582
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator?

, , , , , & show all

References

  • Al-Hasani, R., R. Gowrishankar, G. P. Schmitz, C. E. Pedersen, D. J. Marcus, S. E. Shirley, T. E. Hobbs, A. J. Elerding, S. J. Renaud, M. Jing, et al. 2021. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nature Neuroscience 24:1414–28. doi: 10.1038/s41593-021-00898-2.
  • Anagnostopoulos, G., O. Motiño, S. Li, V. Carbonnier, H. Chen, V. Sica, S. Durand, M. Bourgin, F. Aprahamian, N. Nirmalathasan, et al. 2022. An obesogenic feedforward loop involving PPARgamma, acyl-CoA binding protein and GABAA receptor. Cell Death & Disease 13 (4):356. and doi: 10.1038/s41419-022-04834-5.
  • Berland, C., J. Castel, R. Terrasi, E. Montalban, E. Foppen, C. Martin, G. G. Muccioli, S. Luquet, and G. Gangarossa. 2022. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Molecular Psychiatry 27 (4):2340–54. doi: 10.1038/s41380-021-01428-z.
  • Blanco, A. M., J. I. Bertucci, and S. Unniappan. 2020. FGF21 mimics a fasting-induced metabolic state and increases appetite in zebrafish. Scientific Reports 10 (1):6993. doi: 10.1038/s41598-020-63726-w.
  • Brown, R. M., C. V. Dayas, M. H. James, and R. J. Smith. 2022. New directions in modelling dysregulated reward seeking for food and drugs. Neuroscience and Biobehavioral Reviews 132:1037–48. doi: 10.1016/j.neubiorev.2021.10.043.
  • Buchanan, K. L., L. E. Rupprecht, M. M. Kaelberer, A. Sahasrabudhe, M. E. Klein, J. A. Villalobos, W. W. Liu, A. Yang, J. Gelman, S. Park, et al. 2022. The preference for sugar over sweetener depends on a gut sensor cell. Nature Neuroscience 25 (2):191–200. doi: 10.1038/s41593-021-00982-7.
  • Butiaeva, L. I., T. Slutzki, H. E. Swick, C. Bourguignon, S. C. Robins, X. Liu, K. F. Storch, and M. V. Kokoeva. 2021. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metabolism 33 (7):1433–48 e1435. doi: 10.1016/j.cmet.2021.05.017.
  • Calderon, G., A. McRae, J. Rievaj, J. Davis, I. Zandvakili, S. Linker-Nord, D. Burton, G. Roberts, F. Reimann, B. Gedulin, et al. 2020. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 55:102759. doi: 10.1016/j.ebiom.2020.102759.
  • Campos, A., J. D. Port, and A. Acosta. 2022. Integrative hedonic and homeostatic food intake regulation by the central nervous system: Insights from neuroimaging. Brain Sciences 12 (4):431. doi: 10.3390/brainsci12040431.
  • Cani, P. D., E. Lecourt, E. M. Dewulf, F. M. Sohet, B. D. Pachikian, D. Naslain, F. De Backer, A. M. Neyrinck, and N. M. Delzenne. 2009. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American Journal of Clinical Nutrition 90 (5):1236–43. doi: 10.3945/ajcn.2009.28095.
  • Carretta, M. D., J. Quiroga, R. López, M. A. Hidalgo, and R. A. Burgos. 2021. Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer. Frontiers in Physiology 12:662739. doi: 10.3389/fphys.2021.662739.
  • Chadwick, S. R., and A. D. Güler. 2022. Local Drd1-neurons input to subgroups of arcuate AgRP/NPY-neurons. iScience 25 (7):104605. doi: 10.1016/j.isci.2022.104605.
  • Chen, G., Y. Li, X. Li, D. Zhou, Y. Wang, X. Wen, C. Wang, X. Liu, Y. Feng, B. Li, et al. 2021. Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends in Food Science & Technology 111:475–82. doi: 10.1016/j.tifs.2021.02.075.
  • Chen, J., M. Cheng, L. Wang, L. Zhang, D. Xu, P. Cao, F. Wang, H. Herzog, S. Song, and C. Zhan. 2020. A vagal-NTS neural pathway that stimulates feeding. Current Biology : CB 30 (20):3986–98.e5. doi: 10.1016/j.cub.2020.07.084.
  • Chen, K., M. Hu, M. Tang, C. Gao, H. Wang, S. Man, and F. Lu. 2022. Oligosaccharide and short-chain fatty acid: A double-edged sword in obese mice by regulating food intake and fat synthesis. Food Research International (Ottawa, Ont.) 159:111619. doi: 10.1016/j.foodres.2022.111619.
  • Chen, R., R. Zhou, J. Qiao, Y. Yang, X. Zhou, R. Bai, Y. Wang, L. Yan, and C. Wu. 2022. Orally administered Bi2S3@SiO2 core-shell nanomaterials as gastrointestinal contrast agents and their influence on gut microbiota. Materials Today. Bio 13:100178. doi: 10.1016/j.mtbio.2021.100178.
