514
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdallah, W., and M. R. Kamal. 2018. Influence of process variables on physical characteristics of spray freeze dried cellulose nanocrystals. Cellulose 25 (10):5711–30. doi: 10.1007/s10570-018-1975-0.
  • Abdel-Haleem, A. M., and R. Awad. 2015. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan. Journal of Food Science and Technology 52 (10):6425–34. doi: 10.1007/s13197-015-1755-x.
  • Agarwal, U. P., and N. Kawai. 2005. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials. Applied Spectroscopy 59 (3):385–8. doi: 10.1366/0003702053585327.
  • Aghajanzadeh, S., G. Fayaz, Y. Soleimanian, A. M. Ziaiifar, S. L. Turgeon, and S. Khalloufi. 2023. Hornification: Lessons learned from the wood industry for attenuating this phenomenon in plant‐based dietary fibers from food wastes. Comprehensive Reviews in Food Science and Food Safety 22 (1):4–45. doi: 10.1111/1541-4337.13047.
  • Ahmed, J., H. Al-Attar, and Y. A. Arfat. 2016. Effect of particle size on compositional, functional, pasting and rheological properties of commercial water chestnut flour. Food Hydrocolloids 52:888–95. doi: 10.1016/j.foodhyd.2015.08.028.
  • Ahmed, J., L. Thomas, and R. Khashawi. 2019. Dielectric, thermal, and rheological properties of inulin/water binary solutions in the selected concentration. Journal of Food Process Engineering 42 (2):e12968. doi: 10.1111/jfpe.12968.
  • Ainsworth, P., Ş. İbanoğlu, A. Plunkett, E. İbanoğlu, and V. Stojceska. 2007. Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. Journal of Food Engineering 81 (4):702–9. doi: 10.1016/j.jfoodeng.2007.01.004.
  • Alagöz, B. A., O. Yenigün, and A. Erdinçler. 2018. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrasonics Sonochemistry 40 (Pt B):193–200. doi: 10.1016/j.ultsonch.2017.05.014.
  • Alba, K., T. Rizou, A. Paraskevopoulou, G. M. Campbell, and V. Kontogiorgos. 2020. Effects of blackcurrant fibre on dough physical properties and bread quality characteristics. Food Biophysics 15 (3):313–22. doi: 10.1007/s11483-020-09627-x.
  • Amarante, C. V. T., A. G. Souza, T. D. T. Benincá, and C. A. Steffens. 2017. Phenolic content and antioxidant activity of fruit of Brazilian genotypes of feijoa. Pesquisa Agropecuária Brasileira 52 (12):1223–30. doi: 10.1590/s0100-204x2017001200011.
  • Anderson-Dekkers, I., M. Nouwens-Roest, B. Peters, and E. Vaughan. 2021. Inulin. In Handbook of hydrocolloids, ed. G. O. P. A. P. A. Williams, 537–62. Published by: CRC Press, Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge, UK.
  • Aprodu, I., and I. Banu. 2015. Influence of dietary fiber, water, and glucose oxidase on rheological and baking properties of maize based gluten-free bread. Food Science and Biotechnology 24 (4):1301–7. doi: 10.1007/s10068-015-0167-z.
  • Arias, A., G. Feijoo, and M. T. Moreira. 2022. Assessing of the most appropriate biotechnological strategy on the recovery of antioxidants from beet wastes by applying the life cycle assessment (LCA) methodology. Food and Bioproducts Processing 135:178–89. doi: 10.1016/j.fbp.2022.08.003.
  • Aslanzadeh, M., M. Mizani, M. Alimi, and A. Gerami. 2012. Rheological properties of low fat mayonnaise with different levels of modified wheat bran. Journal of Food Biosciences and Technology 2:27–34.
  • Auffret, A., M. Ralet, F. Guillon, J. Barry, and J. Thibault. 1994. Effect of grinding and experimental conditions on the measurement of hydration properties of dietary fibres. LWT-Food Science and Technology 27 (2):166–72. doi: 10.1006/fstl.1994.1033.
  • Aydogdu, A., G. Sumnu, and S. Sahin. 2018. Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes. Journal of Food Science and Technology 55 (2):667–77. doi: 10.1007/s13197-017-2976-y.
  • Bader Ul Ain, H., F. Saeed, A. Ahmed, M. Asif Khan, B. Niaz, and T. Tufail. 2019. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. Journal of Food Processing and Preservation 43 (4):e13917. doi: 10.1111/jfpp.13917.
  • Bag, M. A., and L. M. Valenzuela. 2017. Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review. International Journal of Molecular Sciences 18 (8):1422. doi: 10.3390/ijms18081422.
  • Bai, X., H. Zhang, and S. Ren. 2013. Antioxidant activity and HPLC analysis of polyphenol‐enriched extracts from industrial apple pomace. Journal of the Science of Food and Agriculture 93 (10):2502–6. doi: 10.1002/jsfa.6066.
  • Balasubramanian, R., S. S. Kim, and J. Lee. 2018. Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties. International Journal of Biological Macromolecules 118 (Pt A):561–8. doi: 10.1016/j.ijbiomac.2018.06.110.
  • Bamba, B. S. B., J. Shi, C. C. Tranchant, S. J. Xue, C. F. Forney, and L.-T. Lim. 2018. Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules 23 (7):1685. doi: 10.3390/molecules23071685.
  • Basanta, M. F., M. F. de Escalada Plá, C. A. Stortz, and A. M. Rojas. 2013. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages. Carbohydrate Polymers 92 (1):830–41. doi: 10.1016/j.carbpol.2012.09.091.
  • Bedane, A. H., H. Xiao, M. Eić, and M. Farmahini-Farahani. 2015. Structural and thermodynamic characterization of modified cellulose fiber-based materials and related interactions with water vapor. Applied Surface Science 351:725–37. doi: 10.1016/j.apsusc.2015.06.022.
  • Begum, Y. A., and S. C. Deka. 2019. Effect of processing on structural, thermal, and physicochemical properties of dietary fiber of culinary banana bracts. Journal of Food Processing and Preservation 43 (12):e14256. doi: 10.1111/jfpp.14256.
  • Belitz, H.-D., W. Grosch, and P. Schieberle. 2008. Aromastoffe. In Lehrbuch der Lebensmittelchemie, 304–61. Heidelberg, Germany: Springer-Lehrbuch.
  • Bender, A. B. B., C. S. Speroni, K. I. B. Moro, F. D. P. Morisso, D. R. dos Santos, L. P. da Silva, and N. G. Penna. 2020. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT 117:108652. doi: 10.1016/j.lwt.2019.108652.
  • Bermúdez-Oria, A., G. Rodríguez-Gutiérrez, Á. Fernández-Prior, H. Knicker, and J. Fernández-Bolaños. 2020. Confirmation by solid-state NMR spectroscopy of a strong complex phenol-dietary fiber with retention of antioxidant activity in vitro. Food Hydrocolloids 102:105584. doi: 10.1016/j.foodhyd.2019.105584.
  • Bettelheim, F. A., C. Sterling, and D. H. Volman. 1956. Pectic substances–water. I. Structural changes in the polygalacturonide chains during water adsorption. Journal of Polymer Science 22 (101):303–14. doi: 10.1002/pol.1956.1202210112.
  • Biswas, A., V. Kumar, S. Bhosle, J. Sahoo, and M. Chatli. 2011. Dietary fibers as functional ingredients in meat products and their role in human health. International Journal of Livestock Production 2 (4):45–54. http://www.academicjournals.org/IJLP.
  • Blackwood, A. D., J. Salter, P. W. Dettmar, and M. F. Chaplin. 2000. Dietary fibre, physicochemical properties and their relationship to health. The Journal of the Royal Society for the Promotion of Health 120 (4):242–7. doi: 10.1177/146642400012000.
  • Bot, A. 2003. Differential scanning calorimetric study on the effects of frozen storage on gluten and dough. Cereal Chemistry Journal 80 (4):366–70. doi: 10.1094/CCHEM.2003.80.4.366.
  • Bouaziz, M. A., F. Abbes, A. Mokni, C. Blecker, H. Attia, and S. Besbes. 2017. The addition effect of Tunisian date seed fibers on the quality of chocolate spreads. Journal of Texture Studies 48 (2):143–50. doi: 10.1111/jtxs.12225.
  • Caggia, C., R. Palmeri, N. Russo, R. Timpone, C. L. Randazzo, A. Todaro, and S. Barbagallo. 2020. Employ of citrus by-product as fat replacer ingredient for bakery confectionery products. Frontiers in Nutrition 7:46. doi: 10.3389/fnut.2020.00046.
  • Canalis, M. B., A. E. Leon, and P. D. Ribotta. 2019. Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chemistry 271:309–17. doi: 10.1016/j.foodchem.2018.07.146.
  • Canalis, M. S. B., A. E. León, and P. D. Ribotta. 2017. Effect of inulin on dough and biscuit quality produced from different flours. International Journal of Food Studies 6 (1):13–23. doi: 10.7455/ijfs/6.1.2017.a2.
  • Capuano, E. 2017. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition 57 (16):3543–64. doi: 10.1080/10408398.2016.1180501.
  • Chakraborty, P., T. Witt, D. Harris, J. Ashton, J. R. Stokes, and H. E. Smyth. 2019. Texture and mouthfeel perceptions of a model beverage system containing soluble and insoluble oat bran fibres. Food Research International 120:62–72. doi: 10.1016/j.foodres.2019.01.070.
  • Chang, C., and L. Zhang. 2011. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers 84 (1):40–53. doi: 10.1016/j.carbpol.2010.12.023.
  • Chaplin, M. F. 2003. Fibre and water binding. The Proceedings of the Nutrition Society 62 (1):223–7. doi: 10.1079/PNS2002203.
  • Chatsisvili, N. T., I. Amvrosiadis, and V. Kiosseoglou. 2012. Physicochemical properties of a dressing-type o/w emulsion as influenced by orange pulp fiber incorporation. LWT-Food Science and Technology 46 (1):335–40. doi: 10.1016/j.lwt.2011.08.019.
  • Chau, C. F., Y. L. Wen, and Y. T. Wang. 2006. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. Journal of the Science of Food and Agriculture 86 (14):2380–6. doi: 10.1002/jsfa.2628.
