588
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Interrelationship of lipid aldehydes (MDA, 4-HNE, and 4-ONE) mediated protein oxidation in muscle foods

, , &

Reference

  • Alayash, A. I., R. P. Patel, and R. E. Cashon. 2001. Redox reactions of hemoglobin and myoglobin: Biological and toxicological implications. Antioxidants & Redox Signaling 3 (2):313–27. doi: 10.1089/152308601300185250.
  • Al-Dalali, S., C. Li, and B. Xu. 2021. Effect of frozen storage on marinated raw beef meat’s lipid oxidation, protein oxidation, and flavor profile. Food Chemistry 376:131881. doi: 10.1016/j.foodchem.2021.131881.
  • Alderton, A. L., C. Faustman, D. C. Liebler, and D. W. Hill. 2003. Induction of redox instability of bovine myoglobin by adduction with 4-hydroxy-2-nonenal. Biochemistry 42 (15):4398–405. doi: 10.1021/bi0271695.
  • Amarnath, V., W. M. Valentine, T. J. Montine, W. H. Patterson, K. Amarnath, C. N. Bassett, and D. G. Graham. 1998. Reactions of 4-hydroxy-2 (E)-nonenal and related aldehydes with proteins studied by carbon-13 nuclear magnetic resonance spectroscopy. Chemical Research in Toxicology 11 (4):317–28. doi: 10.1021/tx970176n.
  • Annibal, A., K. Schubert, U. Wagner, R. Hoffmann, J. Schiller, and M. Fedorova. 2014. New covalent modifications of phosphatidylethanolamine by alkanals: Mass spectrometry based structural characterization and biological effects. Journal of Mass Spectrometry : JMS 49 (7):557–69. doi: 10.1002/jms.3373.
  • Aslam, S., R. Shukat, M. I. Khan, and M. Shahid. 2020. Effect of dietary supplementation of bioactive peptides on antioxidant potential of broiler breast meat and physicochemical characteristics of nuggets. Food Science of Animal Resources 40 (1):55–73. doi: 10.5851/kosfa.2019.e82.
  • Bhat, Z. F., J. D. Morton, A. E. D. A. Bekhit, S. Kumar, and H. F. Bhat. 2021. Thermal processing implications on the digestibility of meat, fish, and seafood proteins. Comprehensive Reviews in Food Science and Food Safety 20 (5):4511–48. doi: 10.1111/1541-4337.12802.
  • Carlsen, C. U., J. K. Møller, and L. H. Skibsted. 2005. Heme-iron in lipid oxidation. Coordination Chemistry Reviews 249 (3–4):485–98. doi: 10.1016/j.ccr.2004.08.028.
  • Chaijan, M., and W. Panpipat. 2017. Mechanism of oxidation in foods of animal origin. In Natural antioxidants, 21–58. Apple Academic Press, New York, USA.
  • Chen, N., M. Zhao, and W. Sun. 2013. Effect of protein oxidation on the in vitro digestibility of soy protein isolate. Food Chemistry 141 (3):3224–9. 10.1016/j.foodchem.2013.05.113. 23871081
  • Custodio-Mendoza, J. A., I. M. Valente, R. M. Ramos, R. A. Lorenzo, A. M. Carro, and J. A. Rodrigues. 2019. Analysis of free malondialdehyde in edible oils using gas-diffusion microextraction. Journal of Food Composition and Analysis 82:103254. doi: 10.1016/j.jfca.2019.103254.
  • Dalle‐Donne, I., G. Aldini, M. Carini, R. Colombo, R. Rossi, and A. Milzani. 2006. Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine 10 (2):389–406. doi: 10.1111/j.1582-4934.2006.tb00407.x.
  • Dodson, M., R. Castro-Portuguez, and D. D. Zhang. 2019. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biology 23:101107. doi: 10.1016/j.redox.2019.101107.
  • Domínguez, R., M. Pateiro, M. Gagaoua, F. J. Barba, W. Zhang, and J. M. Lorenzo. 2019. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8 (10):429. doi: 10.3390/antiox8100429.