  • Chen, W., J. Li, J. Liu, D. Wang, and L. Hou. 2019. Aerobic exercise improves food reward systems in obese rats via insulin signaling regulation of dopamine levels in the nucleus accumbens. ACS Chemical Neuroscience 10 (6):2801–8. doi: 10.1021/acschemneuro.9b00022.
  • Cuomo, P., R. Capparelli, A. Iannelli, and D. Iannelli. 2022. Role of branched-chain amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-alcoholic fatty liver disease. International Journal of Molecular Sciences 23 (8):4325. doi: 10.3390/ijms23084325.
  • Dala-Paula, B. M., V. L. Deus, O. L. Tavano, and M. B. A. Gloria. 2021. In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate: What you eat and what you get. Food Chemistry 343:128397. doi: 10.1016/j.foodchem.2020.128397.
  • Dalile, B., L. Van Oudenhove, B. Vervliet, and K. Verbeke. 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews. Gastroenterology & Hepatology 16 (8):461–78. doi: 10.1038/s41575-019-0157-3.
  • Damiano, S., G. La Rosa, C. Sozio, G. Cavaliere, G. Trinchese, M. Raia, R. Paterno, M. P. Mollica, V. E. Avvedimento, and M. Santillo. 2021. 5-Hydroxytryptamine modulates maturation and mitochondria function of human oligodendrocyte progenitor M03-13 Cells. International Journal of Molecular Sciences 22 (5):2621. doi: 10.3390/ijms22052621.
  • Daniel, P. V., S. Dogra, P. Rawat, A. Choubey, A. S. Khan, S. Rajak, M. Kamthan, and P. Mondal. 2021. NF-kappaB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. The Journal of Biological Chemistry 296:100714. doi: 10.1016/j.jbc.2021.100714.
  • de Araujo, I. E., M. Schatzker, and D. M. Small. 2020. Rethinking food reward. Annual Review of Psychology 71:139–64. doi: 10.1146/annurev-psych-122216-011643.
  • de Wouters d’Oplinter, A., M. Verce, S. J. P. Huwart, J. Lessard-Lord, C. Depommier, M. Van Hul, Y. Desjardins, P. D. Cani, and A. Everard. 2023. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. Microbiome 11 (1):94. doi: 10.1186/s40168-023-01526-w.
  • Fanibunda, S. E., S. Deb, B. Maniyadath, P. Tiwari, U. Ghai, S. Gupta, D. Figueiredo, N. Weisstaub, J. A. Gingrich, A. D. B. Vaidya, et al. 2019. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1alpha axis. Proceedings of the National Academy of Sciences of the United States of America 116 (22):11028–37. doi: 10.1073/pnas.1821332116.
  • Fan, Z., W. Jia, and A. Du. 2023. UHPLC-Q-orbitrap-based integrated lipidomics and proteomics reveal propane-1,2-diol exposure accelerating degradation of lipids via the allosteric effect and reducing the nutritional value of milk. Journal of Agricultural and Food Chemistry 71 (2):1178–89. doi: 10.1021/acs.jafc.2c07059.
  • Farrell, M. R., Q. Ye, Y. Xie, J. S. D. Esteban, and S. V. Mahler. 2022. Ventral pallidum GABA neurons bidirectionally control opioid relapse across rat behavioral models. Addiction Neuroscience 3:100026. doi: 10.1016/j.addicn.2022.100026.
  • Fernandes, A. B., J. Alves da Silva, J. Almeida, G. Cui, C. R. Gerfen, R. M. Costa, and A. J. Oliveira-Maia. 2020. Postingestive modulation of food Seeking depends on vagus-mediated dopamine neuron activity. Neuron 106 (5):778–88.e6. doi: 10.1016/j.neuron.2020.03.009.
  • Fernandes, A. C. A., F. P. de Oliveira, G. Fernandez, L. da Guia Vieira, C. G. Rosa, T. do Nascimento, S. de Castro Franca, J. J. Donato, K. R. Vella, J. Antunes-Rodrigues, et al. 2022. Correction to: Arcuate AgRP, but not POMC neurons, modulate paraventricular CRF synthesis and release in response to fasting. Cell & Bioscience 12 (1):118. doi: 10.1186/s13578-022-00853-z.
  • Foley, M. H., S. O’Flaherty, G. Allen, A. J. Rivera, A. K. Stewart, R. Barrangou, and C. M. Theriot. 2021. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences 118 (6):e2017709118. doi: 10.1073/pnas.2017709118.
  • Friedman, A. N., P. R. Schauer, S. Beddhu, H. Kramer, C. W. Le Roux, J. Q. Purnell, D. Sunwold, K. R. Tuttle, A. M. Jastreboff, and L. M. Kaplan. 2022. Obstacles and opportunities in managing coexisting obesity and CKD: Report of a scientific workshop cosponsored by the national kidney foundation and the obesity society. American Journal of Kidney Diseases : The Official Journal of the National Kidney Foundation 80 (6):783–93. doi: 10.1053/j.ajkd.2022.06.007.
