461
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Application of atomic force microscopy in the characterization of fruits and vegetables and associated substances toward improvement in quality, preservation, and processing: nanoscale structure and mechanics perspectives

, , , , &

References

  • Adami, B. S., F. M. Diz, G. P. Oliveira Gonçalves, C. K. Reghelin, M. Scherer, A. P. Dutra, R. M. Papaléo, J. R. de Oliveira, F. B. Morrone, A. Wieck, et al. 2021. Morphological and mechanical changes induced by quercetin in human T24 bladder cancer cells. Micron 151:103152. doi: 10.1016/j.micron.2021.103152.
  • Alba, R., P. Payton, Z. Fei, R. McQuinn, P. Debbie, G. B. Martin, S. D. Tanksley, and J. J. Giovannoni. 2005. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell 17 (11):2954–65. doi: 10.1105/tpc.105.036053.
  • Alessandrini, A., and P. Facci. 2005. AFM: A versatile tool in biophysics. Measurement Science and Technology 16 (6):R65–R92. doi: 10.1088/0957-0233/16/6/R01.
  • Alomar, T. S., N. AlMasoud, M. A. Awad, M. F. El-Tohamy, and D. A. Soliman. 2020. An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications. Materials Chemistry and Physics 249:123007. doi: 10.1016/j.matchemphys.2020.123007.
  • Altunayar-Unsalan, C., O. Unsalan, and T. Mavromoustakos. 2022. Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. Journal of Molecular Liquids 347:118411. doi: 10.1016/j.molliq.2021.118411.
  • Arrieta-Baez, D., M. d J. Perea Flores, J. V. Méndez-Méndez, H. F. Mendoza León, and M. B. Gómez-Patiño. 2020. Structural studies of the cutin from two apple varieties: Golden delicious and red delicious (Malus domestica). Molecules 25 (24):5955. doi: 10.3390/molecules25245955.
  • Aryaei, A., A. H. Jayatissa, and A. C. Jayasuriya. 2012. Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films. Journal of the Mechanical Behavior of Biomedical Materials 5 (1):82–9. doi: 10.1016/j.jmbbm.2011.08.006.
  • Bayraktar, O., İ. Erdoğan, M. D. Köse, and G. Kalmaz. 2017. Chapter 17 – Nanocarriers for plant-derived natural compounds. In Nanostructures for Antimicrobial Therapy, edited by A. Ficai and A. M. Grumezescu, 395–412. Amsterdam: Elsevier.
  • Begum, S. J. P., S. Pratibha, J. M. Rawat, D. Venugopal, P. Sahu, A. Gowda, K. A. Qureshi, and M. Jaremko. 2022. Recent advances in green synthesis, characterization, and applications of bioactive metallic nanoparticles. Pharmaceuticals 15 (4):455. doi: 10.3390/ph15040455.
  • Benítez, J. J., A. J. Matas, and A. Heredia. 2004. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques. Journal of Structural Biology 147 (2):179–84. doi: 10.1016/j.jsb.2004.03.006.
  • Bhardwaj, N., P. Sharma, L. Guo, O. Dagdag, and V. Kumar. 2022. Molecular dynamic simulation, quantum chemical calculation and electrochemical behaviour of Punica granatum peel extract as eco-friendly corrosion inhibitor for stainless steel (SS-410) in acidic medium. Journal of Molecular Liquids 346:118237. doi: 10.1016/j.molliq.2021.118237.
  • Bhat, R., V. G. Sharanabasava, R. Deshpande, U. Shetti, G. Sanjeev, and A. Venkataraman. 2013. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. Journal of Photochemistry and Photobiology. B, Biology 125:63–9. doi: 10.1016/j.jphotobiol.2013.05.002.
  • Biswal, A. K., and P. K. Misra. 2020. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Materials Chemistry and Physics 250:123014. doi: 10.1016/j.matchemphys.2020.123014.
  • Bordiga, M., F. Travaglia, and M. Locatelli. 2019. Valorisation of grape pomace: An approach that is increasingly reaching its maturity – A review. International Journal of Food Science & Technology 54 (4):933–42. doi: 10.1111/ijfs.14118.
  • Brasil, I. M., and M. W. Siddiqui. 2018. Chapter 1 – Postharvest quality of fruits and vegetables: An overview. In Preharvest modulation of postharvest fruit and vegetable quality, ed. M. W. Siddiqui, 1–40. Oxford: Academic Press.
  • Brummell, D. A. 2006. Cell wall disassembly in ripening fruit. Functional Plant Biology 33 (2):103–19. doi: 10.1071/FP05234.
  • Cai, M., W. Hou, Z. Li, Y. Lv, and P. Sun. 2017. Understanding nanofiltration fouling of phenolic compounds in model juice solution with two membranes. Food and Bioprocess Technology 10 (12):2123–31. doi: 10.1007/s11947-017-1970-8.
  • Cárdenas-Pérez, S., J. Chanona-Pérez, J. Méndez-Méndez, G. Calderón-Domínguez, R. López-Santiago, and I. Arzate-Vázquez. 2016. Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innovative Food Science & Emerging Technologies 34:234–42. doi: 10.1016/j.ifset.2016.02.004.
  • Cárdenas-Pérez, S., J. V. Méndez-Méndez, J. J. Chanona-Pérez, A. Zdunek, N. Güemes-Vera, G. Calderón-Domínguez, and F. Rodríguez-González. 2017. Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innovative Food Science & Emerging Technologies 39:79–87. doi: 10.1016/j.ifset.2016.11.004.
  • Chen, C., B. Zhang, X. Fu, and R. H. Liu. 2016. A novel polysaccharide isolated from mulberry fruits (Murus alba L.) and its selenide derivative: Structural characterization and biological activities. Food & Function 7 (6):2886–97. doi: 10.1039/c6fo00370b.
  • Chen, F., L. Zhang, H. An, H. Yang, X. Sun, H. Liu, Y. Yao, and L. Li. 2009. The nanostructure of hemicellulose of crisp and soft Chinese cherry (Prunus pseudocerasus L.) cultivars at different stages of ripeness. LWT - Food Science and Technology 42 (1):125–30. doi: 10.1016/j.lwt.2008.03.016.