  • Chen, B., Y. Cai, T. Liu, L. Huang, X. Deng, Q. Zhao, and M. Zhao. 2019. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments. Food Hydrocolloids 93:167–75. doi: 10.1016/j.foodhyd.2019.01.058.
  • Chen, H., C. Zhao, J. Li, S. Hussain, S. Yan, and Q. Wang. 2018. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT 93:204–11. doi: 10.1016/j.lwt.2018.03.004.
  • Chen, J., D. Gao, L. Yang, and Y. Gao. 2013. Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International 54 (2):1821–7. doi: 10.1016/j.foodres.2013.09.025.
  • Chen, J., M. Piva, and T. P. Labuza. 1984. Evaluation of water binding capacity (WBC) of food fiber sources. Journal of Food Science 49 (1):59–63. doi: 10.1111/j.1365-2621.1984.tb13668.x.
  • Chen, R., I. Ratcliffe, P. A. Williams, S. Luo, J. Chen, and C. Liu. 2021. The influence of pH and monovalent ions on the gelation of pectin from the fruit seeds of the creeping fig plant. Food Hydrocolloids 111:106219. doi: 10.1016/j.foodhyd.2020.106219.
  • Chen, Y., J. Wan, M. Huang, Y. Ma, Y. Wang, H. Lv, and J. Yang. 2011. Influence of drying temperature and duration on fiber properties of unbleached wheat straw pulp. Carbohydrate Polymers 85 (4):759–64. doi: 10.1016/j.carbpol.2011.03.041.
  • Choi, Y.-S., Y.-B. Kim, K.-E. Hwang, D.-H. Song, Y.-K. Ham, H.-W. Kim, J.-M. Sung, and C.-J. Kim. 2016. Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poultry Science 95 (6):1465–71. doi: 10.3382/ps/pew096.
  • Chu, J., H. Zhao, Z. Lu, F. Lu, X. Bie, and C. Zhang. 2019. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chemistry 294:79–86. doi: 10.1016/j.foodchem.2019.05.035.
  • Cleary, L., and C. Brennan. 2006. The influence of a (1→3)(1→4)‐β‐d‐glucan rich fraction from barley on the physico‐chemical properties and in vitro reducing sugars release of durum wheat pasta. International Journal of Food Science and Technology 41 (8):910–8. doi: 10.1111/j.1365-2621.2005.01141.x.
  • Crizel, T. M., R. R. Araujo, A. O. Rios, R. Rech, and S. H. Flôres. 2014. Orange fiber as a novel fat replacer in lemon ice cream. Food Science and Technology 34 (2):332–40. doi: 10.1590/fst.2014.0057.
  • Crizel, T. M. Rios A. O., Thys R. C. S, and Flôres, S. H. 2015. Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Science and Technology 35 (3):546–51. doi: 10.1590/1678-457X.6719.
  • Cui, B., H. Liang, J. Li, B. Zhou, W. Chen, J. Liu, and B. Li. 2022. Development and characterization of edible plant-based fibers using a wet-spinning technique. Food Hydrocolloids 133:107965. doi: 10.1016/j.foodhyd.2022.107965.
  • Cui, R., and F. Zhu. 2021. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology 107:491–508. doi: 10.1016/j.tifs.2020.11.018.
  • Cui, W., Y. Wang, Z. Sun, C. Cui, H. Li, K. Luo, and A. Cheng. 2023. Effects of steam explosion on phenolic compounds and dietary fiber of grape pomace. LWT 173:114350. doi: 10.1016/j.lwt.2022.114350.
  • Davis, E. A. 1995. Functionality of sugars: Physicochemical interactions in foods. The American Journal of Clinical Nutrition 62 (1 Suppl):170S–7S. doi: 10.1093/ajcn/62.1.170S.
  • Daw, E., and R. Hartel. 2015. Fat destabilization and melt-down of ice creams with increased protein content. International Dairy Journal 43:33–41. doi: 10.1016/j.idairyj.2014.12.001.
  • De Escalada Pla, M., N. Ponce, C. Stortz, L. Gerschenson, and A. Rojas. 2007. Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT-Food Science and Technology 40 (7):1176–85. doi: 10.1016/j.lwt.2006.08.006.
  • De Escalada Pla, M. F., P. González, P. Sette, F. Portillo, A. M. Rojas, and L. N. Gerschenson. 2012. Effect of processing on physico-chemical characteristics of dietary fibre concentrates obtained from peach (Prunus persica L.) peel and pulp. Food Research International 49 (1):184–92. doi: 10.1016/j.foodres.2012.07.060.
  • De Escalada Pla, M. F., M. Uribe, E. N. Fissore, L. N. Gerschenson, and A. M. Rojas. 2010. Influence of the isolation procedure on the characteristics of fiber-rich products obtained from quince wastes. Journal of Food Engineering 96 (2):239–48. doi: 10.1016/j.jfoodeng.2009.07.018.
  • De la Peña Armada, R., M. Villanueva-Suárez, and I. Mateos-Aparicio. 2020. High hydrostatic pressure processing enhances pectin solubilisation on apple by-product improving techno-functional properties. European Food Research and Technology 246 (8):1691–702. doi: 10.1007/s00217-020-03524-w.
  • De Souza Fernandes, D., M. Leonel, M. S. Del Bem, M. M. Mischan, É. L. Garcia, and T. P. R. Dos Santos. 2017. Cassava derivatives in ice cream formulations: Effects on physicochemical, physical and sensory properties. Journal of Food Science and Technology 54 (6):1357–67. doi: 10.1007/s13197-017-2533-8.
  • Debnath, S., S. Jawahar, H. Muntaj, V. Purushotham, G. Sharmila, K. Sireesha, and M. N. Babu. 2019. A review on dietary fiber and its application. Research Journal of Pharmacognosy and Phytochemistry 11 (3):109–13. doi: 10.5958/0975-4385.2019.00019.0.
  • Deodhar, S., and P. Luner. 1980. Measurement of bound (nonfreezing) water by differential scanning calorimetry. In Water in polymers, ed. S. P. Rowland, vol. 127, 273–86. Washington, DC: ACS Publications.
  • Dervisoglu, M., and F. Yazici. 2006. Note. The effect of citrus fibre on the physical, chemical and sensory properties of ice cream. Food Science and Technology International 12 (2):159–64. doi: 10.1177/10820132060640.
  • Ding, Q., J. Zeng, B. Wang, D. Tang, K. Chen, and W. Gao. 2019. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydrate Polymers 207:44–51. doi: 10.1016/j.carbpol.2018.11.075.
  • Ding, S., and J. Yang. 2021. The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products–A review. Trends in Food Science & Technology 111:670–9. doi: 10.1016/j.tifs.2021.03.009.
  • Drouzas, A., E. Tsami, and G. Saravacos. 1999. Microwave/vacuum drying of model fruit gels. Journal of Food Engineering 39 (2):117–22. doi: 10.1016/S0260-8774(98)00133-2.
  • Dural, N. H. 1990. Water adsorption and transport characteristics of dietary fibers. University of Missouri-Columbia. Publised by: University Microfilms International, Ann Arbor, MI, USA.
  • Dural, N. H., and A. L. Hines. 1993. Adsorption of water on cereal-bread type dietary fibers. Journal of Food Engineering 20 (1):17–43. doi: 10.1016/0260-8774(93)90017-E.
  • Einhorn-Stoll, U. 2018. Pectin-water interactions in foods–From powder to gel. Food Hydrocolloids 78:109–19. doi: 10.1016/j.foodhyd.2017.05.029.
  • Einhorn-Stoll, U., H. Hatakeyama, and T. Hatakeyama. 2012. Influence of pectin modification on water binding properties. Food Hydrocolloids 27 (2):494–502. doi: 10.1016/j.foodhyd.2011.08.019.
  • Esa, N. M., K.-K. A. Kadir, Z. Amom, and A. Azlan. 2013. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chemistry 141 (2):1306–12. doi: 10.1016/j.foodchem.2013.03.086.
  • Essa, R. Y., and E. M. Elsebaie. 2022. New fat replacement agent comprised of gelatin and soluble dietary fibers derived from date seed powder in beef burger preparation. LWT 156:113051. doi: 10.1016/j.lwt.2021.113051.
  • Fayaz, G., Y. Soleimanian, M. Mhamadi, S. L. Turgeon, and S. Khalloufi. 2022. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Comprehensive Reviews in Food Science and Food Safety 21 (3):2149–99. doi: 10.1111/1541-4337.12934.
  • Fernández‐Ginés, J. M., J. Fernández‐López, E. Sayas‐Barberá, and J. A. Pérez‐Alvarez. 2005. Meat products as functional foods: A review. Journal of Food Science 70 (2):R37–43. doi: 10.1111/j.1365-2621.2005.tb07110.x.
  • Foschia, M., D. Peressini, A. Sensidoni, and C. S. Brennan. 2013. The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science 58 (2):216–27. doi: 10.1016/j.jcs.2013.05.010.
  • Föste, M., C. Verheyen, M. Jekle, and T. Becker. 2020. Fibres of milling and fruit processing by-products in gluten-free bread making: A review of hydration properties, dough formation and quality-improving strategies. Food Chemistry 306:125451. doi: 10.1016/j.foodchem.2019.125451.
  • Fuenmayor, C. A., O. G. Baron-Cangrejo, and P. A. Salgado-Rivera. 2021. Encapsulation of carotenoids as food colorants via formation of cyclodextrin inclusion complexes: A review. Polysaccharides 2 (2):454–76. doi: 10.3390/polysaccharides2020028.
  • Gabiatti, C.Jr., I. C. Neves, L.-T. Lim, B. M. Bohrer, R. C. Rodrigues, and C. Prentice. 2020. Characterization of dietary fiber from residual cellulose sausage casings using a combination of enzymatic treatment and high-speed homogenization. Food Hydrocolloids 100:105398. doi: 10.1016/j.foodhyd.2019.105398.
  • Gan, J., Z. Huang, Q. Yu, G. Peng, Y. Chen, J. Xie, S. Nie, and M. Xie. 2020. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids 101:105549. doi: 10.1016/j.foodhyd.2019.105549.