  • Geisler, C. E., S. Ghimire, S. M. Bruggink, K. E. Miller, S. N. Weninger, J. M. Kronenfeld, J. Yoshino, S. Klein, F. A. Duca, and B. J. Renquist. 2021. A critical role of hepatic GABA in the metabolic dysfunction and hyperphagia of obesity. Cell Reports 35 (13):109301. doi: 10.1016/j.celrep.2021.109301.
  • Ghosh, S., C. S. Whitley, B. Haribabu, and V. R. Jala. 2021. Regulation of intestinal barrier function by microbial metabolites. Cellular and Molecular Gastroenterology and Hepatology 11 (5):1463–82. doi: 10.1016/j.jcmgh.2021.02.007.
  • Gueddouri, D., M. Cauzac, V. Fauveau, F. Benhamed, W. Charifi, L. Beaudoin, M. Rouland, F. Sicherre, A. Lehuen, C. Postic, et al. 2022. Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Molecular Metabolism 57:101438. doi: 10.1016/j.molmet.2022.101438.
  • Guo, Q., X. Hou, Q. Cui, S. Li, G. Shen, Q. Luo, H. Wu, H. Chen, Y. Liu, A. Chen, et al. 2023. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Critical Reviews in Food Science and Nutrition :1–23. doi: 10.1080/10408398.2023.2173719.
  • Gupta, D., A. M. Patterson, S. Osborne-Lawrence, A. L. Bookout, S. Varshney, K. Shankar, O. Singh, N. P. Metzger, C. P. Richard, S. C. Wyler, et al. 2021. Disrupting the ghrelin-growth hormone axis limits ghrelin’s orexigenic but not glucoregulatory actions. Molecular Metabolism 53:101258. doi: 10.1016/j.molmet.2021.101258.
  • Guzzardi, M. A., T. H. A. Ederveen, F. Rizzo, A. Weisz, M. C. Collado, F. Muratori, G. Gross, W. Alkema, and P. Iozzo. 2022. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain, Behavior, and Immunity 100:311–20. doi: 10.1016/j.bbi.2021.12.009.
  • Hamamah, S., and M. Covasa. 2022. Gut microbiota restores central neuropeptide deficits in germ-free mice. International Journal of Molecular Sciences 23 (19):11756. doi: 10.3390/ijms231911756.
  • Han, H., B. Yi, R. Zhong, M. Wang, S. Zhang, J. Ma, Y. Yin, J. Yin, L. Chen, and H. Zhang. 2021. From gut microbiota to host appetite: Gut microbiota-derived metabolites as key regulators. Microbiome 9 (1):162. doi: 10.1186/s40168-021-01093-y.
  • Hebebrand, J., A. Hinney, and J. Antel. 2023. Could leptin substitution therapy potentially terminate entrapment in anorexia nervosa? Nature Reviews. Endocrinology 19 (8):435–6. doi: 10.1038/s41574-023-00863-y.
  • Holmes, Z. C., M. M. Villa, H. K. Durand, S. Jiang, E. P. Dallow, B. L. Petrone, J. D. Silverman, P. H. Lin, and L. A. David. 2022. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10 (1):114. doi: 10.1186/s40168-022-01307-x.
  • Huang, Y., Y. Gao, X. Pi, S. Zhao, and W. Liu. 2022. In vitro hepatoprotective and human gut microbiota modulation of polysaccharide-peptides in pleurotus citrinopileatus. Frontiers in Cellular and Infection Microbiology 12:892049. doi: 10.3389/fcimb.2022.892049.
  • Huang, Z., J. Boekhorst, V. Fogliano, E. Capuano, and J. M. Wells. 2023. Distinct effects of fiber and colon segment on microbiota-derived indoles and short-chain fatty acids. Food Chemistry 398:133801. doi: 10.1016/j.foodchem.2022.133801.
  • Hulme, H., L. M. Meikle, N. Strittmatter, J. J. J. van der Hooft, J. Swales, R. A. Bragg, V. H. Villar, M. J. Ormsby, S. Barnes, S. L. Brown, et al. 2020. Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Science Advances 6 (11): Eaax6328. doi: 10.1126/sciadv.aax6328.
  • Hume, M. P., A. C. Nicolucci, and R. A. Reimer. 2017. Prebiotic supplementation improves appetite control in children with overweight and obesity: A randomized controlled trial. The American Journal of Clinical Nutrition 105 (4):790–9. doi: 10.3945/ajcn.116.140947.
  • Huwart, S. J. P., A. de Wouters d’Oplinter, M. Rastelli, M. Van Hul, W. M. de Vos, S. Luquet, P. D. Cani, and A. Everard. 2022. Food reward alterations during obesity are associated with inflammation in the striatum in mice: Beneficial effects of akkermansia muciniphila. Cells 11 (16):2534. doi: 10.3390/cells11162534.