  • Chen, L., D. J. McClements, Y. Ma, T. Yang, F. Ren, Y. Tian, and Z. Jin. 2021. Analysis of porous structure of potato starch granules by low-field NMR cryoporometry and AFM. International Journal of Biological Macromolecules 173:307–14. doi: 10.1016/j.ijbiomac.2021.01.099.
  • Chen, L., Y. Zhou, Z. He, Q. Liu, S. Lai, and H. Yang. 2018. Effect of exogenous ATP on the postharvest properties and pectin degradation of mung bean sprouts (Vigna radiata). Food Chemistry 251:9–17. doi: 10.1016/j.foodchem.2018.01.061.
  • Chong, J. X., S. Lai, and H. Yang. 2015. Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control. 53:195–205. doi: 10.1016/j.foodcont.2014.12.035.
  • Cieśla, J., M. Koczańska, P. Pieczywek, J. Cybulska, and A. Zdunek. 2021. The concentration-modified physicochemical surface properties of sodium carbonate-soluble pectin from pears (Pyrus communis L.). Food Hydrocolloids. 113:106524. doi: 10.1016/j.foodhyd.2020.106524.
  • Cofelice, M., F. Lopez, and F. Cuomo. 2019. Quality control of fresh-cut apples after coating application. Foods 8:189. doi: 10.3390/foods8060189.
  • Correa-Pacheco, Z. N., S. Bautista-Baños, M. d L. Ramos-García, M. d C. Martínez-González, and J. Hernández-Romano. 2019. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Progress in Organic Coatings 137:105326. doi: 10.1016/j.porgcoat.2019.105326.
  • Cui, J., W. Ren, C. Zhao, W. Gao, G. Tian, Y. Bao, Y. Lian, and J. Zheng. 2020. The structure–property relationships of acid- and alkali-extracted grapefruit peel pectins. Carbohydrate Polymers 229:115524. doi: 10.1016/j.carbpol.2019.115524.
  • Cybulska, J., A. Zdunek, K. M. Psonka-Antonczyk, and B. T. Stokke. 2013. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydrate Polymers 92 (1):128–37. doi: 10.1016/j.carbpol.2012.08.103.
  • de Andrades, E. O., J. M. A. R. da Costa, F. E. M. de Lima Neto, A. R. de Araujo, F. de Oliveira Silva Ribeiro, A. G. Vasconcelos, A. C. de Jesus Oliveira, J. L. S. Sobrinho, d Almeida, M. P. Carvalho, et al. 2021. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. International Journal of Biological Macromolecules 191:1026–37. doi: 10.1016/j.ijbiomac.2021.09.116.
  • Dehghani, A., G. Bahlakeh, and B. Ramezanzadeh. 2019. A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution. Journal of Molecular Liquids 282:366–84. doi: 10.1016/j.molliq.2019.03.011.
  • Deng, L.-Z., Z. Pan, Q. Zhang, Z.-L. Liu, Y. Zhang, J.-S. Meng, Z.-J. Gao, and H.-W. Xiao. 2019. Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots. Carbohydrate Polymers 222:114980. doi: 10.1016/j.carbpol.2019.114980.
  • Deokar, G. K., and A. G. Ingale. 2016. Green synthesis of gold nanoparticles (Elixir of Life) from banana fruit waste extract – An efficient multifunctional agent. RSC Advances 6 (78):74620–9. doi: 10.1039/C6RA14567A.
  • Do, D. T., J. Singh, I. Oey, and H. Singh. 2019. Modulating effect of cotyledon cell microstructure on in vitro digestion of starch in legumes. Food Hydrocolloids. 96:112–22. doi: 10.1016/j.foodhyd.2019.04.063.
  • Dong, X., C.-P. Zhu, G.-Q. Huang, and J.-X. Xiao. 2021. Fractionation and structural characterization of polysaccharides derived from red grape pomace. Process Biochemistry 109:37–45. doi: 10.1016/j.procbio.2021.06.022.
  • Dorobantu, L. S., S. Bhattacharjee, J. M. Foght, and M. R. Gray. 2009. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25 (12):6968–76. doi: 10.1021/la9001237.
  • Dorobantu, L. S., G. G. Goss, and R. E. Burrell. 2012. Atomic force microscopy: A nanoscopic view of microbial cell surfaces. Micron 43 (12):1312–22. doi: 10.1016/j.micron.2012.05.005.
  • Drobek, M., M. Frąc, A. Zdunek, and J. Cybulska. 2020. The effect of cultivation method of strawberry (Fragaria x ananassa Duch.) cv. Honeoye on structure and degradation dynamics of pectin during cold storage. Molecules 25 (18):4325. doi: 10.3390/molecules25184325.
  • Dufrêne, Y. F. 2006a. Nanoscale exploration of microbial surfaces using the atomic force microscope. Future Microbiology 1 (4):387–96. doi: 10.2217/17460913.1.4.387.
  • Dufrêne, Y. F. 2006b. Nanoscale exploration of microbial surfaces using the atomic force microscope.
  • Dutta, S., Y. L. Lyubchenko, and B. A. Armitage. 2015. Probing of PNA-DNA hybrid duplex stability with AFM force spectroscopy. Biophysical Journal 108 (2):169a. doi: 10.1016/j.bpj.2014.11.931.
  • Endo, M. 2019. AFM-based single-molecule observation of the conformational changes of DNA structures. Methods 169:3–10. doi: 10.1016/j.ymeth.2019.04.007.
  • Erami, S. R., Z. R. Amiri, and S. M. J. L. Jafari. 2019. Nanoliposomal encapsulation of Bitter Gourd (Momordica charantia) fruit extract as a rich source of health-promoting bioactive compounds. LWT 116:108581. doi: 10.1016/j.lwt.2019.108581.
  • Francius, G., D. Alsteens, V. Dupres, S. Lebeer, S. De Keersmaecker, J. Vanderleyden, H. J. Gruber, and Y. F. Dufrêne. 2009. Stretching polysaccharides on live cells using single molecule force spectroscopy. Nature Protocols 4 (6):939–46. doi: 10.1038/nprot.2009.65.