  • Gan, J., L. Xie, G. Peng, J. Xie, Y. Chen, and Q. Yu. 2021. Systematic review on modification methods of dietary fiber. Food Hydrocolloids 119:106872. doi: 10.1016/j.foodhyd.2021.106872.
  • Garcia-Amezquita, L. E., V. Tejada-Ortigoza, S. O. Serna-Saldivar, and J. Welti-Chanes. 2018. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food and Bioprocess Technology 11 (8):1439–63. doi: 10.1007/s11947-018-2117-2.
  • Ge, Y., and Z. Li. 2018. Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review. ACS Sustainable Chemistry & Engineering 6 (5):7181–92. doi: 10.1021/acssuschemeng.8b01345.
  • Geng, P., A. Zore, and M. R. Van De Mark. 2020. Thermodynamic characterization of free and surface water of colloidal unimolecular polymer (CUP) particles utilizing DSC. Polymers 12 (6):1417. doi: 10.3390/polym12061417.
  • Gierlinger, N., M. Schwanninger, A. Reinecke, and I. Burgert. 2006. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7 (7):2077–81. doi: 10.1021/bm060236g.
  • Gill, P., T. T. Moghadam, and B. Ranjbar. 2010. Differential scanning calorimetry techniques: Applications in biology and nanoscience. Journal of Biomolecular Techniques 21 (4):167.
  • Gorinstein, S., O. Martin-Belloso, E. Katrich, A. Lojek, M. Číž, N. Gligelmo-Miguel, R. Haruenkit, Y.-S. Park, S.-T. Jung, and S. Trakhtenberg. 2003. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. The Journal of Nutritional Biochemistry 14 (3):154–9. doi: 10.1016/S0955-2863(02)00278-4.
  • Guillon, F., and M. Champ. 2000. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International 33 (3–4):233–45. doi: 10.1016/S0963-9969(00)00038-7.
  • Guo, L., L. Fan, Y. Zhou, and J. Li. 2023. Constitution and reconstitution of microcapsules with high diacylglycerol oil loading capacity based on whey protein isolate/octenyl succinic anhydride starch/inulin matrix. International Journal of Biological Macromolecules 242 (Pt 1):124667. doi: 10.1016/j.ijbiomac.2023.124667.
  • Guo, Q., J. Kang, Y. Bai, and F. Xu. 2018. Dietary fiber: Chemistry, structure, and properties. Journal of Chemistry 2018:1–2. doi: 10.1155/2018/1328797.
  • Guo, W., G. Tiwari, J. Tang, and S. Wang. 2008. Frequency, moisture and temperature-dependent dielectric properties of chickpea flour. Biosystems Engineering 101 (2):217–24. doi: 10.1016/j.biosystemseng.2008.07.002.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing 77:1–25. doi: 10.1016/j.compositesa.2015.06.007.
  • Hagiwara, T., and R. W. Hartel. 1996. Effect of sweetener, stabilizer, and storage temperature on ice recrystallization in ice cream. Journal of Dairy Science 79 (5):735–44. doi: 10.3168/jds.S0022-0302(96)76420-2.
  • Häkkinen, R., and A. Abbott. 2019. Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility. Green Chemistry 21 (17):4673–82. doi: 10.1039/C9GC00559E.
  • Han, W., S. Ma, L. Li, X. Zheng, and X. Wang. 2019. Gluten aggregation behavior in gluten and gluten-starch doughs after wheat bran dietary fiber addition. LWT 106:1–6. doi: 10.1016/j.lwt.2019.02.051.
  • Hatakeyama, H., and T. Hatakeyama. 1998. Interaction between water and hydrophilic polymers. Thermochimica Acta 308 (1–2):3–22. doi: 10.1016/S0040-6031(97)00325-0.
  • Hatakeyama, T., and H. Hatakeyama. 2017. Heat capacity and nuclear magnetic relaxation times of non-freezing water restrained by polysaccharides, revisited. Journal of Biomaterials Science. Polymer Edition 28 (10–12):1215–30. doi: 10.1080/09205063.2017.1291551.
  • Hatakeyama, T., M. Iijima, and H. Hatakeyama. 2016. Role of bound water on structural change of water insoluble polysaccharides. Food Hydrocolloids 53:62–8. doi: 10.1016/j.foodhyd.2014.12.033.
  • Hatakeyama, T., Y. Inui, M. Iijima, and H. Hatakeyama. 2013. Bound water restrained by nanocellulose fibres. Journal of Thermal Analysis and Calorimetry 113 (3):1019–25. doi: 10.1007/s10973-012-2823-3.
  • Hatakeyama, T., K. Nakamura, and H. Hatakeyama. 1988. Determination of bound water content in polymers by DTA, DSC and TG. Thermochimica Acta 123:153–61. doi: 10.1016/0040-6031(88)80018-2.
  • Hatakeyama, T., K. Nakamura, and H. Hatakeyama. 2000. Vaporization of bound water associated with cellulose fibres. Thermochimica Acta 352–353:233–9. doi: 10.1016/S0040-6031(99)00471-2.
  • Hatakeyama, T., M. Tanaka, and H. Hatakeyama. 2012. Thermal properties of freezing bound water restrained by polysaccharides. Journal of Biomaterials Science. Polymer Edition 21 (14):1865–75. doi: 10.1163/092050610X486946.
  • Hatakeyama, T., M. Tanaka, A. Kishi, and H. Hatakeyama. 2012. Comparison of measurement techniques for the identification of bound water restrained by polymers. Thermochimica Acta 532:159–63. doi: 10.1016/j.tca.2011.01.027.
  • Hautrive, T. P., J. Piccolo, A. S. Rodrigues, P. C. B. Campagnol, and E. H. Kubota. 2019. Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT 102:403–10. doi: 10.1016/j.lwt.2018.12.025.
  • Hemdane, S., N. Langenaeken, P. Jacobs, J. Verspreet, J. Delcour, and C. Courtin. 2018. Study of the role of bran water binding and the steric hindrance by bran in straight dough bread making. Food Chemistry 253:262–8. doi: 10.1016/j.foodchem.2018.01.152.
  • Hirata, T., G. Dacanal, and F. Menegalli. 2013. Effect of operational conditions on the properties of pectin powder agglomerated in pulsed fluid bed. Powder Technology 245:174–81. doi: 10.1016/j.powtec.2013.04.047.
  • Holasova, M., V. Fiedlerova, H. Smrcinova, M. Orsak, J. Lachman, and S. Vavreinova. 2002. Buckwheat—The source of antioxidant activity in functional foods. Food Research International 35 (2-3):207–11. doi: 10.1016/S0963-9969(01)00185-5.
  • Hosseini, S. F., L. Ramezanzade, and D. J. McClements. 2021. Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends in Food Science & Technology 109:322–39. doi: 10.1016/j.tifs.2021.01.045.
  • Hosseinvand, A., S. Sohrabvandi, M. Yousefi, N. Khorshidian, and K. Khoshtinat. 2019. Biointerface research in applied chemistry. Biointerface Research in Applied Chemistry 9 (5):4248–54.
  • Huang, J., J. Liao, J. Qi, W. Jiang, and X. Yang. 2021. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel. Food Hydrocolloids 110:106140. doi: 10.1016/j.foodhyd.2020.106140.
  • Huang, L., X. Ding, Y. Zhao, Y. Li, and H. Ma. 2018. Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. Journal of Food Processing and Preservation 42 (1):e13399. doi: 10.1111/jfpp.13399.
  • Huang, X., Y. Yang, Q. Liu, and W.-Q. He. 2020. Effect of high pressure homogenization on sugar beet pulp: Physicochemical, thermal and structural properties. LWT 134:110177. doi: 10.1016/j.lwt.2020.110177.
  • Hughes, E., A. Mullen, and D. Troy. 1998. Effects of fat level, tapioca starch and whey protein on frankfurters formulated with 5% and 12% fat. Meat Science 48 (1–2):169–80. doi: 10.1016/s0309-1740(97)00087-9.
  • Hurtado-Romero, A., M. Del Toro-Barbosa, L. E. Garcia-Amezquita, and T. García-Cayuela. 2020. Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology 104:117–31. doi: 10.1016/j.tifs.2020.08.007.
  • Iahnke, A. O. S., Costa T. M. H., de Oliveira Rios A, and Flores, S. H. 2016. Antioxidant films based on gelatin capsules and minimally processed beet root (Beta vulgaris L. var. Conditiva) residues. Journal of Applied Polymer Science 133 (10):43094. doi: 10.1002/app.43094.
  • Iijima, M., K. Nakamura, T. Hatakeyama, and H. Hatakeyama. 2000. Phase transition of pectin with sorbed water. Carbohydrate Polymers 41 (1):101–6. doi: 10.1016/S0144-8617(99)00116-2.
  • Irigoytia, M. B., K. Irigoytia, N. Sosa, M. de Escalada Pla, and C. Genevois. 2022. Blueberry by‐product as a novel food ingredient: Physicochemical characterization and study of its application in a bakery product. Journal of the Science of Food and Agriculture 102 (11):4551–60. doi: 10.1002/jsfa.11812.
  • Isaac, B., R. M. Taylor, and K. Reifsnider. 2021. Mechanical and dielectric properties of aligned electrospun fibers. Fibers 9 (1):4. doi: 10.3390/fib9010004.
  • Jaśkiewicz, A., G. Budryn, A. Nowak, and M. Efenberger-Szmechtyk. 2020. Novel biodegradable starch film for food packaging with antimicrobial chicory root extract and phytic acid as a cross-linking agent. Foods 9 (11):1696. doi: 10.3390/foods9111696.
  • Jia, M., J. Chen, X. Liu, M. Xie, S. Nie, Y. Chen, J. Xie, and Q. Yu. 2019. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocolloids 94:468–74. doi: 10.1016/j.foodhyd.2019.03.047.
  • Jiang, G., X. Bai, Z. Wu, S. Li, C. Zhao, and K. Ramachandraiah. 2021. Modification of ginseng insoluble dietary fiber through alkaline hydrogen peroxide treatment and its impact on structure, physicochemical and functional properties. LWT 150:111956. doi: 10.1016/j.lwt.2021.111956.