  • Israelyan, N., A. Del Colle, Z. Li, Y. Park, A. Xing, J. P. R. Jacobsen, R. A. Luna, D. D. Jensen, M. Madra, V. Saurman, et al. 2019. Effects of serotonin and slow-release 5-hydroxytryptophan on gastrointestinal motility in a mouse model of depression. Gastroenterology 157 (2):507–21.e4. doi: 10.1053/j.gastro.2019.04.022.
  • Jia, W., A. Du, Z. Fan, and L. Shi. 2023. Goat milk-derived short chain peptides: Peptide LPYV as species-specific characteristic and their versatility bioactivities by MOF@Fe(3)O(4)@GO mesoporous magnetic-based peptidomics. Food Research International (Ottawa, Ont.) 164:112442. doi: 10.1016/j.foodres.2022.112442.
  • Jia, W., and C. Di. 2023. Unraveling propylene glycol-induced lipolysis of the biosynthesis pathway in ultra-high temperature milk using high resolution mass spectrometry untargeted lipidomics and proteomics. Food Research International (Ottawa, Ont.) 164:112459. doi: 10.1016/j.foodres.2023.112459.
  • Jia, W., X. Wu, N. Liu, Z. Xia, and L. Shi. 2023. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity. Food Chemistry 409:135322. doi: 10.1016/j.foodchem.2022.135322.
  • Kanellopoulos, A. K., V. Mariano, M. Spinazzi, Y. J. Woo, C. McLean, U. Pech, K. W. Li, J. D. Armstrong, A. Giangrande, P. Callaerts, et al. 2020. Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits. Cell 180 (6):1178–97.e20. doi: 10.1016/j.cell.2020.02.044.
  • Kim, D. Y., G. Heo, M. Kim, H. Kim, J. A. Jin, H. K. Kim, S. Jung, M. An, B. H. Ahn, J. H. Park, et al. 2020. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580 (7803):376–80. doi: 10.1038/s41586-020-2167-2.
  • Kimura, I., A. Ichimura, R. Ohue-Kitano, and M. Igarashi. 2020. Free fatty acid receptors in health and disease. Physiological Reviews 100 (1):171–210. doi: 10.1152/physrev.00041.2018.
  • Krautkramer, K. A., J. Fan, and F. Bäckhed. 2021. Gut microbial metabolites as multi-kingdom intermediates. Nature Reviews. Microbiology 19 (2):77–94. doi: 10.1038/s41579-020-0438-4.
  • Lee, D.-Y., C. Y. Lee, J. N. Shin, J. H. Oh, and S. M. Shim. 2021. Impact of soy lecithin, zinc oxide, and methylsulfonylmethane, as excipient ingredients, on the bioaccessibility and intestinal transport of branched-chain amino acids from animal and plant protein mixtures. Food & Function 12 (22):11399–407. doi: 10.1039/d1fo01712h.
  • Lee, J. Y., R. M. Tsolis, and A. J. Bäumler. 2022. The microbiome and gut homeostasis. Science (New York, N.Y.) 377 (6601):eabp9960. doi: 10.1126/science.abp9960.
  • Li, G., Y. Hu, W. Zhang, Y. Ding, Y. Wang, J. Wang, Y. He, G. Lv, K. M. von Deneen, Y. Zhao, et al. 2021. Resting activity of the hippocampus and amygdala in obese individuals predicts their response to food cues. Addiction Biology 26 (3):e12974. doi: 10.1111/adb.12974.
  • Li, L., W. L. Guo, W. Zhang, J. X. Xu, M. Qian, W. D. Bai, Y. Y. Zhang, P. F. Rao, L. Ni, and X. C. Lv. 2019. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. Food & Function 10 (5):2560–72. doi: 10.1039/C9FO00075E.
  • Li, L., Y. Guo, Q. Huang, X. Shi, Q. Liu, F. Wang, Q. Liu, K. Yu, and Z. Wang. 2022. GPP (composition of Ganoderma lucidum­polysaccharides and Polyporus umbellatus polysaccharides) protects against DSS-induced murine colitis by enhancing immune function and regulating intestinal flora. Food Science and Human Wellness 11 (4):795–805. doi: 10.1016/j.fshw.2022.03.010.
  • Li, L., Y. Tian, S. Zhang, Y. Feng, H. Wang, X. Cheng, Y. Ma, R. Zhang, and C. Wang. 2022. Regulatory effect of mung bean peptide on prediabetic mice induced by high-fat diet. Frontiers in Nutrition 9:913016. doi: 10.3389/fnut.2022.913016.
  • Li, M., F. Wang, J. Wang, A. Wang, X. Yao, P. Strappe, Z. Zhou, Q. Wu, and T. Guo. 2022. Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes. Food Chemistry 389:133089. doi: 10.1016/j.foodchem.2022.133089.