  • Frey-Wyssling, V. A., and K. Mühlethaler. 1963. Die elementarfibrillen der cellulose. Die Makromolekulare Chemie 62 (1):25–30. doi: 10.1002/macp.1963.020620103.
  • Ganesan, K., and B. Xu. 2019. Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules 24 (14):2556. doi: 10.3390/molecules24142556.
  • Gao, L., H. Zhao, T. Li, P. Huo, D. Chen, and B. Liu. 2018. Atomic force microscopy based tip-enhanced raman spectroscopy in biology. International Journal of Molecular Sciences 19:1193. doi: 10.3390/ijms19041193.
  • Gao, X., J. Qi, C.-T. Ho, B. Li, J. Mu, Y. Zhang, H. Hu, W. Mo, Z. Chen, and Y. Xie. 2020. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydrate Polymers 249:116874. doi: 10.1016/j.carbpol.2020.116874.
  • Gawkowska, D., J. Cieśla, A. Zdunek, and J. Cybulska. 2019a. Cross-linking of diluted alkali-soluble pectin from apple (Malus domestica fruit) in different acid-base conditions. Food Hydrocolloids. 92:285–92. doi: 10.1016/j.foodhyd.2019.02.010.
  • Gawkowska, D., J. Cieśla, A. Zdunek, and J. Cybulska. 2019b. The effect of concentration on the cross-Linking and gelling of sodium carbonate-soluble apple pectins. Molecules 24 (8):1635. doi: 10.3390/molecules24081635.
  • Ge, Y., J. Zhang, C. Li, W. Xue, S. Zhang, and J. Lv. 2020. Trisodium phosphate delays softening of jujube fruit by inhibiting cell wall-degrading enzyme activities during ambient storage. Scientia Horticulturae 262:109059. doi: 10.1016/j.scienta.2019.109059.
  • Geng, Y., Y. Zhang, Y. Liu, B. Hu, J. Wang, J. He, and M. Liang. 2020. Quality attributes and microstructure of cell walls in ‘suli’ plum fruit (Prunus salicina Lindl.) during Softening. Food Science and Technology Research 26 (2):281–92. doi: 10.3136/fstr.26.281.
  • Ghasemi, S., S. M. Jafari, E. Assadpour, and M. Khomeiri. 2017. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydrate Polymers 177:369–77. doi: 10.1016/j.carbpol.2017.09.009.
  • Ghodake, G. S., N. G. Deshpande, Y. P. Lee, and E. S. Jin. 2010. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids and Surfaces. B, Biointerfaces 75 (2):584–9. doi: 10.1016/j.colsurfb.2009.09.040.
  • Gu, M., H. Fang, Y. Gao, T. Su, Y. Niu, and L. Yu. 2020. Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocolloids. 99:105321. doi: 10.1016/j.foodhyd.2019.105321.
  • Guo, S., and B. B. Akhremitchev. 2006. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7 (5):1630–6. doi: 10.1021/bm0600724.
  • Gupta, P., B. Song, C. Neto, and T. A. Camesano. 2016. Atomic force microscopy-guided fractionation reveals the influence of cranberry phytochemicals on adhesion of Escherichia coli. Food & Function 7 (6):2655–66. doi: 10.1039/c6fo00109b.
  • Hanif, J., N. Khalid, R. S. Khan, M. F. Bhatti, M. Q. Hayat, M. Ismail, S. Andleeb, Q. Mansoor, F. Khan, F. Amin, et al. 2019. Formulation of active packaging system using Artemisia scoparia for enhancing shelf life of fresh fruits. Materials Science & Engineering. C, Materials for Biological Applications 100:82–93. doi: 10.1016/j.msec.2019.02.101.
  • Hansma, H. G., R. L. Sinsheimer, J. Groppe, T. C. Bruice, V. Elings, G. Gurley, M. Bezanilla, I. A. Mastrangelo, P. V. C. Hough, and P. K. Hansma. 1993. Recent advances in atomic force microscopy of DNA. Scanning 15 (5):296–9. doi: 10.1002/sca.4950150509.
  • Hansma, P. K., J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, et al. 1994. Tapping mode atomic force microscopy in liquids. Applied Physics Letters 64 (13):1738–40. doi: 10.1063/1.111795.
  • Helenius, J., C.-P. Heisenberg, H. E. Gaub, and D. J. Muller. 2008. Single-cell force spectroscopy. Journal of Cell Science 121 (11):1785–91. doi: 10.1242/jcs.030999.
  • Hershko, V., and A. Nussinovitch. 1998. Physical properties of alginate-coated onion (Allium cepa) skin. Food Hydrocolloids. 12 (2):195–202. doi: 10.1016/S0268-005X(98)00029-0.
  • Hinterdorfer, P., and Y. F. Dufrêne. 2006. Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods 3 (5):347–55. doi: 10.1038/nmeth871.
  • Infante, E. d P. 2014. In vivo assessing of nanometric changes on the surface of whole tomatoes that have been inoculated with Candida guilliermondii yeast. FEMS Microbiology Letters 357 (1):49–55. doi: 10.1111/1574-6968.12501.
  • Iwamoto, S., W. Kai, A. Isogai, and T. Iwata. 2009. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10 (9):2571–6. doi: 10.1021/bm900520n.
  • Jamila, N., N. Khan, N. Bibi, M. Waqas, S. N. Khan, A. Atlas, F. Amin, F. Khan, and M. Saba. 2021. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. Chemosphere 272:129794. doi: 10.1016/j.chemosphere.2021.129794.
  • Jeff, I. B., E. Fan, M. Tian, C. Song, J. Yan, and Y. J. C.-E. Zhou. 2016. In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer. Central-European Journal of Immunology 41 (1):47–53. doi: 10.5114/ceji.2015.56962.
  • Ji, X., Y. Cheng, J. Tian, S. Zhang, Y. Jing, and M. Shi. 2021. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chemical and Biological Technologies in Agriculture 8 (1):54. doi: 10.1186/s40538-021-00255-2.