  • Jiang, Y., Y. Zhao, Y. Zhu, S. Qin, Y. Deng, and Y. Zhao. 2019. Effect of dietary fiber-rich fractions on texture, thermal, water distribution, and gluten properties of frozen dough during storage. Food Chemistry 297:124902. doi: 10.1016/j.foodchem.2019.05.176.
  • Joardder, M. U., M. Mourshed, and M. Hasan Masud. 2019. Bound water measurement techniques. In State of bound water: Measurement and significance in food processing, 47–82. Springer Nature Switzerland AG.
  • Jones, S. B., W. Sheng, and D. Or. 2022. Dielectric measurement of agricultural grain moisture—Theory and applications. Sensors 22 (6):2083. doi: 10.3390/s22062083.
  • Jongaroontaprangsee, S., W. Tritrong, W. Chokanaporn, P. Methacanon, S. Devahastin, and N. Chiewchan. 2007. Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by-products. International Journal of Food Properties 10 (4):887–97. doi: 10.1080/10942910601183619.
  • Karim, A., Z. Raji, A. Karam, and S. Khalloufi. 2023. Valorization of fibrous plant-based food waste as biosorbents for remediation of heavy metals from wastewater—A review. Molecules 28 (10):4205. doi: 10.3390/molecules28104205.
  • Karimi, R., M. H. Azizi, M. Ghasemlou, and M. Vaziri. 2015. Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers 119:85–100. doi: 10.1016/j.carbpol.2014.11.029.
  • Kay, R. 1982. Dietary fiber. Journal of Lipid Research 23 (2):221–42. doi: 10.1016/S0022-2275(20)38151-7.
  • Kerr, W., and L. Wicker. 2000. NMR proton relaxation measurements of water associated with high methoxy and low methoxy pectins. Carbohydrate Polymers 42 (2):133–41. doi: 10.1016/S0144-8617(99)00169-1.
  • Khanpit, V. V., S. P. Tajane, and S. A. Mandavgane. 2022. Orange waste peel to high value soluble dietary fiber concentrate: Comparison of conversion methods and their environmental impact. Biomass Conversion and Biorefinery 1–11. doi: 10.1007/s13399-022-02481-6.
  • Kiumarsi, M., M. Shahbazi, S. Yeganehzad, D. Majchrzak, O. Lieleg, and B. Winkeljann. 2019. Relation between structural, mechanical and sensory properties of gluten-free bread as affected by modified dietary fibers. Food Chemistry 277:664–73. doi: 10.1016/j.foodchem.2018.11.015.
  • Klaassen, M. T., and L. M. Trindade. 2020. RG-I galactan side-chains are involved in the regulation of the water-binding capacity of potato cell walls. Carbohydrate Polymers 227:115353. doi: 10.1016/j.carbpol.2019.115353.
  • Koo, B., J. Jo, and S.-M. Cho. 2020. Drying effect on enzymatic hydrolysis of cellulose associated with porosity and crystallinity. Applied Sciences 10 (16):5545. doi: 10.3390/app10165545.
  • Koocheki, A., S. A. Mortazavi, F. Shahidi, S. M. A. Razavi, and A. Taherian. 2009. Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. Journal of Food Engineering 91 (3):490–6. doi: 10.1016/j.jfoodeng.2008.09.028.
  • Kowalska, H., K. Czajkowska, J. Cichowska, and A. Lenart. 2017. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology 67:150–9. doi: 10.1016/j.tifs.2017.06.016.
  • Kramer, R. K., and A. J. F. Carvalho. 2021. Non-freezing water sorbed on microcrystalline cellulose studied by high-resolution thermogravimetric analysis. Cellulose 28 (16):10117–25. doi: 10.1007/s10570-021-04189-8.
  • Kuhn, K. R., Â. L. F. Cavallieri, and R. L. Da Cunha. 2011. Cold-set whey protein–flaxseed gum gels induced by mono or divalent salt addition. Food Hydrocolloids 25 (5):1302–10. doi: 10.1016/j.foodhyd.2010.12.005.
  • Kultys, E., and M. Moczkowska-Wyrwisz. 2022. Effect of using carrot pomace and beetroot-apple pomace on physicochemical and sensory properties of pasta. LWT 168:113858. doi: 10.1016/j.lwt.2022.113858.
  • Kurek, M., J. Wyrwisz, M. Piwińska, and A. Wierzbicka. 2016. The effect of oat fibre powder particle size on the physical properties of wheat bread rolls. Food Technology and Biotechnology 54 (1):45–51. doi: 10.17113/ftb.54.01.16.4177.
  • Kurek, M. A., S. Karp, J. Wyrwisz, and Y. Niu. 2018. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocolloids 85:321–30. doi: 10.1016/j.foodhyd.2018.07.021.
  • Kurita, O., Y. Miyake, and E. Yamazaki. 2012. Chemical modification of citrus pectin to improve its dissolution into water. Carbohydrate Polymers 87 (2):1720–7. doi: 10.1016/j.carbpol.2011.09.081.
  • Labuza, T. P., and B. Altunakar. 2020. Water activity prediction and moisture sorption isotherms. In Water activity in foods: Fundamentals and applications, ed. A. J. F. J. Gustavo, V. Barbosa-Cánovas, Shelly J. Schmidt, and Theodore P. Labuza, 2nd ed., 161–205. Wiley: Hoboken, New Jersey (United States).
  • Labuza, T. P., and P. P. Lewicki. 1978. Measurement of gel water‐binding capacity by capillary suction potential. Journal of Food Science 43 (4):1264–9. doi: 10.1111/j.1365-2621.1978.tb15284.x.
  • Lario, Y., E. Sendra, J. Garcıa-Pérez, C. Fuentes, E. Sayas-Barberá, J. Fernández-López, and J. Perez-Alvarez. 2004. Preparation of high dietary fiber powder from lemon juice by-products. Innovative Food Science & Emerging Technologies 5 (1):113–7. doi: 10.1016/j.ifset.2003.08.001.
  • Leonard, W., P. Zhang, D. Ying, S. Nie, S. Liu, and Z. Fang. 2022. Post-extrusion physical properties, techno-functionality and microbiota-modulating potential of hempseed (Cannabis sativa L.) hull fiber. Food Hydrocolloids 131:107836. doi: 10.1016/j.foodhyd.2022.107836.
  • Lewicki, P. P. 2004. Water as the determinant of food engineering properties. A review. Journal of Food Engineering 61 (4):483–95. doi: 10.1016/S0260-8774(03)00219-X.
  • Li, B., W. Yang, Y. Nie, F. Kang, H. D. Goff, and S. W. Cui. 2019. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids 94:48–56. doi: 10.1016/j.foodhyd.2019.02.042.
  • Li, D., Z. Zhu, and D.-W. Sun. 2021. Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. Journal of Molecular Liquids 342:117498. doi: 10.1016/j.molliq.2021.117498.
  • Li, Y., L. Niu, Q. Guo, L. Shi, X. Deng, X. Liu, and C. Xiao. 2022. Effects of fermentation with lactic bacteria on the structural characteristics and physicochemical and functional properties of soluble dietary fiber from prosomillet bran. LWT 154:112609. doi: 10.1016/j.lwt.2021.112609.
  • Lin, D., X. Long, Y. Huang, Y. Yang, Z. Wu, H. Chen, Q. Zhang, D. Wu, W. Qin, and Z. Tu. 2020. Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT 123:109059. doi: 10.1016/j.lwt.2020.109059.
  • Liu, J., J. Bi, D. J. McClements, X. Liu, J. Yi, J. Lyu, M. Zhou, R. Verkerk, M. Dekker, X. Wu, et al. 2020. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit-and vegetable-based products: A review. Carbohydrate Polymers 250:116890. doi: 10.1016/j.carbpol.2020.116890.
  • Liu, R., W. Sun, Y. Zhang, Z. Huang, H. Hu, M. Zhao, and W. Li. 2019. Development of a novel model dough based on mechanically activated cassava starch and gluten protein: Application in bread. Food Chemistry 300:125196. doi: 10.1016/j.foodchem.2019.125196.
  • Lončarević, I., Pajin, B., Petrović, J., Nikolić, I., Maravić, N., Ačkar, Đ, Šubarić, D., Zarić, D, and Miličević, B. 2021. White chocolate with resistant starch: Impact on physical properties, dietary fiber content and sensory characteristics. Molecules 26 (19):5908. doi: 10.3390/molecules26195908.
  • López-Marcos, M. C., C. Bailina, M. Viuda-Martos, J. A. Pérez-Alvarez, and J. Fernández-López. 2015. Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food and Bioprocess Technology 8 (12):2400–8. doi: 10.1007/s11947-015-1591-z.
  • Lu, Z., and K. Seetharaman. 2013. 1H nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) studies of water mobility in dough systems containing barley flour. Cereal Chemistry Journal 90 (2):120–6. doi: 10.1094/CCHEM-09-12-0116-R.
  • Luo, X., Q. Wang, B. Zheng, L. Lin, B. Chen, Y. Zheng, and J. Xiao. 2017. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology 109 (Pt 2):1003–9. doi: 10.1016/j.fct.2017.02.029.
  • Lutfi, Z., A. Nawab, F. Alam, A. Hasnain, and S. Z. Haider. 2017. Influence of xanthan, guar, CMC and gum acacia on functional properties of water chestnut (Trapa bispinosa) starch. International Journal of Biological Macromolecules 103:220–5. doi: 10.1016/j.ijbiomac.2017.05.046.
  • Ma, G., F. Ji, W. Lin, and S. Chen. 2022. Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry. Journal of Biomaterials Science. Polymer Edition 33 (8):1012–24. doi: 10.1080/09205063.2022.2034285.
  • Ma, M., and T. Mu. 2016. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydrate Polymers 136:87–94. doi: 10.1016/j.carbpol.2015.09.030.
  • Mahato, S., Z. Zhu, and D.-W. Sun. 2019. Glass transitions as affected by food compositions and by conventional and novel freezing technologies: A review. Trends in Food Science & Technology 94:1–11. doi: 10.1016/j.tifs.2019.09.010.
  • Mahdian, E., and R. Karazhian. 2013. Effects of fat replacers and stabilizers on rheological, physicochemical and sensory properties of reduced-fat ice cream. Journal of Agricultural Science and Technology 15 (6):1163–74. doi: 20.1001.1.16807073.2013.15.6.6.3.
