
  • Smruthi, M. R., I. Nallamuthu, and T. Anand. 2022. A comparative study of optimized naringenin nanoformulations using nano-carriers (PLA/PVA and zein/pectin) for improvement of bioavailability. Food Chemistry 369:130950. doi: 10.1016/j.foodchem.2021.130950.
  • Testai, L., M. De Leo, L. Flori, B. Polini, A. Braca, P. Nieri, L. Pistelli, and V. Calderone. 2021. Contribution of irisin pathway in protective effects of mandarin juice (Citrus reticulata Blanco) on metabolic syndrome in rats fed with high fat diet. Phytotherapy Research 35 (8):4324–33. doi: 10.1002/ptr.7128.
  • Ting, Y., Y.-S. Chiou, M.-H. Pan, C.-T. Ho, and Q. Huang. 2015. In vitro and in vivo anti-cancer activity of tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. Journal of Functional Foods 15:264–73. doi: 10.1016/j.jff.2015.03.034.
  • Tsirigotis-Maniecka, M., R. Gancarz, and K. A. Wilk. 2017. Polysaccharide hydrogel particles for enhanced delivery of hesperidin: Fabrication, characterization and in vitro evaluation. Colloids and Surfaces A 532:48–56. doi: 10.1016/j.colsurfa.2017.07.001.
  • Tung, Y. C., W. T. Chang, S. Li, J. C. Wu, V. Badmeav, C. T. Ho, and M. H. Pan. 2018. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food & Function 9 (6):3363–73. doi: 10.1039/c7fo02066j.
  • Van Hung, P., N. H. Yen Nhi, L. Y. Ting, and N. T. Lan Phi. 2020. Chemical Composition and Biological Activities of Extracts from Pomelo Peel By-Products under Enzyme and Ultrasound-Assisted Extractions. Journal of Chemistry 2020:1–7. doi: 10.1155/2020/1043251.
  • Wang, S., Q. Du, X. Meng, and Y. Zhang. 2022. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome. Food & Function 13 (19):9734–53. doi: 10.1039/D2FO01552H.
  • Wang, Q., J. Luo, H. Liu, C. S. Brennan, J. Liu, and X. Zou. 2019. Protective effects of the flavonoid fraction obtained from pomelo fruitlets through ultrasonic-associated microwave extraction against AAPH-induced erythrocyte hemolysis. RSC Advances 9 (28):16007–17. doi: 10.1039/C9RA02523E.
  • Wang, F., C. Zhao, G. Tian, X. Wei, Z. Ma, J. Cui, R. Wei, Y. Bao, W. Kong, and J. Zheng. 2020. Naringin Alleviates Atherosclerosis in ApoE–/– Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. Journal of Agricultural and Food Chemistry 68 (45):12651–60. doi: 10.1021/acs.jafc.0c05800.
  • Wang, F., C. Zhao, M. Yang, L. Zhang, R. Wei, K. Meng, Y. Bao, L. Zhang, and J. Zheng. 2021. Four Citrus Flavanones Exert Atherosclerosis Alleviation Effects in ApoE–/– Mice via Different Metabolic and Signaling Pathways. Journal of Agricultural and Food Chemistry 69 (17):5226–37. doi: 10.1021/acs.jafc.1c01463.
  • Wei, Z., and Q. Huang. 2019. Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocolloids. 93:68–77. doi: 10.1016/j.foodhyd.2019.01.050.
  • Wijaya, W., H. Zheng, T. Zheng, S. Su, A. R. Patel, P. Van der Meeren, and Q. Huang. 2021. Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: A dynamic digestion study via TNO’s gastrointestinal model. Current Research in Food Science 2:11–19. doi: 10.1016/j.crfs.2019.11.007.
  • Xi, W., Y. Zhang, Y. Sun, Y. Shen, X. Ye, and Z. Zhou. 2014. Phenolic composition of Chinese wild mandarin (Citrus reticulata Balnco.) pulps and their antioxidant properties. Industrial Crops and Products 52:466–74. doi: 10.1016/j.indcrop.2013.11.016.
  • Xu, M., L. Ran, N. Chen, X. Fan, D. Ren, and L. Yi. 2019. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chemistry 297:124970. doi: 10.1016/j.foodchem.2019.124970.
  • Yi, J.-Y., K. Balaraju, H.-J. Baek, M.-S. Yoon, H.-H. Kim, and Y.-Y. Lee. 2018. Cryopreservation of Citrus limon (L.) Burm. F Shoot Tips Using a Droplet-vitrification Method. Korean Journal of Plant Resources 31 (6):684–94. doi: 10.7732/kjpr.2018.31.6.684.
  • Zargar, S., A.-R A. Al-Majed, and T. A. Wani. 2018. Potentiating and synergistic effect of grapefruit juice on the antioxidant and anti-inflammatory activity of aripiprazole against hydrogen ­peroxide induced oxidative stress in mice. BMC Complementary and Alternative Medicine 18 (1):106. doi: 10.1186/s12906-018-2169-x.
  • Zeng, S.-L., S.-Z. Li, P.-T. Xiao, Y.-Y. Cai, C. Chu, B.-Z. Chen, P. Li, J. Li, and E.-H. Liu. 2020. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Science Advances 6 (1):eaax6208. doi: 10.1126/sciadv.aax6208.
  • Zeng, F., D. Wang, Y. Tian, M. Wang, R. Liu, Z. Xia, and Y. Huang. 2021. Nanoemulsion for Improving the Oral Bioavailability of Hesperetin: Formulation Optimization and Absorption Mechanism. Journal of Pharmaceutical Sciences 110 (6):2555–61. doi: 10.1016/j.xphs.2021.02.030.
  • Zhang, Y., L. Dong, L. Liu, Z. Wu, D. Pan, and L. Liu. 2022. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. Journal of Agricultural and Food Chemistry 70 (21):6300–16. doi: 10.1021/acs.jafc.2c01080.
  • Zhang, Y., Y. Li, Q. Xia, L. Liu, Z. Wu, and D. Pan. 2023. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Critical Reviews in Food Science and Nutrition 63 (19):3895–911. doi: 10.1080/10408398.2021.1995842.
  • Zhang, L., D. J. McClements, Z. Wei, G. Wang, X. Liu, and F. Liu. 2020. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition 60 (12):2083–97. doi: 10.1080/10408398.2019.1630358.
  • Zhang, M., J. Zhu, X. Zhang, D.-G. Zhao, Y.-Y. Ma, D. Li, C.-T. Ho, and Q. Huang. 2020. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food & Function 11 (3):2667–78. doi: 10.1039/c9fo02907a.
  • Zheng, G., K. Wang, B. Chen, M. Liu, W. Yang, J. Ning, Y. Cai, and M. Wei. 2022. The enhanced solubility and anti-lipase activity of citrus peel polymethoxyflavonoids extracts with liposomal encapsulation. LWT 161:113395. doi: 10.1016/j.lwt.2022.113395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.