  • Li, Y., L. Chen, W. Zhao, L. Sun, R. Zhang, S. Zhu, K. Xie, X. Feng, X. Wu, Z. Sun, et al. 2021. Food reward depends on TLR4 activation in dopaminergic neurons. Pharmacological Research 169:105659. doi: 10.1016/j.phrs.2021.105659.
  • Li, Y., J. Huang, S. Zhang, F. Yang, H. Zhou, Y. Song, B. Wang, and H. Li. 2022. Sodium alginate and galactooligosaccharides ameliorate metabolic disorders and alter the composition of the gut microbiota in mice with high-fat diet-induced obesity. International Journal of Biological Macromolecules 215:113–22. doi: 10.1016/j.ijbiomac.2022.06.073.
  • Li, Z., C. X. Yi, S. Katiraei, S. Kooijman, E. Zhou, C. K. Chung, Y. Gao, J. K. van den Heuvel, O. C. Meijer, J. F. P. Berbée, et al. 2018. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67 (7):1269–79. doi: 10.1136/gutjnl-2017-314050.
  • Liu, Y., and P. Forsythe. 2021. Vagotomy and insights into the microbiota-gut-brain axis. Neuroscience Research 168:20–7. doi: 10.1016/j.neures.2021.04.001.
  • Liu, Y., Z. Wu, L. Cheng, X. Zhang, and H. Yang. 2021. The role of the intestinal microbiota in the pathogenesis of host depression and mechanism of TPs relieving depression. Food & Function 12 (17):7651–63. doi: 10.1039/d1fo01091c.
  • Martinou, E., I. Stefanova, E. Iosif, and A. M. Angelidi. 2022. Neurohormonal changes in the gut-brain axis and underlying neuroendocrine mechanisms following bariatric surgery. International Journal of Molecular Sciences 23:3339. doi: 10.3390/ijms23063339.
  • Masule, M. V., S. Rathod, Y. Agrawal, C. R. Patil, K. T. Nakhate, S. Ojha, S. N. Goyal, and U. B. Mahajan. 2022. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. Current Research in Pharmacology and Drug Discovery 3:100113. doi: 10.1016/j.crphar.2022.100113.
  • Massier, L., R. Chakaroun, S. Tabei, A. Crane, K. D. Didt, J. Fallmann, M. von Bergen, S. B. Haange, H. Heyne, M. Stumvoll, et al. 2020. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69 (10):1796–806. doi: 10.1136/gutjnl-2019-320118.
  • Mhalhal, T. R., M. C. Washington, J. C. Heath, and A. I. Sayegh. 2021. Effect of vagotomy and sympathectomy on the feeding responses evoked by intra-aortic cholecystokinin-8 in adult male sprague dawley rats. Endocrine Research 46 (2):57–65. doi: 10.1080/07435800.2020.1861621.
  • Milliken, B. T., C. Elfers, O. G. Chepurny, K. S. Chichura, I. R. Sweet, T. Borner, M. R. Hayes, B. C. De Jonghe, G. G. Holz, C. L. Roth, et al. 2021. Design and evaluation of peptide dual-agonists of GLP-1 and NPY2 receptors for glucoregulation and weight loss with mitigated nausea and emesis. Journal of Medicinal Chemistry 64 (2):1127–38. doi: 10.1021/acs.jmedchem.0c01783.
  • Milstein, J. L., and H. A. Ferris. 2021. The brain as an insulin-sensitive metabolic organ. Molecular Metabolism 52:101234. doi: 10.1016/j.molmet.2021.101234.
  • Newgard, C. B., J. An, J. R. Bain, M. J. Muehlbauer, R. D. Stevens, L. F. Lien, A. M. Haqq, S. H. Shah, M. Arlotto, C. A. Slentz, Jr., et al. 2009. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism 9 (4):311–26. doi: 10.1016/j.cmet.2009.02.002.
  • Nie, Q., J. Hu, H. Chen, F. Geng, and S. Nie. 2022. Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chemistry 371:131106. doi: 10.1016/j.foodchem.2021.131106.
  • Nyborg, N. C. B., R. K. Kirk, A. S. de Boer, D. W. Andersen, A. Bugge, B. S. Wulff, I. Thorup, and T. R. Clausen. 2020. Cholecystokinin-1 receptor agonist induced pathological findings in the exocrine pancreas of non-human primates. Toxicology and Applied Pharmacology 399:115035. doi: 10.1016/j.taap.2020.115035.
  • Ogawa, A., T. Osada, M. Tanaka, A. Suda, K. Nakajima, S. Oka, K. Kamagata, S. Aoki, Y. Oshima, S. Tanaka, et al. 2022. Hypothalamic interaction with reward-related regions during subjective evaluation of foods. NeuroImage 264:119744. doi: 10.1016/j.neuroimage.2022.119744.
  • Park, S., H. Yuan, T. Zhang, X. Wu, S. K. Huang, and S. M. Cho. 2021. Long-term silk peptide intake promotes skeletal muscle mass, reduces inflammation, and modulates gut microbiota in middle-aged female rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 137:111415. doi: 10.1016/j.biopha.2021.111415.