  • Maloney, T. C., H. Paulapuro, and P. Stenius. 1998. Hydration and swelling of pulp fibers measured with differential scanning calorimetry. Nordic Pulp & Paper Research Journal 13 (1):31–6. doi: 10.3183/npprj-1998-13-01-p031-036.
  • Mancebo, C. M., J. Picón, and M. Gómez. 2015. Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies. LWT-Food Science and Technology 64 (1):264–9. doi: 10.1016/j.lwt.2015.05.057.
  • Maphosa, Y., and V. A. Jideani. 2016. Dietary fiber extraction for human nutrition—A review. Food Reviews International 32 (1):98–115. doi: 10.1080/87559129.2015.1057840.
  • Marra, F., M. V. De Bonis, and G. Ruocco. 2010. Combined microwaves and convection heating: A conjugate approach. Journal of Food Engineering 97 (1):31–9. doi: 10.1016/j.jfoodeng.2009.09.012.
  • Marshall, R. T., H. D. Goff, and R. W. Hartel. 2003. Ice cream, 6th ed. Kluwer Academic/PlenumPublishers, New York. 233 Spring Street, New York, USA.
  • Mathlouthi, M. 2001. Water content, water activity, water structure and the stability of foodstuffs. Food Control. 12 (7):409–17. doi: 10.1016/S0956-7135(01)00032-9.
  • Mauro, D., and Y.-J. Wang. 1997. Breakfast food ingredients. Cereal Foods World 42 (6):440–3.
  • McClements, D. J., and L. Grossmann. 2021. A brief review of the science behind the design of healthy and sustainable plant-based foods. NPJ Science of Food 5 (1):17. doi: 10.1038/s41538-021-00099-y.
  • McConnell, A., M. Eastwood, and W. Mitchell. 1974. Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of the Science of Food and Agriculture 25 (12):1457–64. doi: 10.1002/jsfa.2740251205.
  • Medeiros, A. K. O. C., de Carvalho Gomes, C., de Araújo Amaral, M. L. Q., de Medeiros, L. D. G., Medeiros, I., Porto, D. L., Aragão, C. F. S., Maciel, B. L. L., Araújo Morais, A. H., and Passos, T. S. 2019. Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chemistry 270:562–72. doi: 10.1016/j.foodchem.2018.07.099.
  • Mehra, A., and C. Baker. 2007. Leaching and bioavailability of aluminium, copper and manganese from tea (Camellia sinensis). Food Chemistry 100 (4):1456–63. doi: 10.1016/j.foodchem.2005.11.038.
  • Mehta, D., P. Prasad, R. S. Sangwan, and S. K. Yadav. 2018. Tomato processing byproduct valorization in bread and muffin: Improvement in physicochemical properties and shelf life stability. Journal of Food Science and Technology 55 (7):2560–8. doi: 10.1007/s13197-018-3176-0.
  • Mehta, N., S. Ahlawat, D. Sharma, and R. Dabur. 2015. Novel trends in development of dietary fiber rich meat products—A critical review. Journal of Food Science and Technology 52 (2):633–47. doi: 10.1007/s13197-013-1010-2.
  • Melo, R. Q., M. V. Lia Fook, and A. G. de Lima. 2020. Non-Fickian moisture transport in vegetable-fiber-reinforced polymer composites using a Langmuir-type model. Polymers 12 (11):2503. doi: 10.3390/polym12112503.
  • Mende, S., H. Rohm, and D. Jaros. 2016. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. International Dairy Journal 52:57–71. doi: 10.1016/j.idairyj.2015.08.002.
  • Meng, X., and A. J. Ragauskas. 2014. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Current Opinion in Biotechnology 27:150–8. doi: 10.1016/j.copbio.2014.01.014.
  • Mia, M. S., Islam, M., Huque, R. M. M., Islam, J., Molla, M. A, and Khan, M. 2014. Effect of gamma radiation on morphological, thermal and physico-chemical properties of dietary fiber extracted from pineapple shell. International Multilingual Academic Journal 1 (1):18–29.
  • Miehle, E., M. Haas, S. Bader-Mittermaier, and P. Eisner. 2022. The role of hydration properties of soluble dietary fibers on glucose diffusion. Food Hydrocolloids 131:107822. doi: 10.1016/j.foodhyd.2022.107822.
  • Mirhosseini, H., and B. T. Amid. 2013. Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein gum from durian fruit seed. Chemistry Central Journal 7 (1):1–14. doi: 10.1186/1752-153X-7-1.
  • Misra, N., and S. K., Yadav. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids 102:105592. doi: 10.1016/j.foodhyd.2019.105592.
  • Mohammadinezhad, A., G. B. Marandi, M. Farsadrooh, and H. Javadian. 2018. Synthesis of poly (acrylamide-co-itaconic acid)/MWCNTs superabsorbent hydrogel nanocomposite by ultrasound-assisted technique: Swelling behavior and Pb (II) adsorption capacity. Ultrasonics Sonochemistry 49:1–12. doi: 10.1016/j.ultsonch.2017.12.028.
  • Morita, S., M. Tanaka, and Y. Ozaki. 2007. Time-resolved in situ ATR-IR observations of the process of sorption of water into a poly (2-methoxyethyl acrylate) film. Langmuir: The ACS Journal of Surfaces and Colloids 23 (7):3750–61. doi: 10.1021/la0625998.
  • Mosquera, L. H., G. Moraga, and N. Martínez-Navarrete. 2012. Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International 47 (2):201–6. doi: 10.1016/j.foodres.2011.05.019.
  • Mudgett, R., S. Goldblith, D. Wang, and W. Westphal. 1977. Prediction of dielectric properties in solid foods of high moisture content at ultrahigh and microwave frequencies. Journal of Food Processing and Preservation 1 (2):119–51. doi: 10.1111/j.1745-4549.1977.tb00319.x.
  • Muthukumar, K., R. Sabariraj, S. D. Kumar, and T. Sathish. 2020. Investigation of thermal conductivity and thermal resistance analysis on different combination of natural fiber composites of banana, pineapple and jute. Materials Today: Proceedings 21:976–80. doi: 10.1016/j.matpr.2019.09.140.
  • Nakamura, K., T. Hatakeyama, and H. Hatakeyama. 1981. Studies on bound water of cellulose by differential scanning calorimetry. Textile Research Journal 51 (9):607–13. doi: 10.1177/004051758105100909.
  • Nakamura, K., T. Hatakeyama, and H. Hatakeyama. 1996. Heat capacities of carboxymethylcellulose-nonfreezing water systems at around glass transition temperature. Kobunshi Ronbunshu 53 (12):860–5. doi: 10.1295/koron.53.860.
  • Nawrocka, A., M. Krekora, Z. Niewiadomski, and A. Miś. 2018. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition. Food Chemistry 252:198–206. doi: 10.1016/j.foodchem.2018.01.110.
  • Nawrocka, A., A. Miś, and Z. Niewiadomski. 2017. Dehydration of gluten matrix as a result of dietary fibre addition–A study on model flour with application of FT-IR spectroscopy. Journal of Cereal Science 74:86–94. doi: 10.1016/j.jcs.2017.02.001.
  • Nawrocka, A., M. Szymańska-Chargot, A. Miś, A. Z. Wilczewska, and K. H. Markiewicz. 2017. Effect of dietary fibre polysaccharides on structure and thermal properties of gluten proteins–A study on gluten dough with application of FT-Raman spectroscopy, TGA and DSC. Food Hydrocolloids 69:410–21. doi: 10.1016/j.foodhyd.2017.03.012.
  • Ng, H., S. Ong, K. Foong, P.-S. Goh, and W. Nowinski. 2006. Medical image segmentation using k-means clustering and improved watershed algorithm. Paper presented at the 2006 IEEE Southwest Symposium on Image Analysis and Interpretation. doi: 10.1109/SSIAI.2006.1633722.
  • Ngouémazong, E. D., S. Christiaens, A. Shpigelman, A. Van Loey, and M. Hendrickx. 2015. The emulsifying and emulsion‐stabilizing properties of pectin: A review. Comprehensive Reviews in Food Science and Food Safety 14 (6):705–18. doi: 10.1111/1541-4337.12160.
  • Nieto‐Calvache, J. E., M. de Escalada Pla, and L. N. Gerschenson. 2019. Dietary fibre concentrates produced from papaya by‐products for agroindustrial waste valorisation. International Journal of Food Science & Technology 54 (4):1074–80. doi: 10.1111/ijfs.13962.
  • Özbalci, B., İ. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer. 2013. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chemistry 136 (3–4):1444–52. doi: 10.1016/j.foodchem.2012.09.064.
  • Panchev, I., A. Slavov, K. Nikolova, and D. Kovacheva. 2010. On the water-sorption properties of pectin. Food Hydrocolloids 24 (8):763–9. doi: 10.1016/j.foodhyd.2010.04.002.
  • Papuc, C., G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan. 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16 (6):1243–68. doi: 10.1111/1541-4337.12298.
  • Park, S., R. A. Venditti, H. Jameel, and J. J. Pawlak. 2006. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydrate Polymers 66 (1):97–103. doi: 10.1016/j.carbpol.2006.02.026.
  • Parrott, M. E., and B. E. Thrall. 1978. Functional properties of various fibers: Physical properties. Journal of Food Science 43 (3):759–63. doi: 10.1111/j.1365-2621.1978.tb02412.x.
  • Pathania, S., and N. Kaur. 2022. Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydrates and Dietary Fibre 27:100295. doi: 10.1016/j.bcdf.2021.100295.
  • Peng, Y., D. J. Gardner, and Y. Han. 2012. Drying cellulose nanofibrils: In search of a suitable method. Cellulose 19 (1):91–102. doi: 10.1007/s10570-011-9630-z.
  • Perkins, E., and W. Batchelor. 2012. Water interaction in paper cellulose fibres as investigated by NMR pulsed field gradient. Carbohydrate Polymers 87 (1):361–7. doi: 10.1016/j.carbpol.2011.07.065.