  • Ji, X., C. Hou, Y. Yan, M. Shi, and Y. Liu. 2020. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. International Journal of Biological Macromolecules 149:1008–18. doi: 10.1016/j.ijbiomac.2020.02.018.
  • Ji, X., Q. Peng, Y. Yuan, J. Shen, X. Xie, and M. Wang. 2017. Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba Mill.): A review. Food Chemistry 227:349–57. doi: 10.1016/j.foodchem.2017.01.074.
  • Ji, X., Y. Yan, C. Hou, M. Shi, and Y. Liu. 2020. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. International Journal of Biological Macromolecules 147:844–52. doi: 10.1016/j.ijbiomac.2019.09.244.
  • Jia, S., F. Li, Y. Liu, H. Ren, G. Gong, Y. Wang, and S. Wu. 2013. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill. International Journal of Biological Macromolecules 62:66–9. doi: 10.1016/j.ijbiomac.2013.08.031.
  • Jing, Y., J. Zhu, T. Liu, S. Bi, X. Hu, Z. Chen, L. Song, W. Lv, and R. Yu. 2015. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative. Journal of Agricultural and Food Chemistry 63 (13):3464–71. doi: 10.1021/jf505915t.
  • Kao, P.-Y., E. Green, C. Pereira, S. Ekimura, D. Juarez, T. Whyte, T. Arhar, B. Malaspina, L. A. Nogaj, and D. A. Moffet. 2015. Inhibition of toxic IAPP amyloid by extracts of common fruits. Journal of Functional Foods 12:450–7. doi: 10.1016/j.jff.2014.12.013.
  • Karlova, R., F. M. Rosin, J. Busscher-Lange, V. Parapunova, P. T. Do, A. R. Fernie, P. D. Fraser, C. Baxter, G. C. Angenent, and R. A. de Maagd. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell 23 (3):923–41. doi: 10.1105/tpc.110.081273.
  • Kasas, S., G. Longo, and G. Dietler. 2013. Mechanical properties of biological specimens explored by atomic force microscopy. Journal of Physics D: Applied Physics 46 (13):133001. doi: 10.1088/0022-3727/46/13/133001.
  • Khodabakhshian, R., and R. Baghbani. 2021. Classification of bananas during ripening using peel roughness analysis—An application of atomic force microscopy to food process. Journal of Food Process Engineering 44 (11):e13857. doi: 10.1111/jfpe.13857.
  • Khodabakhshian, R., A. Naeemi, and M. R. Bayati. 2021. Determination of texture properties of banana fruit cells with an atomic force microscope: A case study on elastic modulus and stiffness. Journal of Texture Studies 52 (3):389–99. doi: 10.1111/jtxs.12594.
  • Kozioł, A., J. Cybulska, P. M. Pieczywek, and A. Zdunek. 2017. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Carbohydrate Polymers 161:197–207. doi: 10.1016/j.carbpol.2017.01.014.
  • Krapf, L., M. Dezi, W. Reichstein, J. Köhler, and S. Oellerich. 2011. AFM characterization of spin-coated multilayered dry lipid films prepared from aqueous vesicle suspensions. Colloids and Surfaces. B, Biointerfaces 82 (1):25–32. doi: 10.1016/j.colsurfb.2010.08.006.
  • Kumbhar, J. V., J. M. Rajwade, and K. M. Paknikar. 2015. Fruit peels support higher yield and superior quality bacterial cellulose production. Applied Microbiology and Biotechnology 99 (16):6677–91. doi: 10.1007/s00253-015-6644-8.
  • Kurland, N. E., Z. Drira, and V. K. Yadavalli. 2012. Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 43 (2–3):116–28. doi: 10.1016/j.micron.2011.07.017.
  • Lara, I. 2018. Chapter 4 – The fruit cuticle: Actively tuning postharvest quality. In Preharvest modulation of postharvest fruit and vegetable quality, ed. M. W. Siddiqui, 93–120. Oxford: Academic Press.
  • Leszczuk, A., A. Zając, M. Kurzyna-Szklarek, J. Cybulska, and A. Zdunek. 2020. Investigations of changes in the arabinogalactan proteins (AGPs) structure, size and composition during the fruit ripening process. Scientific Reports 10 (1):20621. doi: 10.1038/s41598-020-77749-w.
  • Li, N., Z. Feng, Y. Niu, and L. Yu. 2018. Structural, rheological and functional properties of modified soluble dietary fiber from tomato peels. Food Hydrocolloids. 77:557–65. doi: 10.1016/j.foodhyd.2017.10.034.
  • Li, Q., J. Li, H. Li, R. Xu, Y. Yuan, and J. Cao. 2019. Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydrate Polymers 219:181–90. doi: 10.1016/j.carbpol.2019.05.020.
  • Li, Q., R. Xu, Q. Fang, Y. Yuan, J. Cao, and W. Jiang. 2020. Analyses of microstructure and cell wall polysaccharides of flesh tissues provide insights into cultivar difference in mealy patterns developed in apple fruit. Food Chemistry 321:126707. doi: 10.1016/j.foodchem.2020.126707.
  • Li, Q., S. Yao, L. Deng, and K. Zeng. 2021. Changes in biochemical properties and pectin nanostructures of juice sacs during the granulation process of pomelo fruit (Citrus grandis). Food Chemistry 376:131876. doi: 10.1016/j.foodchem.2021.131876.
  • Li, Q., T. Zhang, Y. Pan, L. C. Ciacchi, B. Xu, and G. Wei. 2016. AFM-based force spectroscopy for bioimaging and biosensing. RSC Advances 6 (16):12893–912. doi: 10.1039/C5RA22841G.
  • Li, Z., H. Yang, P. Li, J. Liu, J. Wang, and Y. J. I. A. Xu. 2013. Fruit biomechanics based on anatomy: A review. International Agrophysics 27 (1):97–106. doi: 10.2478/v10247-012-0073-z.
  • Lin, D. C., and F. Horkay. 2008. Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 4 (4):669–82. doi: 10.1039/b714637j.