  • Peluzio, M. d C. G., J. A. Martinez, and F. I. Milagro. 2021. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends in Food Science & Technology 108:11–26. doi: 10.1016/j.tifs.2020.12.004.
  • Perelló, M., M. P. Cornejo, P. N. De Francesco, G. Fernandez, L. Gautron, and L. S. Valdivia. 2022. The controversial role of the vagus nerve in mediating ghrelin’s actions: Gut feelings and beyond. IBRO Neuroscience Reports 12:228–39. doi: 10.1016/j.ibneur.2022.03.003.
  • Pradel, K., T. Blasiak, and W. B. Solecki. 2018. Adrenergic receptor agonists’ modulation of dopaminergic and non-dopaminergic neurons in the ventral tegmental area. Neuroscience 375:119–34. doi: 10.1016/j.neuroscience.2017.11.002.
  • Rautmann, A. W., and C. B. de La Serre. 2021. Microbiota’s role in diet-driven alterations in food intake: Satiety, energy balance, and reward. Nutrients 13 (9):3067. doi: 10.3390/nu13093067.
  • Reichenbach, A., R. E. Clarke, R. Stark, S. H. Lockie, M. Mequinion, H. Dempsey, S. Rawlinson, F. Reed, T. Sepehrizadeh, M. DeVeer, et al. 2022. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 11:e72668. doi: 10.7554/eLife.72668.
  • Rodrigues, V. S. T., E. G. Moura, T. C. Peixoto, P. N. Soares, B. P. Lopes, I. M. Bertasso, B. S. Silva, S. S. Cabral, G. E. G. Kluck, G. C. Atella, et al. 2022. The model of litter size reduction induces long-term disruption of the gut-brain axis: An explanation for the hyperphagia of Wistar rats of both sexes. Physiological Reports 10 (3):e15191. doi: 10.14814/phy2.15191.
  • Rolls, E. T. 2023. The orbitofrontal cortex, food reward, body weight and obesity. Social Cognitive and Affective Neuroscience 18 (1):nsab044. doi: 10.1093/scan/nsab044.
  • Santinelli, L., G. Rossi, G. Gioacchini, R. Verin, L. Maddaloni, E. N. Cavallari, F. Lombardi, A. Piccirilli, S. Fiorucci, A. Carino, et al. 2023. The crosstalk between gut barrier impairment, mitochondrial dysfunction, and microbiota alterations in people living with HIV. Journal of Medical Virology 95 (1):e28402. doi: 10.1002/jmv.28402.
  • Santos-Hernández, M., S. M. Vivanco-Maroto, B. Miralles, and I. Recio. 2023. Food peptides as inducers of CCK and GLP-1 secretion and GPCRs involved in enteroendocrine cell signalling. Food Chemistry 402:134225. doi: 10.1016/j.foodchem.2022.134225.
  • Saucisse, N., W. Mazier, V. Simon, E. Binder, C. Catania, L. Bellocchio, R. A. Romanov, S. Leon, I. Matias, P. Zizzari, et al. 2021. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Reports 37 (2):109800. doi: 10.1016/j.celrep.2021.109800.
  • Shi, Y., R. Feng, J. Mao, S. Liu, Z. Zhou, Z. Ji, S. Chen, and J. Mao. 2021. Structural characterization of peptides from Huangjiu and their regulation of hepatic steatosis and gut microbiota dysbiosis in hyperlipidemia mice. Frontiers in Pharmacology 12:689092. doi: 10.3389/fphar.2021.689092.
  • Solon-Biet, S. M., V. C. Cogger, T. Pulpitel, D. Wahl, X. Clark, E. Bagley, G. C. Gregoriou, A. M. Senior, Q. P. Wang, A. E. Brandon, et al. 2019. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nature Metabolism 1 (5):532–45. doi: 10.1038/s42255-019-0059-2.
  • Song, Q., Y. Wang, L. Huang, M. Shen, Y. Yu, Q. Yu, Y. Chen, and J. Xie. 2021. Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International (Ottawa, Ont.) 140:109858. doi: 10.1016/j.foodres.2020.109858.
  • Song, X., L. Wang, Y. Liu, X. Zhang, P. Weng, L. Liu, R. Zhang, and Z. Wu. 2022. The gut microbiota-brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Research International (Ottawa, Ont.) 153:110971. doi: 10.1016/j.foodres.2022.110971.
  • Tamarit-Rodriguez, J. 2023. Metabolic role of GABA in the secretory function of pancreatic β-cells: Its hypothetical implication in β-cell degradation in type 2 diabetes. Metabolites 13 (6):697. doi: 10.3390/metabo13060697.
  • Tan, B., Y. Wang, X. Zhang, and X. Sun. 2022. Recent studies on protective effects of walnuts against neuroinflammation. Nutrients 14 (20):4360. doi: 10.3390/nu14204360.