  • Petersson, K., E. Nordlund, E. Tornberg, A. C. Eliasson, and J. Buchert. 2013. Impact of cell wall‐degrading enzymes on water‐holding capacity and solubility of dietary fibre in rye and wheat bran. Journal of the Science of Food and Agriculture 93 (4):882–9. doi: 10.1002/jsfa.5816.
  • Ping, Z., Q. Nguyen, S. Chen, J. Zhou, and Y. Ding. 2001. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 42 (20):8461–7. doi: 10.1016/S0032-3861(01)00358-5.
  • Ping Zhang, G. M. 2001. User expectations and rankings of quality factors in different web site domains. International Journal of Electronic Commerce 6 (2):9–33. doi: 10.1080/10864415.2001.11044237.
  • Poletto, M., H. L. Ornaghi, and A. J. Zattera. 2014. Native cellulose: Structure, characterization and thermal properties. Materials 7 (9):6105–19. doi: 10.3390/ma7096105.
  • Polia, F., M. Pastor-Belda, A. Martínez-Blázquez, M.-N. Horcajada, F. A. Tomás-Barberán, and R. García-Villalba. 2022. Technological and biotechnological processes to enhance the bioavailability of dietary (poly) phenols in humans. Journal of Agricultural and Food Chemistry 70 (7):2092–107. doi: 10.1021/acs.jafc.1c07198.
  • Principato, L., D. Carullo, A. Bassani, A. Gruppi, G. Duserm Garrido, R. Dordoni, and G. Spigno. 2021. Effect of dietary fiber and thermal conditions on rice bran wax-based structured edible oils. Foods 10 (12):3072. doi: 10.3390/foods10123072.
  • Qi, J-r., L-w Song, W-q Zeng, and J-s Liao. 2021. Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network. Food Chemistry 343:128523. doi: 10.1016/j.foodchem.2020.128523.
  • Qian, C., E. A. Decker, H. Xiao, and D. J. McClements. 2012. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry 135 (3):1440–7. doi: 10.1016/j.foodchem.2012.06.047.
  • Qiao, C., X. Ma, J. Zhang, and J. Yao. 2019. Effect of hydration on water state, glass transition dynamics and crystalline structure in chitosan films. Carbohydrate Polymers 206:602–8. doi: 10.1016/j.carbpol.2018.11.045.
  • Raghavendra, S., N. K. Rastogi, K. Raghavarao, and R. Tharanathan. 2004. Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties. European Food Research and Technology 218 (6):563–7. doi: 10.1007/s00217-004-0889-2.
  • Raghavendra, S., S. R. Swamy, N. Rastogi, K. Raghavarao, S. Kumar, and R. Tharanathan. 2006. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering 72 (3):281–6. doi: 10.1016/j.jfoodeng.2004.12.008.
  • Rahman, M. M., M. U. Joardder, and A. Karim. 2018. Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosystems Engineering 169:126–38. doi: 10.1016/j.biosystemseng.2018.02.007.
  • Raji, Z., A. Karim, A. Karam, and S. Khalloufi. 2023. A review on the heavy metal adsorption capacity of dietary fibers derived from agro-based wastes: Opportunities and challenges for practical applications in the food industry. Trends in Food Science & Technology 137:74–91. doi: 10.1016/j.tifs.2023.05.004.
  • Ramesh, M., K. Palanikumar, and K. H. Reddy. 2017. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 79:558–84. doi: 10.1016/j.rser.2017.05.094.
  • Raso, J., and G. V. Barbosa-Cánovas. 2003. Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition 43 (3):265–85. doi: 10.1080/10408690390826527.
  • Rasper, V. 1979. Chemical and physical properties of dietary cereal fiber. Food Technology 33 (1):40–4.
  • Rathod, R. P., and U. S. Annapure. 2017. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT 80:121–30. doi: 10.1016/j.lwt.2017.02.001.
  • Rehman, A., Q. Tong, S. M. Jafari, E. Assadpour, Q. Shehzad, R. M. Aadil, M. W. Iqbal, M. M. Rashed, B. S. Mushtaq, and W. Ashraf. 2020. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 275:102048. doi: 10.1016/j.cis.2019.102048.
  • Reißner, A.-M., M. Brunner, S. Struck, and H. Rohm. 2022. Thermo-mechanical processing of fibre-rich blackcurrant pomace to modify techno-functional properties. European Food Research and Technology 248 (9):2359–68. doi: 10.1007/s00217-022-04052-5.
  • Renard, C., M.-J. Crépeau, and J.-F. Thibault. 1994. Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibres from sugar-beet and wheat bran. Industrial Crops and Products 3 (1–2):75–84. doi: 10.1016/0926-6690(94)90079-5.
  • Requena, M. C., C. N. A. González, L. A. P. Barragán, T. Correia, J. C. C. Esquivel, and R. R. Herrera. 2016. Functional and physico-chemical properties of six desert-sources of dietary fiber. Food Bioscience 16:26–31. doi: 10.1016/j.fbio.2016.08.001.
  • Ribeiro, T. B., G. B. Voss, M. C. Coelho, and M. E. Pintado. 2022. Food waste and by-product valorization as an integrated approach with zero waste: Future challenges. In Future foods, ed. R. Bhat, 569–96. Elsevier: Academic Press (Elsevier), 125 London Wall, London EC2Y 5AS, United Kingdom.
  • Roebuck, B. D., S. Goldblith, and W. Westphal. 1972. Dielectric properties of carbohydrate‐water mixtures at microwave frequencies. Journal of Food Science 37 (2):199–204. doi: 10.1111/j.1365-2621.1972.tb05816.x.
  • Russ, N., B. I. Zielbauer, and T. A. Vilgis. 2014. Impact of sucrose and trehalose on different agarose-hydrocolloid systems. Food Hydrocolloids 41:44–52. doi: 10.1016/j.foodhyd.2014.03.020.
  • Ryynänen, S. 1995. The electromagnetic properties of food materials: A review of the basic principles. Journal of Food Engineering 26 (4):409–29. doi: 10.1016/0260-8774(94)00063-F.
  • Saha, D., and S. Bhattacharya. 2010. Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology 47 (6):587–97. doi: 10.1007/s13197-010-0162-6.
  • Sahni, P., and D. Shere. 2017. Comparative evaluation of physico-chemical and functional properties of apple, carrot and beetroot pomace powders. International Journal of Food and Fermentation Technology 7 (2):317–23.
  • Salem, K. S., V. Naithani, H. Jameel, L. Lucia, and L. Pal. 2022. A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse. Carbohydrate Polymers 295:119856. doi: 10.1016/j.carbpol.2022.119856.
  • Sánchez, V., G. Bartholomai, and A. Pilosof. 1995. Rheological properties of food gums as related to their water binding capacity and to soy protein interaction. LWT-Food Science and Technology 28 (4):380–5. doi: 10.1016/0023-6438(95)90021-7.
  • Sang, J., L. Li, J. Wen, Q. Gu, J. Wu, Y. Yu, Y. Xu, M. Fu, and X. Lin. 2021. Evaluation of the structural, physicochemical and functional properties of dietary fiber extracted from Newhall navel orange by-products. Foods 10 (11):2772. doi: 10.3390/foods10112772.
  • Sangnark, A., and A. Noomhorm. 2004. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Research International 37 (1):66–74. doi: 10.1016/j.foodres.2003.09.007.
  • Santos‐Buelga, C., and A. Scalbert. 2000. Proanthocyanidins and tannin‐like compounds–Nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture 80 (7):1094–117. doi: 10.1002/(SICI)1097-0010(20000515)80:7 < 1094::AID-JSFA569 > 3.0.CO;2-1.
  • Sappati, P. K., B. Nayak, G. P. VanWalsum, and O. T. Mulrey. 2019. Combined effects of seasonal variation and drying methods on the physicochemical properties and antioxidant activity of sugar kelp (Saccharina latissima). Journal of Applied Phycology 31 (2):1311–32. doi: 10.1007/s10811-018-1596-x.
  • Schmidt, S. J. 2020. Water mobility in foods. In Water activity in foods: Fundamentals and applications, ed. A. J. F. J. Gustavo V. Barbosa-Cánovas, Shelly J. Schmidt, and Theodore P. Labuza, 2nd ed., 61–122. Chicago, IL, USA: John Wiley & Sons, Inc.
  • Schubert, H. 1987. Food particle technology. Part I: Properties of particles and particulate food systems. Journal of Food Engineering 6 (1):1–32. doi: 10.1016/0260-8774(87)90019-7.
  • Schuck, P., A. Dolivet, S. Méjean, P. Zhu, E. Blanchard, and R. Jeantet. 2009. Drying by desorption: A tool to determine spray drying parameters. Journal of Food Engineering 94 (2):199–204. doi: 10.1016/j.jfoodeng.2008.08.014.
  • Serena, A., and K. B. Knudsen. 2007. Chemical and physicochemical characterisation of co-products from the vegetable food and agro industries. Animal Feed Science and Technology 139 (1–2):109–24. doi: 10.1016/j.anifeedsci.2006.12.003.
  • Sharma, K. D., S. Karki, N. S. Thakur, and S. Attri. 2012. Chemical composition, functional properties and processing of carrot—A review. Journal of Food Science and Technology 49 (1):22–32. doi: 10.1007/s13197-011-0310-7.
  • Shelke, G., V. Kad, G. Yenge, S. Desai, and S. Kakde. 2020. Utilization of jamun pomace as functional ingredients to enhance the physico‐chemical and sensory characteristics of ice cream. Journal of Food Processing and Preservation 44 (10):e14736. doi: 10.1111/jfpp.14736.
  • Shen, L., J. Li, L. Lv, L. Zhang, R. Bai, T. Zheng, and Q. Zhang. 2021. Comparison of functional and structural properties of ginkgo seed protein dried by spray and freeze process. Journal of Food Science and Technology 58 (1):175–85. doi: 10.1007/s13197-020-04527-x.
  • Sipahioglu, O., and S. Barringer. 2003. Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. Journal of Food Science 68 (1):234–9. doi: 10.1111/j.1365-2621.2003.tb14145.x.
  • Sivam, A. S., D. Sun‐Waterhouse, S. Quek, and C. O. Perera. 2010. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. Journal of Food Science 75 (8):R163–74. doi: 10.1111/j.1750-3841.2010.01815.x.