  • Lin, Y., J. Liu, Y. Gao, R. Liu, Z. Qin, and Y. Guan. 2021. Insight into the phase inversion of a turmeric oil nanoemulsion in antifungal process. International Journal of Food Science & Technology 56 (2):785–93. doi: 10.1111/ijfs.14722.
  • Liu, H., F. Chen, H. Yang, Y. Yao, X. Gong, Y. Xin, and C. Ding. 2009. Effect of calcium treatment on nanostructure of chelate-soluble pectin and physicochemical and textural properties of apricot fruits. Food Research International 42 (8):1131–40. doi: 10.1016/j.foodres.2009.05.014.
  • Liu, Y., M. A. Black, L. Caron, and T. A. Camesano. 2006. Role of cranberry juice on molecular‐scale surface characteristics and adhesion behavior of Escherichia coli. Biotechnology and Bioengineering 93 (2):297–305. doi: 10.1002/bit.20675.
  • Løvdal, T., B. Van Droogenbroeck, E. C. Eroglu, S. Kaniszewski, G. Agati, M. Verheul, and D. Skipnes. 2019. Valorization of tomato surplus and waste fractions: A case study using Norway, Belgium, Poland, and Turkey as examples. Foods 8:229. doi: 10.3390/foods8070229.
  • Marszalek, P. E., and Y. F. Dufrêne. 2012. Stretching single polysaccharides and proteins using atomic force microscopy. Chemical Society Reviews 41 (9):3523–34. doi: 10.1039/c2cs15329g.
  • Martin, L. B. B., and J. K. C. Rose. 2014. There’s more than one way to skin a fruit: Formation and functions of fruit cuticles. Journal of Experimental Botany 65 (16):4639–51. doi: 10.1093/jxb/eru301.
  • Martin, Y., and H. K. Wickramasinghe. 1987. Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution. Applied Physics Letters 50 (20):1455–7. doi: 10.1063/1.97800.
  • Meng, B., Y. Xie, L. Chen, H. Wang, M. Li, and Z. Dong. 2023. Apex-confined plasmonic tip for high resolution tip-enhanced raman spectroscopic imaging of carbon nanotubes. ACS Applied Materials & Interfaces 15 (13):16984–90. doi: 10.1021/acsami.2c22624.
  • Mercado, J. A., A. J. Matas, and S. Posé. 2019. Fruit and vegetable texture: Role of their cell walls. In Encyclopedia of food chemistry, ed. L. Melton, F. Shahidi, and P. Varelis, 1–7. Oxford: Academic Press.
  • Mishra, S., X. Yang, S. Ray, L. F. Fraceto, and H. B. Singh. 2020. Antibacterial and biofilm inhibition activity of biofabricated silver nanoparticles against Xanthomonas oryzae pv. oryzae causing blight disease of rice instigates disease suppression. World Journal of Microbiology & Biotechnology 36 (4):55. doi: 10.1007/s11274-020-02826-1.
  • Mora, M., S. Board, O. Languin-Cattoën, L. Masino, G. Stirnemann, and S. Garcia-Manyes. 2022. A single-molecule strategy to capture non-native intramolecular and intermolecular protein disulfide bridges. Nano Letters 22 (10):3922–30. doi: 10.1021/acs.nanolett.2c00043.
  • Moraes, I. V. M. d., R. S. Rabelo, J. A. d L. Pereira, M. D. Hubinger, and F. L. Schmidt. 2018. Concentration of hydroalcoholic extracts of graviola (Annona muricata L.) pruning waste by ultra and nanofiltration: Recovery of bioactive compounds and prediction of energy consumption. Journal of Cleaner Production 174:1412–21. doi: 10.1016/j.jclepro.2017.11.062.
  • Müller, D. J., and Y. F. Dufrêne. 2011. Atomic force microscopy: A nanoscopic window on the cell surface. Trends in Cell Biology 21 (8):461–9. doi: 10.1016/j.tcb.2011.04.008.
  • Neuman, K. C., and A. Nagy. 2008. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5 (6):491–505. doi: 10.1038/nmeth.1218.
  • Ni, Y., H. Nie, J. Wang, J. Lin, Q. Wang, J. Sun, W. Zhang, and J. Wang. 2022. Enhanced functional properties of chitosan films incorporated with curcumin-loaded hollow graphitic carbon nitride nanoparticles for bananas preservation. Food Chemistry 366:130539. doi: 10.1016/j.foodchem.2021.130539.
  • Niimura, H., T. Yokoyama, S. Kimura, Y. Matsumoto, and S. Kuga. 2010. AFM observation of ultrathin microfibrils in fruit tissues. Cellulose 17 (1):13–8. doi: 10.1007/s10570-009-9361-6.
  • Pancerz, M., A. Ptaszek, K. Sofińska, J. Barbasz, P. Szlachcic, M. Kucharek, and M. Łukasiewicz. 2019. Colligative and hydrodynamic properties of aqueous solutions of pectin from cornelian cherry and commercial apple pectin. Food Hydrocolloids 89:406–15. doi: 10.1016/j.foodhyd.2018.10.060.
  • Paniagua, C., S. Posé, V. J. Morris, A. R. Kirby, M. A. Quesada, and J. A. Mercado. 2014. Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany 114 (6):1375–83. doi: 10.1093/aob/mcu149.
  • Paniagua, C., N. Santiago-Doménech, A. R. Kirby, A. P. Gunning, V. J. Morris, M. A. Quesada, A. J. Matas, and J. A. Mercado. 2017. Structural changes in cell wall pectins during strawberry fruit development. Plant Physiology and Biochemistry : PPB 118:55–63. doi: 10.1016/j.plaphy.2017.06.001.
  • Paun, G., V. Parvulescu, E. Neagu, C. Albu, L. Ionita, M. E. Maxim, A. Munteanu, M. Ciobanu, and G. L. Radu. 2021. Nanofiltration composite membranes based on KIT-6 and functionalized KIT-6 nanoparticles in a polymeric matrix with enhanced performances. Membranes 11 (5):300. doi: 10.3390/membranes11050300.
  • Pérez-Córdoba, L. J., I. T. Norton, H. K. Batchelor, K. Gkatzionis, F. Spyropoulos, and P. J. A. Sobral. 2018. Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids. 79:544–59. doi: 10.1016/j.foodhyd.2017.12.012.