  • Tan, H. E., A. C. Sisti, H. Jin, M. Vignovich, M. Villavicencio, K. S. Tsang, Y. Goffer, and C. S. Zuker. 2020. The gut-brain axis mediates sugar preference. Nature 580 (7804):511–6. doi: 10.1038/s41586-020-2199-7.
  • Torres-Fuentes, C., A. V. Golubeva, A. V. Zhdanov, S. Wallace, S. Arboleya, D. B. Papkovsky, S. E. Aidy, P. Ross, B. L. Roy, C. Stanton, et al. 2019. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 33 (12):13546–59. doi: 10.1096/fj.201901433R.
  • Wachsmuth, H. R., S. N. Weninger, and F. A. Duca. 2022. Role of the gut-brain axis in energy and glucose metabolism. Experimental & Molecular Medicine 54 (4):377–92. doi: 10.1038/s12276-021-00677-w.
  • Wang, C., Y. Wang, H. Yang, Z. Tian, M. Zhu, X. Sha, J. Ran, and L. Li. 2022. Uygur type 2 diabetes patient fecal microbiota transplantation disrupts blood glucose and bile acid levels by changing the ability of the intestinal flora to metabolize bile acids in C57BL/6 mice. BMC Endocrine Disorders 22 (1):236. doi: 10.1186/s12902-022-01155-8.
  • Wang, Q., F. Shen, J. Zhang, H. Cai, Y. Pan, T. Sun, Y. Gong, J. Du, H. Zhong, and F. Feng. 2022. Consumption of wheat peptides improves functional constipation: A translational study in humans and mice. Molecular Nutrition & Food Research 66 (19):e2200313. doi: 10.1002/mnfr.202200313.
  • Wang, R., L. Wang, S. Wang, J. Wang, C. Su, L. Zhang, C. Li, and S. Liu. 2022. Phenolics from noni (Morinda citrifolia L.) fruit alleviate obesity in high fat diet-fed mice via modulating the gut microbiota and mitigating intestinal damage. Food Chemistry 402:134232. doi: 10.1016/j.foodchem.2022.134232.
  • Wang, Y., N. Ablimit, Y. Zhang, J. Li, X. Wang, J. Liu, T. Miao, L. Wu, H. Wang, Z. Wang, et al. 2021. Novel beta-mannanase/GLP-1 fusion peptide high effectively ameliorates obesity in a mouse model by modifying balance of gut microbiota. International Journal of Biological Macromolecules 191:753–63. doi: 10.1016/j.ijbiomac.2021.09.150.
  • Wasinski, F., F. Barrile, J. A. B. Pedroso, P. G. F. Quaresma, W. O. Dos Santos, E. O. List, J. J. Kopchick, M. Perelló, and J. Donato. 2021. Ghrelin-induced food intake, but not GH secretion, requires the expression of the GH receptor in the brain of male mice. Endocrinology 162(7):1–15. doi: 10.1210/endocr/bqab097.
  • Wever, M. C. M., F. van Meer, L. Charbonnier, D. R. Crabtree, W. Buosi, A. Giannopoulou, O. Androutsos, A. M. Johnstone, Y. Manios, C. L. Meek, et al. 2021. Associations between ghrelin and leptin and neural food cue reactivity in a fasted and sated state. NeuroImage 240:118374. and doi: 10.1016/j.neuroimage.2021.118374.
  • Williams, E. K., R. B. Chang, D. E. Strochlic, B. D. Umans, B. B. Lowell, and S. D. Liberles. 2016. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166 (1):209–21. doi: 10.1016/j.cell.2016.05.011.
  • Winston, J. A., and C. M. Theriot. 2020. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 11 (2):158–71. doi: 10.1080/19490976.2019.1674124.
  • Xia, G., Y. Han, F. Meng, Y. He, D. Srisai, M. Farias, M. Dang, R. D. Palmiter, Y. Xu, and Q. Wu. 2021. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Molecular Psychiatry 26 (7):2837–53. doi: 10.1038/s41380-021-01053-w.
  • Xia, T., C. S. Liu, Y. N. Hu, Z. Y. Luo, F. L. Chen, L. X. Yuan, and X. M. Tan. 2021. Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling. Food Research International (Ottawa, Ont.) 150 (Pt A):110717. doi: 10.1016/j.foodres.2021.110717.
  • Xing, J. W., M. M. Chen, X. Y. Tian, D. Q. Pan, X. H. Peng, and P. F. Gao. 2021. 919 syrup inhibits ROS-mediated leptin-induced anorexia by activating PPARgamma and improves gut flora abnormalities. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 138:111455. doi: 10.1016/j.biopha.2021.111455.
  • Xu, Y., H. Li, J. Liang, J. Ma, J. Yang, X. Zhao, W. Zhao, W. Bai, X. Zeng, and H. Dong. 2021. High-throughput quantification of eighteen heterocyclic aromatic amines in roasted and pan-fried meat on the basis of high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry. Food Chemistry 361:130147. doi: 10.1016/j.foodchem.2021.130147.