  • Soleimanian, Y., I. Sanou, S. L. Turgeon, D. Canizares, and S. Khalloufi. 2022. Natural plant fibers obtained from agricultural residue used as an ingredient in food matrixes or packaging materials: A review. Comprehensive Reviews in Food Science and Food Safety 21 (1):371–415. doi: 10.1111/1541-4337.12875.
  • Song, B., H. Liang, R. Sun, P. Peng, Y. Jiang, and D. She. 2020. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. International Journal of Biological Macromolecules 144:219–30. doi: 10.1016/j.ijbiomac.2019.12.082.
  • Song, J., T. Pan, J. Wu, and F. Ren. 2016. The improvement effect and mechanism of citrus fiber on the water-binding ability of low-fat frankfurters. Journal of Food Science and Technology 53 (12):4197–204. doi: 10.1007/s13197-016-2407-5.
  • Song, Y., W. Su, and Y. C. Mu. 2018. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. International Journal of Food Properties 21 (1):1219–32. doi: 10.1080/10942912.2018.1479715.
  • Sood, A., and C. Saini. 2022. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids 123:107135. doi: 10.1016/j.foodhyd.2021.107135.
  • Sorour, M. A., S. Hussein, M. A. Hassan, and A. M. El Sayed. 2022. Impact of solid state fermentation on chemical composition, functional properties, and antioxidant activity of wheat bran. Journal of Sohag Agriscience 7 (1):38–47. doi: 10.21608/jsasj.2022.245701.
  • Soukoulis, C., I. D. Fisk, and T. Bohn. 2014. Ice cream as a vehicle for incorporating health‐promoting ingredients: Conceptualization and overview of quality and storage stability. Comprehensive Reviews in Food Science and Food Safety 13 (4):627–55. doi: 10.1111/1541-4337.12083.
  • Soukoulis, C., D. Lebesi, and C. Tzia. 2009. Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry 115 (2):665–71. doi: 10.1016/j.foodchem.2008.12.070.
  • Sowbhagya, H., P. F. Suma, S. Mahadevamma, and R. Tharanathan. 2007. Spent residue from cumin–A potential source of dietary fiber. Food Chemistry 104 (3):1220–5. doi: 10.1016/j.foodchem.2007.01.066.
  • Speroni, C. S., A. B. B. Bender, J. Stiebe, C. A. Ballus, P. F. Ávila, R. Goldbeck, F. D. P. Morisso, L. P. da Silva, and T. Emanuelli. 2020. Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT 130:109526. doi: 10.1016/j.lwt.2020.109526.
  • Staffolo, M., N. Bertola, M. Martino, and A. Bevilacqua. 2004. Influence of dietary fiber addition on sensory and rheological properties of yogurt. International Dairy Journal 14 (3):263–8. doi: 10.1016/j.idairyj.2003.08.004.
  • Su, D., X. Zhu, Y. Wang, D. Li, and L. Wang. 2019. Effects of high-pressure homogenization on physical and thermal properties of citrus fiber. LWT 116:108573. doi: 10.1016/j.lwt.2019.108573.
  • Sudha, M., V. Baskaran, and K. Leelavathi. 2007. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry 104 (2):686–92. doi: 10.1016/j.foodchem.2006.12.016.
  • Sun, C., X. Wu, X. Chen, X. Li, Z. Zheng, and S. Jiang. 2020. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chemistry 316:126243. doi: 10.1016/j.foodchem.2020.126243.
  • Sun, J., R. Zhou, H. Qian, Y. Li, H. Zhang, X. Qi, and L. Wang. 2022. Investigation the influences of water-extractable and water-unextractable arabinoxylan on the quality of whole wheat you-tiao and its mechanism. Food Chemistry 386:132809. doi: 10.1016/j.foodchem.2022.132809.
  • Suzuki, T., Y. Ohsugi, Y. Yoshie, T. Shirai, and T. Hirano. 1996. Dietary fiber content, water-holding capacity and binding capacity of seaweeds. Fisheries Science 62 (3):454–61. doi: 10.2331/fishsci.62.454.
  • Talik, P., and U. Hubicka. 2018. The DSC approach to study non-freezing water contents of hydrated hydroxypropylcellulose (HPC). Journal of Thermal Analysis and Calorimetry 132 (1):445–51. doi: 10.1007/s10973-017-6889-9.
  • Talukder, S. 2015. Effect of dietary fiber on properties and acceptance of meat products: A review. Critical Reviews in Food Science and Nutrition 55 (7):1005–11. doi: 10.1080/10408398.2012.682230.
  • Tanaka, M., T. Hayashi, and S. Morita. 2013. The roles of water molecules at the biointerface of medical polymers. Polymer Journal 45 (7):701–10. doi: 10.1038/pj.2012.229.
  • Tanaka, M., K. Sato, E. Kitakami, S. Kobayashi, T. Hoshiba, and K. Fukushima. 2015. Design of biocompatible and biodegradable polymers based on intermediate water concept. Polymer Journal 47 (2):114–21. doi: 10.1038/pj.2014.129.
  • Tejada-Ortigoza, V., L. E. Garcia-Amezquita, S. O. Serna-Saldívar, and J. Welti-Chanes. 2016. Advances in the functional characterization and extraction processes of dietary fiber. Food Engineering Reviews 8 (3):251–71. doi: 10.1007/s12393-015-9134-y.
  • Tejado, A., and T. G. van de Ven. 2010. Why does paper get stronger as it dries? Materials Today 13 (9):42–9. doi: 10.1016/S1369-7021(10)70164-4.
  • Tekgül, Y., and T. Baysal. 2018. Comparative evaluation of quality properties and volatile profiles of lemon peels subjected to different drying techniques. Journal of Food Process Engineering 41 (8):e12902. doi: 10.1111/jfpe.12902.
  • Trout, G. R. 1988. Techniques for measuring water-binding capacity in muscle foods—A review of methodology. Meat Science 23 (4):235–52. doi: 10.1016/0309-1740(88)90009-5.
  • Tsami, E., Vagenas, G., and Marinos K. D. 1992. Moisture sorption isotherms of pectins. Journal of Food Processing and Preservation 16 (3):151–61. doi: 10.1111/j.1745-4549.1992.tb00197.x.
  • Tseng, A., and Y. Zhao. 2013. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chemistry 138 (1):356–65. doi: 10.1016/j.foodchem.2012.09.148.
  • Tudorache, M., J.-L. McDonald, and N. Bordenave. 2020. Gallic acid reduces the viscosity and water binding capacity of soluble dietary fibers. Food & Function 11 (7):5866–74. doi: 10.1039/D0FO01200A.
  • Turnbull, C. M., A. L. Baxter, and S. K. Johnson. 2005. Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract. International Journal of Food Sciences and Nutrition 56 (2):87–94. doi: 10.1080/09637480500081080.
  • Ulbrich, M., and E. Flöter. 2014. Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocolloids 41:281–9. doi: 10.1016/j.foodhyd.2014.04.020.
  • Ullah, I., T. Yin, S. Xiong, J. Zhang, Z-u Din, and M. Zhang. 2017. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT-Food Science and Technology 82:15–22. doi: 10.1016/j.lwt.2017.04.014.
  • US Food and Drug Administration. 2017. Labeling & nutrition - Questions and answers for industry on dietary fiber. Retrieved from https://www.fda.gov/food/ingredientspackaginglabeling/labelingnutrition/ucm528582.htm.
  • Utpott, M., R. Ramos de Araujo, C. Galarza Vargas, A. R. Nunes Paiva, B. Tischer, A. de Oliveira Rios, and S. Hickmann Flôres. 2020. Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. Journal of Food Processing and Preservation 44 (5):e14420. doi: 10.1111/jfpp.14420.
  • Vaz, A. A., I. Odriozola-Serrano, G. Oms-Oliu, and O. Martín-Belloso. 2022. Physicochemical properties and bioaccessibility of phenolic compounds of dietary fibre concentrates from vegetable by-products. Foods 11 (17):2578. doi: 10.3390/foods11172578.
  • Velásquez-Cock, J., A. Serpa, L. Vélez, P. Gañán, C. G. Hoyos, C. Castro, L. Duizer, H. Goff, and R. Zuluaga. 2019. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocolloids 87:204–13. doi: 10.1016/j.foodhyd.2018.07.035.
  • Venkatesh, M., and G. Raghavan. 2004. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering 88 (1):1–18. doi: 10.1016/j.biosystemseng.2004.01.007.
  • Wachirasiri, P., S. Julakarangka, and S. Wanlapa. 2009. The effects of banana peel preparations on the properties of banana peel dietary fibre concentrate. Songklanakarin Journal of Science & Technology 31 (6):605–611.
  • Wallingford, L., and T. P. Labuza. 1983. Evaluation of the water binding properties of food hydrocolloids by physical/chemical methods and in a low fat meat emulsion. Journal of Food Science 48 (1):1–5. doi: 10.1111/j.1365-2621.1983.tb14775.x.
  • Wan, L., H. Wang, Y. Zhu, S. Pan, R. Cai, F. Liu, and S. Pan. 2019. Comparative study on gelling properties of low methoxyl pectin prepared by high hydrostatic pressure-assisted enzymatic, atmospheric enzymatic, and alkaline de-esterification. Carbohydrate Polymers 226:115285. doi: 10.1016/j.carbpol.2019.115285.
  • Wan, L., Z. Yang, R. Cai, S. Pan, F. Liu, and S. Pan. 2021. Calcium-induced-gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocolloids 112:106252. doi: 10.1016/j.foodhyd.2020.106252.
  • Wang, B., Y. Li, H. Wang, X. Liu, Y. Zhang, and H. Zhang. 2020a. In-situ analysis of the water distribution and protein structure of dough during ultrasonic-assisted freezing based on miniature Raman spectroscopy. Ultrasonics Sonochemistry 67:105149. doi: 10.1016/j.ultsonch.2020.105149.
  • Wang, C., L. Li, X. Sun, W. Qin, D. Wu, B. Hu, D. Raheem, W. Yang, H. Dong, T. Vasanthan, et al. 2019a. High-speed shearing of soybean flour suspension disintegrates the component cell layers and modifies the hydration properties of okara fibers. LWT 116:108505. doi: 10.1016/j.lwt.2019.108505.