  • Peroni-Okita, F. H. G., A. P. Gunning, A. Kirby, R. A. Simão, C. A. Soares, and B. R. Cordenunsi. 2015. Visualization of internal structure of banana starch granule through AFM. Carbohydrate Polymers 128:32–40. doi: 10.1016/j.carbpol.2015.04.019.
  • Phan, H. T. T., K. Samarat, Y. Takamura, A. F. Azo-Oussou, Y. Nakazono, and M. d C. Vestergaard. 2019. Polyphenols modulate Alzheimer’s Amyloid Beta Aggregation in a Structure-Dependent Manner. Nutrients 11 (4):756. doi: 10.3390/nu11040756.
  • Pieczywek, P. M., A. Kozioł, W. Płaziński, J. Cybulska, and A. Zdunek. 2020. Resolving the nanostructure of sodium carbonate extracted pectins (DASP) from apple cell walls with atomic force microscopy and molecular dynamics. Food Hydrocolloids. 104:105726. doi: 10.1016/j.foodhyd.2020.105726.
  • Posé, S., C. Paniagua, A. J. Matas, A. P. Gunning, V. J. Morris, M. A. Quesada, and J. A. Mercado. 2019. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science & Technology 87:47–58. doi: 10.1016/j.tifs.2018.02.011.
  • Pu, J., L. Wang, W. Zhang, J. Ma, X. Zhang, and C. V. Putnis. 2021. Organically-bound silicon enhances resistance to enzymatic degradation and nanomechanical properties of rice plant cell walls. Carbohydrate Polymers 266:118057. doi: 10.1016/j.carbpol.2021.118057.
  • Qian, L., and H. Zhao. 2018. Nanoindentation of soft biological materials. Micromachines 9:654. doi: 10.3390/mi9120654.
  • Quang, A. T. N., T. A. Nguyen, S. V. Vu, T. N. H. Lo, I. Park, and K. Q. Vo. 2022. Facile tuning of tip sharpness on gold nanostars by the controlled seed-growth method and coating with a silver shell for detection of thiram using surface enhanced Raman spectroscopy (SERS). RSC Advances 12 (35):22815–25. doi: 10.1039/d2ra03396h.
  • Quaroni, L., K. Pogoda, J. Wiltowska-Zuber, and W. M. Kwiatek. 2018. Mid-infrared spectroscopy and microscopy of subcellular structures in eukaryotic cells with atomic force microscopy – infrared spectroscopy. RSC Advances 8 (5):2786–94. doi: 10.1039/c7ra10240b.
  • Rabeea, M. A., M. N. Owaid, A. A. Aziz, M. S. Jameel, and M. A. Dheyab. 2020. Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue. Journal of Environmental Chemical Engineering 8 (3):103841. doi: 10.1016/j.jece.2020.103841.
  • Ravindran, L., S. M S, and S. Thomas. 2019. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules 131:858–70. doi: 10.1016/j.ijbiomac.2019.03.134.
  • Ridout, M. J., A. P. Gunning, M. L. Parker, R. H. Wilson, and V. J. Morris. 2002. Using AFM to image the internal structure of starch granules. Carbohydrate Polymers 50 (2):123–32. doi: 10.1016/S0144-8617(02)00021-8.
  • Rongkaumpan, G., S. Amsbury, E. Andablo-Reyes, H. Linford, S. Connell, J. P. Knox, A. Sarkar, Y. Benitez-Alfonso, and C. Orfila. 2019. Cell wall polymer composition and spatial distribution in ripe banana and mango fruit: Implications for cell adhesion and texture perception. Frontiers in Plant Science 10:858. doi: 10.3389/fpls.2019.00858.
  • Rossi, M., F. Cubadda, L. Dini, M. Terranova, F. Aureli, A. Sorbo, and D. Passeri. 2014. Scientific basis of nanotechnology, implications for the food sector and future trends. Trends in Food Science & Technology 40 (2):127–48. doi: 10.1016/j.tifs.2014.09.004.
  • Round, A. N., B. Yan, S. Dang, R. Estephan, R. E. Stark, and J. D. Batteas. 2000. The influence of water on the nanomechanical behavior of the plant biopolyester cutin as studied by AFM and solid-state NMR. Biophysical Journal 79 (5):2761–7. doi: 10.1016/S0006-3495(00)76515-5.
  • Ruozi, B., G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli. 2009. AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes. Journal of Liposome Research 19 (1):59–67. doi: 10.1080/08982100802584071.
  • Salehi, F. 2014. Current and future applications for nanofiltration technology in the food processing. Food and Bioproducts Processing 92 (2):161–77. doi: 10.1016/j.fbp.2013.09.005.
  • Samadarsi, R., and D. Dutta. 2019. Design and characterization of mangiferin nanoparticles for oral delivery. Journal of Food Engineering 247:80–94. doi: 10.1016/j.jfoodeng.2018.11.020.
  • Scholl, Z. N., Q. Li, and P. E. Marszalek. 2014. Single molecule mechanical manipulation for studying biological properties of proteins, DNA, and sugars. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 6 (3):211–29. doi: 10.1002/wnan.1253.
  • Seymour, G. B., N. H. Chapman, B. L. Chew, and J. K. Rose. 2013. Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal 11 (3):269–78. doi: 10.1111/j.1467-7652.2012.00738.x.
  • Shahmoradi, A. R., M. Ranjbarghanei, A. A. Javidparvar, L. Guo, E. Berdimurodov, and B. Ramezanzadeh. 2021. Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. Journal of Molecular Liquids 338:116550. doi: 10.1016/j.molliq.2021.116550.
  • Simão, R. A., A. P. F. B. Silva, F. H. G. Peroni, J. R. O. do Nascimento, R. P. Louro, F. M. Lajolo, and B. R. Cordenunsi. 2008. Mango starch degradation. I. A microscopic view of the granule during ripening. Journal of Agricultural and Food Chemistry 56 (16):7410–5. doi: 10.1021/jf800467v.