  • Yamamoto, R., T. Ito, T. Furuyama, M. Ono, and N. Kato. 2022. 5-HT and alpha-m-5-HT attenuate excitatory synaptic transmissions onto the lateral amygdala principal neurons via presynaptic 5-HT1B receptors. Biochemical and Biophysical Research Communications 624:28–34. doi: 10.1016/j.bbrc.2022.07.076.
  • Yang, W., Z. Huang, H. Xiong, J. Wang, H. Zhang, F. Guo, C. Wang, and Y. Sun. 2022. Rice protein peptides alleviate dextran sulfate sodium-induced colitis via the keap1-Nrf2 signaling pathway and regulating gut microbiota. Journal of Agricultural and Food Chemistry 70 (39):12469–83. doi: 10.1021/acs.jafc.2c04862.
  • Yang, Y., M. Zhang, J. Yu, Z. Pei, C. Sun, J. He, T. Qian, F. Luo, S. Zhang, and Z. Xu. 2022. Nationwide trends of pediatric obesity and BMI z-score from 2017-2021 in China: Comparable findings from real-world Mobile- and hospital-based data. Frontiers in Endocrinology 13:859245. doi: 10.3389/fendo.2022.859245.
  • Ye, H., J. Yang, G. Xiao, Y. Zhao, Z. Li, W. Bai, X. Zeng, and H. Dong. 2023. A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food. Food Chemistry 402:134216. doi: 10.1016/j.foodchem.2022.134216.
  • Ye, S., B. R. Shah, J. Li, H. Liang, F. Zhan, F. Geng, and B. Li. 2022. A critical review on interplay between dietary fibers and gut microbiota. Trends in Food Science & Technology 124:237–49. doi: 10.1016/j.tifs.2022.04.010.
  • Yin, J., J. Ma, Y. Li, X. Ma, J. Chen, H. Zhang, X. Wu, F. Li, Z. Liu, T. Li, et al. 2020. Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model. Food & Function 11 (2):1304–11. doi: 10.1039/c9fo01757g.
  • Yu, H., B. Yu, X. Qin, and W. Shan. 2023. A unique inflammation-related mechanism by which high-fat diets induce depression-like behaviors in mice. Journal of Affective Disorders 339:180–93. doi: 10.1016/j.jad.2023.07.005.
  • Yu, K. B., and E. Y. Hsiao. 2021. Roles for the gut microbiota in regulating neuronal feeding circuits. The Journal of Clinical Investigation 131(10):e143772. doi: 10.1172/JCI143772.
  • Yu, S., B. Zheng, Z. Chen, and Y. X. Huo. 2021. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids. Microbial Cell Factories 20 (1):230. doi: 10.1186/s12934-021-01721-0.
  • Zeng, W., D. He, Y. Xing, J. Liu, N. Su, C. Zhang, Y. Wang, and X. Xing. 2021. Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: A review. Food Science and Human Wellness 10 (2):119–30. doi: 10.1016/j.fshw.2021.02.016.
  • Zhang, C., R. Fang, X. Lu, Y. Zhang, M. Yang, Y. Su, Y. Jiang, and C. Man. 2022. Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food & Function 13 (12):6688–701. doi: 10.1039/d1fo04387k.
  • Zhang, Y., X. Gao, S. Gao, Y. Liu, W. Wang, Y. Feng, L. Pei, Z. Sun, L. Liu, and C. Wang. 2023. Effect of gut flora mediated-bile acid metabolism on intestinal immune microenvironment. Immunology :1–18. doi: 10.1111/imm.13672.
  • Zhang, Y., X. Li, G. Huang, H. Wang, H. Chen, Y. Su, K. Yu, and W. Zhu. 2022. Propionate stimulates the secretion of satiety hormones and reduces acute appetite in a cecal fistula pig model. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 10:390–8. doi: 10.1016/j.aninu.2022.06.003.
  • Zhang, Z., S. He, X. Cao, Y. Ye, L. Yang, J. Wang, H. Liu, and H. Sun. 2020. Potential prebiotic activities of soybean peptides Maillard reaction products on modulating gut microbiota to alleviate aging-related disorders in D-galactose-induced ICR mice. Journal of Functional Foods 65:103729. doi: 10.1016/j.jff.2019.103729.
  • Zhang, Z., H. Wan, J. Han, X. Sun, R. Yu, B. Liu, C. Lu, J. Zhou, and X. Su. 2022. Ameliorative effect of tuna elastin peptides on AIA mice by regulating the composition of intestinal microorganisms and SCFAs. Journal of Functional Foods 92:105076. doi: 10.1016/j.jff.2022.105076.
  • Zhu, Y., Y. Li, Q. Zhang, Y. Song, L. Wang, and Z. Zhu. 2022. Interactions between intestinal microbiota and neural mitochondria: A new perspective on communicating pathway from gut to brain. Frontiers in Microbiology 13:798917. doi: 10.3389/fmicb.2022.798917.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.