  • Wang, C., R. Song, S. Wei, W. Wang, F. Li, X. Tang, and N. Li. 2020b. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. LWT 125:109220. doi: 10.1016/j.lwt.2020.109220.
  • Wang, H., L. Wan, D. Chen, X. Guo, F. Liu, and S. Pan. 2019b. Unexpected gelation behavior of citrus pectin induced by monovalent cations under alkaline conditions. Carbohydrate Polymers 212:51–8. doi: 10.1016/j.carbpol.2019.02.012.
  • Wang, J., T.-Y. Bai, D. Wang, X.-M. Fang, L.-Y. Xue, Z.-A. Zheng, Z.-J. Gao, and H.-W. Xiao. 2019c. Pulsed vacuum drying of Chinese ginger (Zingiber officinale Roscoe) slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure. Drying Technology 37 (3):301–11. doi: 10.1080/07373937.2017.1423325.
  • Wang, K., M. Li, Y. Wang, Z. Liu, and Y. Ni. 2021a. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocolloids 110:106162. doi: 10.1016/j.foodhyd.2020.106162.
  • Wang, L., H. Xu, F. Yuan, R. Fan, and Y. Gao. 2015. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chemistry 185:90–8. doi: 10.1016/j.foodchem.2015.03.112.
  • Wang, L., F. Ye, S. Li, F. Wei, J. Chen, and G. Zhao. 2017. Wheat flour enriched with oat β-glucan: A study of hydration, rheological and fermentation properties of dough. Journal of Cereal Science 75:143–50. doi: 10.1016/j.jcs.2017.03.004.
  • Wang, N., S. Huang, Y. Zhang, F. Zhang, and J. Zheng. 2020c. Effect of supplementation by bamboo shoot insoluble dietary fiber on physicochemical and structural properties of rice starch. LWT 129:109509. doi: 10.1016/j.lwt.2020.109509.
  • Wang, S., B.-J. Gu, and G. M. Ganjyal. 2019. Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. LWT 110:223–30. doi: 10.1016/j.lwt.2019.03.094.
  • Wang, T., X. Sun, Z. Zhou, and G. Chen. 2012. Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International 48 (2):742–7. doi: 10.1016/j.foodres.2012.06.015.
  • Wang, Y.-R., Q. Yang, Y.-J. Li-Sha, and H.-Q. Chen. 2021b. Structural, gelation properties and microstructure of rice glutelin/sugar beet pectin composite gels: Effects of ionic strengths. Food Chemistry 346:128956. doi: 10.1016/j.foodchem.2020.128956.
  • Wehr, J. B., N. Menzies, and F. Blamey. 2004. Alkali hydroxide-induced gelation of pectin. Food Hydrocolloids 18 (3):375–8. doi: 10.1016/S0268-005X(03)00124-3.
  • Wei, C., Y. Ge, D. Liu, S. Zhao, M. Wei, J. Jiliu, X. Hu, Z. Quan, Y. Wu, Y. Su, et al. 2021. Effects of high-temperature, high-pressure, and ultrasonic treatment on the physicochemical properties and structure of soluble dietary fibers of millet bran. Frontiers in Nutrition 8:820715. doi: 10.3389/fnut.2021.820715.
  • Wei, E., R. Yang, H. Zhao, P. Wang, S. Zhao, W. Zhai, Y. Zhang, and H. Zhou. 2019. Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. International Journal of Biological Macromolecules 123:280–90. doi: 10.1016/j.ijbiomac.2018.11.074.
  • Wolfe, J., G. Bryant, and K. L. Koster. 2002. What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23 (3):157–66.
  • Wu, S. C., P. J. Chien, M. H. Lee, and C. F. Chau. 2007. Particle size reduction effectively enhances the intestinal health‐promotion ability of an orange insoluble fiber in hamsters. Journal of Food Science 72 (8):S618–S621. doi: 10.1111/j.1750-3841.2007.00489.x.
  • Wu, W., J. Hu, H. Gao, H. Chen, X. Fang, H. Mu, Y. Han, and R. Liu. 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry 332:127372. doi: 10.1016/j.foodchem.2020.127372.
  • Xavier, J. R., and K. V. Ramana. 2022. Development of slow melting dietary fiber‐enriched ice cream formulation using bacterial cellulose and inulin. Journal of Food Processing and Preservation 46 (5):e15394. doi: 10.1111/jfpp.15394.
  • Xiao, Y., S. Kang, Y. Liu, X. Guo, M. Li, and H. Xu. 2021. Effect and mechanism of calcium ions on the gelation properties of cellulose nanocrystals-whey protein isolate composite gels. Food Hydrocolloids 111:106401. doi: 10.1016/j.foodhyd.2020.106401.
  • Yang, F., J. Yang, Z. Ruan, and Z. Wang. 2021a. Fermentation of dietary fibers modified by an enzymatic‐ultrasonic treatment and evaluation of their impact on gut microbiota in mice. Journal of Food Processing and Preservation 45 (4):e15337. doi: 10.1111/jfpp.15337.
  • Yang, H.-S., G.-D. Kim, S.-G. Choi, and S.-T. Joo. 2010. Physical and sensory properties of low fat sausage amended with hydrated oatmeal and various meats. Korean Journal for Food Science of Animal Resources 30 (3):365–72. doi: 10.5851/kosfa.2010.30.3.365.
  • Yang, Q., Y.-R. Wang, Y.-J. Li-Sha, and H.-Q. Chen. 2021b. Physicochemical, structural and gelation properties of arachin-basil seed gum composite gels: Effects of salt types and concentrations. Food Hydrocolloids 113:106545. doi: 10.1016/j.foodhyd.2020.106545.
  • Yegin, S., A. Kopec, D. D. Kitts, and J. Zawistowski. 2020. Dietary fiber: A functional food ingredient with physiological benefits. In Dietary sugar, salt and fat in human health, ed. H. G. P. A. D. Bagchi, 531–55. Academic Press (Elsevier), 125 London Wall, London EC2Y 5AS, United Kingdom.
  • Yoshida, B. Y., and S. H. Prudencio. 2020. Alkaline hydrogen peroxide improves physical, chemical, and techno-functional properties of okara. Food Chemistry 323:126776. doi: 10.1016/j.foodchem.2020.126776.
  • Yu, G., J. Bei, J. Zhao, Q. Li, and C. Cheng. 2018. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chemistry 257:333–40. doi: 10.1016/j.foodchem.2018.03.037.
  • Zadeike, D., R. Vaitkeviciene, R. Degutyte, J. Bendoraitiene, Z. Rukuiziene, D. Cernauskas, M. Svazas, and G. Juodeikiene. 2022. A comparative study on the structural and functional properties of water‐soluble and alkali‐soluble dietary fibres from rice bran after hot‐water, ultrasound, hydrolysis by cellulase, and combined pre‐treatments. International Journal of Food Science & Technology 57 (2):1137–49. doi: 10.1111/ijfs.15480.
  • Zhang, D., B. Jiang, Y. Luo, X. Fu, H. Kong, Y. Shan, and S. Ding. 2022. Effects of ultrasonic and ozone pretreatment on the structural and functional properties of soluble dietary fiber from lemon peel. Journal of Food Process Engineering 45 (1):e13916. doi: 10.1111/jfpe.13916.
  • Zhang, M., X. Bai, and Z. Zhang. 2011. Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science 54 (1):98–103. doi: 10.1016/j.jcs.2011.04.001.
  • Zhang, Y., J. Liao, and J. Qi. 2020. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT 128:109397. doi: 10.1016/j.lwt.2020.109397.
  • Zhao, W., Y. Zhu, J. Zhang, T. Xu, Q. Li, H. Guo, J. Zhang, C. Lin, and L. Zhang. 2018. A comprehensive study and comparison of four types of zwitterionic hydrogels. Journal of Materials Science 53 (19):13813–25. doi: 10.1007/s10853-018-2535-6.
  • Zheng, Y., and Y. Li. 2018. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chemistry 257:135–42. doi: 10.1016/j.foodchem.2018.03.012.
  • Zheng, Y., Y. Li, and H. Tian. 2020. Effects of carboxymethylation, acidic treatment, hydroxypropylation and heating combined with enzymatic hydrolysis on structural and physicochemical properties of palm kernel expeller dietary fiber. LWT 133:109909. doi: 10.1016/j.lwt.2020.109909.
  • Zhou, Y., S. Dhital, C. Zhao, F. Ye, J. Chen, and G. Zhao. 2021. Dietary fiber-gluten protein interaction in wheat flour dough: Analysis, consequences and proposed mechanisms. Food Hydrocolloids 111:106203. doi: 10.1016/j.foodhyd.2020.106203.
  • Zhu, F. 2018. Chemical and biological properties of feijoa (Acca sellowiana). Trends in Food Science & Technology 81:121–31. doi: 10.1016/j.tifs.2018.09.008.
  • Zhu, K., S. Huang, W. Peng, H. Qian, and H. Zhou. 2010. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International 43 (4):943–8. doi: 10.1016/j.foodres.2010.01.005.
  • Zhu, Y., C. He, H. Fan, Z. Lu, F. Lu, and H. Zhao. 2019. Modification of foxtail millet (Setaria italica) bran dietary fiber by xylanase-catalyzed hydrolysis improves its cholesterol-binding capacity. LWT 101:463–8. doi: 10.1016/j.lwt.2018.11.052.
  • Zimeri, J., and J. Kokini. 2002. The effect of moisture content on the crystallinity and glass transition temperature of inulin. Carbohydrate Polymers 48 (3):299–304. doi: 10.1016/S0144-8617(01)00260-0.
  • Zimmer, T. B. R., C. R. B. Mendonça, and R. C. Zambiazi. 2022. Methods of protection and application of carotenoids in foods–A bibliographic review. Food Bioscience 48:101829. doi: 10.1016/j.fbio.2022.101829.
  • Zou, X., X. Xu, Z. Chao, X. Jiang, L. Zheng, and B. Jiang. 2022. Properties of plant-derived soluble dietary fibers for fiber-enriched foods: A comparative evaluation. International Journal of Biological Macromolecules 223 (Pt A):1196–207. doi: 10.1016/j.ijbiomac.2022.11.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.