  • Slavin, J. L., and B. Lloyd. 2012. Health benefits of fruits and vegetables. Advances in Nutrition 3 (4):506–16. doi: 10.3945/an.112.002154.
  • Souza, T. G. F., V. S. T. Ciminelli, and N. D. S. Mohallem. 2015. An assessment of errors in sample preparation and data processing for nanoparticle size analyses by AFM. Materials Characterization 109:198–205. doi: 10.1016/j.matchar.2015.09.020.
  • Su, Y., C. Burger, H. Ma, B. Chu, and B. S. Hsiao. 2015. Exploring the nature of cellulose microfibrils. Biomacromolecules 16 (4):1201–9. doi: 10.1021/bm501897z.
  • Szymańska-Chargot, M., M. Chylińska, P. M. Pieczywek, and A. Zdunek. 2019. Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses. Carbohydrate Polymers 210:186–95. doi: 10.1016/j.carbpol.2019.01.070.
  • Tamires Vitor Pereira, D., G. Vollet Marson, G. Fernández Barbero, A. Gadioli Tarone, C. Baú Betim Cazarin, M. Dupas Hubinger, and J. Martínez. 2020. Concentration of bioactive compounds from grape marc using pressurized liquid extraction followed by integrated membrane processes. Separation and Purification Technology 250:117206. doi: 10.1016/j.seppur.2020.117206.
  • Tao, Y., P. A. Pinzón-Arango, A. B. Howell, and T. A. Camesano. 2011. Oral consumption of cranberry juice cocktail inhibits molecular-scale adhesion of clinical uropathogenic Escherichia coli. Journal of Medicinal Food 14 (7-8):739–45. doi: 10.1089/jmf.2010.0154.
  • Thomas, L. H., V. T. Forsyth, A. Sturcová, C. J. Kennedy, R. P. May, C. M. Altaner, D. C. Apperley, T. J. Wess, and M. C. Jarvis. 2013. Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiology 161 (1):465–76. doi: 10.1104/pp.112.206359.
  • Tiwari, P., M. Srivastava, R. Mishra, G. Ji, and R. Prakash. 2018. Economic use of waste Musa paradisica peels for effective control of mild steel loss in aggressive acid solutions. Journal of Environmental Chemical Engineering 6 (4):4773–83. doi: 10.1016/j.jece.2018.07.016.
  • Toivonen, P. M. A., and D. A. Brummell. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology 48 (1):1–14. doi: 10.1016/j.postharvbio.2007.09.004.
  • Torres, F. G., O. P. Troncoso, F. Piaggio, and A. Hijar. 2010. Structure–property relationships of a biopolymer network: The eggshell membrane. Acta Biomaterialia 6 (9):3687–93. doi: 10.1016/j.actbio.2010.03.014.
  • Tylewicz, U., S. Tappi, M. Nowacka, and A. Wiktor. 2019. Safety, quality, and processing of fruits and vegetables. Foods. 8:569. doi: 10.3390/foods8110569.
  • Ulbricht, M., W. Ansorge, I. Danielzik, M. König, and O. Schuster. 2009. Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Separation and Purification Technology 68 (3):335–42. doi: 10.1016/j.seppur.2009.06.004.
  • Umoren, S. A., M. M. Solomon, U. M. Eduok, I. B. Obot, and A. U. Israel. 2014. Inhibition of mild steel corrosion in H2SO4 solution by coconut coir dust extract obtained from different solvent systems and synergistic effect of iodide ions: Ethanol and acetone extracts. Journal of Environmental Chemical Engineering 2 (2):1048–60. doi: 10.1016/j.jece.2014.03.024.
  • Vieira, G. S., F. K. V. Moreira, R. L. S. Matsumoto, M. Michelon, F. M. Filho, and M. D. Hubinger. 2018. Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. Journal of Food Engineering 226:31–41. doi: 10.1016/j.jfoodeng.2018.01.013.
  • Vilariño, M. V., C. Franco, and C. Quarrington. 2017. Food loss and waste reduction as an integral part of a circular economy. Frontiers in Environmental Science 5:21. doi: 10.3389/fenvs.2017.00021.
  • Vincente, A. R., G. A. Manganaris, C. M. Ortiz, G. O. Sozzi, and C. H. Crisosto. 2014. Chapter 5 – Nutritional quality of fruits and vegetables. In Postharvest handling, 3rd ed., ed. W. J. Florkowski, R. L. Shewfelt, B. Brueckner, and S. E. Prussia, 69–122. San Diego: Academic Press.
  • Vitor Pereira, D. T., F. M. Barrales, E. Pereira, J. Viganó, A. H. Iglesias, F. G. Reyes Reyes, and J. Martínez. 2022. Phenolic compounds from passion fruit rinds using ultrasound-assisted pressurized liquid extraction and nanofiltration. Journal of Food Engineering 325:110977. doi: 10.1016/j.jfoodeng.2022.110977.
  • Wang, B., J. Cao, B. Zhang, and H. Chen. 2019. Structural characterization, physicochemical properties and α-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple. Carbohydrate Polymers 211:227–36. doi: 10.1016/j.carbpol.2019.02.006.
  • Wang, H., J. Wang, A. S. Mujumdar, X. Jin, Z.-L. Liu, Y. Zhang, and H.-W. Xiao. 2021. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids. 118:106808. doi: 10.1016/j.foodhyd.2021.106808.
  • Wang, Q. H., Z. P. Shu, B. Q. Xu, N. Xing, W. J. Jiao, B. Y. Yang, and H. X. Kuang. 2014. Structural characterization and antioxidant activities of polysaccharides from Citrus aurantium L. International Journal of Biological Macromolecules 67:112–23. doi: 10.1016/j.ijbiomac.2014.03.004.
  • Wang, Y., S. Ding, F. Chen, G. Xiao, X. Fu, and R. Wang. 2021. Changes in pectin characteristics of jujube fruits cv “Dongzao” and "Jinsixiaozao" during cold storage. Journal of Food Science 86 (7):3001–13. doi: 10.1111/1750-3841.15800.
  • Warczok, J., M. Ferrando, F. López, and C. Güell. 2004. Concentration of apple and pear juices by nanofiltration at low pressures. Journal of Food Engineering 63 (1):63–70. doi: 10.1016/S0260-8774(03)00283-8.
  • Xiao, J. B., and H. Jiang. 2015. A review on the structure-function relationship aspect of polysaccharides from tea materials. Critical Reviews in Food Science and Nutrition 55 (7):930–8. doi: 10.1080/10408398.2012.678423.
  • Xie, J.-H., X. Liu, M.-Y. Shen, S.-P. Nie, H. Zhang, C. Li, D.-M. Gong, and M.-Y. Xie. 2013. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chemistry 136 (3-4):1453–60. doi: 10.1016/j.foodchem.2012.09.078.
  • Xie, J.-H., W. Tang, M.-L. Jin, J.-E. Li, and M.-Y. Xie. 2016. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocolloids. 60:148–60. doi: 10.1016/j.foodhyd.2016.03.030.
  • Xing, Y., X. Li, X. Guo, W. Li, J. Chen, Q. Liu, Q. Xu, Q. Wang, H. Yang, Y. Shui, et al. 2020. Effects of Different TiO2 nanoparticles concentrations on the physical and antibacterial activities of chitosan-based coating film. Nanomaterials 10 (7):1365. doi: 10.3390/nano10071365.
  • Xing, Y., X. Li, Q. Xu, J. Yun, Y. Lu, and Y. Tang. 2011. Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry 124 (4):1443–50. doi: 10.1016/j.foodchem.2010.07.105.
  • Yahia, E. M., M. E. M. Celis, and M. Svendsen. 2010. The contribution of fruit and vegetable consumption to human health. In Fruit and vegetable phytochemicals: Chemistry and human health, 2nd ed., ed. E. M. Yahia, 3–51. Hoboken, NJ: Wiley.
  • Yerramathi, B. B., M. Kola, B. Annem Muniraj, R. Aluru, M. Thirumanyam, and G. V. Zyryanov. 2021. Structural studies and bioactivity of sodium alginate edible films fabricated through ferulic acid crosslinking mechanism. Journal of Food Engineering 301:110566. doi: 10.1016/j.jfoodeng.2021.110566.
  • Yi, Y., M.-W. Zhang, S.-T. Liao, R.-F. Zhang, Y.-Y. Deng, Z.-C. Wei, and B. Yang. 2012. Effects of alkali dissociation on the molecular conformation and immunomodulatory activity of longan pulp polysaccharide (LPI). Carbohydrate Polymers 87 (2):1311–7. doi: 10.1016/j.carbpol.2011.09.014.
  • Zdunek, A., A. Kozioł, J. Cybulska, M. Lekka, and P. M. Pieczywek. 2016. The stiffening of the cell walls observed during physiological softening of pears. Planta 243 (2):519–29. doi: 10.1007/s00425-015-2423-0.
  • Zdunek, A., A. Kozioł, P. M. Pieczywek, and J. Cybulska. 2014. Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food and Bioprocess Technology 7 (12):3525–35. doi: 10.1007/s11947-014-1365-z.
  • Zdunek, A., and A. Kurenda. 2013. Determination of the elastic properties of tomato fruit cells with an atomic force microscope. Sensors 13 (9):12175–91. doi: 10.3390/s130912175.
  • Zhang, L., F. Chen, S. Lai, H. Wang, and H. Yang. 2018. Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT 96:604–11. doi: 10.1016/j.lwt.2018.06.011.
  • Zhang, L., P. Wang, F. Chen, S. Lai, H. Yu, and H. Yang. 2019. Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage. Food Chemistry 289:40–8. doi: 10.1016/j.foodchem.2019.03.008.
  • Zhang, L., P. Wang, X. Sun, F. Chen, S. Lai, and H. Yang. 2020. Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment. Ultrasonics Sonochemistry 60:104784. doi: 10.1016/j.ultsonch.2019.104784.
  • Zhang, M., X. Tang, F. Wang, Q. Zhang, and Z. Zhang. 2013. Characterization of Lycium barbarum polysaccharide and its effect on human hepatoma cells. International Journal of Biological Macromolecules 61:270–5. doi: 10.1016/j.ijbiomac.2013.06.031.
  • Zhang, T., D. Vavylonis, D. M. Durachko, and D. J. Cosgrove. 2017. Nanoscale movements of cellulose microfibrils in primary cell walls. Nature Plants 3 (5):17056. doi: 10.1038/nplants.2017.56.
  • Zhang, X., J. Lin, F. Pi, T. Zhang, C. Ai, and S. Yu. 2020. Rheological characterization of RG-I chicory root pectin extracted by hot alkali and chelators. International Journal of Biological Macromolecules 164:759–70. doi: 10.1016/j.ijbiomac.2020.07.020.
  • Zhao, Y., Y. Man, J. Wen, Y. Guo, and J. Lin. 2019. Advances in imaging plant cell walls. Trends in Plant Science 24 (9):867–78. doi: 10.1016/j.tplants.2019.05.009.
  • Zhou, H., Y. Tang, and S. Zhang. 2020. Chapter 2 – Advanced spectroscopic technique for the study of nanocontainers: Atomic force microscopy-infrared spectroscopy (AFM-IR). In Smart nanocontainers, ed. P. Nguyen-Tri, T.-O. Do, and T. A. Nguyen, 7–17. Amsterdam: Elsevier.
  • Zhou, S., A. Rahman, J. Li, C. Wei, J. Chen, R. J. Linhardt, X. Ye, and S. Chen. 2020. Extraction Methods Affect the Structure of Goji (Lycium barbarum) Polysaccharides. Molecules 25 (4):936. doi: 10.3390/molecules25040936.
  • Zhuang, C., Y. Zhong, and Y. Zhao. 2019. Effect of deacetylation degree on properties of Chitosan films using electrostatic spraying technique. Food Control. 97:25–31. doi: 10.1016/j.foodcont.2018.10.014.
  • Zsirai, T., H. Qiblawey, M. A-Marri, and S. Judd. 2016. The impact of mechanical shear on membrane flux and energy demand. Journal of Membrane Science 516:56–63. doi: 10.1016/j.memsci.2016.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.