  • Doorn, J. A, and D. R. Petersen. 2002. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chemical Research in Toxicology 15 (11):1445–50. doi: 10.1021/tx025590o. 12437335
  • Douny, C., A. Tihon, P. Bayonnet, F. Brose, G. Degand, E. Rozet, J. Milet, L. Ribonnet, L. Lambin, Y. Larondelle, et al. 2015. Validation of the analytical procedure for the determination of malondialdehyde and three other aldehydes in vegetable oil using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and application to linseed oil. Food Analytical Methods 8 (6):1425–35. doi: 10.1007/s12161-014-0028-z.
  • Erickson, M. C. 2002. Lipid oxidation of muscle foods. Food Lipids, 384–431.
  • Estévez, M. 2015. Oxidative damage to poultry: from farm to fork. Poultry Science 94 (6):1368–78. doi: 10.3382/ps/pev094. 25825786
  • Estévez, M., and R. Cava. 2004. Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Science 68 (4):551–8. doi: 10.1016/j.meatsci.2004.05.007.
  • Estévez, M., and C. Luna. 2017. Dietary protein oxidation: A silent threat to human health? Critical Reviews in Food Science and Nutrition 57 (17):3781–93. doi: 10.1080/10408398.2016.1165182.
  • Estévez, M., and Y. Xiong. 2019. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: Recent scientific evidences and hypotheses. Journal of Food Science 84 (3):387–96. doi: 10.1111/1750-3841.14460.
  • Faustman, C., Q. Sun, R. Mancini, and S. P. Suman. 2010. Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Science 86 (1):86–94. doi: 10.1016/j.meatsci.2010.04.025. 20554121
  • Faustman, C., D. C. Liebler, T. D. McClure, and Q. Sun. 1999. α, β-Unsaturated aldehydes accelerate oxymyoglobin oxidation. Journal of Agricultural and Food Chemistry 47 (8):3140–4. doi: 10.1021/jf990016c.
  • Foti, M. C., and R. Amorati. 2016. ROS and phenolic compounds. In Reactive oxygen species in biology and human health, 49–65.
  • Fritz, K. S., and D. R. Petersen. 2011. Exploring the biology of lipid peroxidation-derived protein carbonylation. Chemical Research in Toxicology 24 (9):1411–9. doi: 10.1021/tx200169n.
  • Genova, M. L., and G. Lenaz. 2014. Functional role of mitochondrial respiratory supercomplexes. Biochimica et Biophysica Acta 1837 (4):427–43. doi: 10.1016/j.bbabio.2013.11.002.
  • Globisch, M., D. Kaden, and T. Henle. 2015. 4-Hydroxy-2-nonenal (4-HNE) and its lipation product 2-pentylpyrrole lysine (2-PPL) in peanuts. Journal of Agricultural and Food Chemistry 63 (21):5273–81. doi: 10.1021/acs.jafc.5b01502.
  • Gonzalez, S. A., R. B. Pegg, R. K. Singh, and A. Mohan. 2021. Assessing the impact of 4-oxo-2-nonenal on lactate dehydrogenase activity and myoglobin redox stability. Food Bioscience 43:101306. doi: 10.1016/j.fbio.2021.101306.
  • Guiotto, A., A. Calderan, P. Ruzza, and G. Borin. 2005. Carnosine and carnosine-related antioxidants: A review. Current Medicinal Chemistry 12 (20):2293–315. doi: 10.2174/0929867054864796.
  • Gürbüz, G., and M. Heinonen. 2015. LC–MS investigations on interactions between isolated β-lactoglobulin peptides and lipid oxidation product malondialdehyde. Food Chemistry 175:300–5. doi: 10.1016/j.foodchem.2014.11.154.
  • Gu, C., Y. Xing, L. Jiang, M. Chen, M. Xu, Y. Yin, C. Li, Z. Yang, L. Yu, and H. Ma. 2013. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance. PloS One 8 (9):e74050. doi: 10.1371/journal.pone.0074050.
  • Girón-Calle, J., M. Alaiz, F. Millán, V. Ruiz-Gutierrez, and E. Vioque. 2003. Bound malondialdehyde in foods: Bioavailability of N, N ‘-Di-(4-methyl-1, 4-dihydropyridine-3, 5-dicarbaldehyde) lysine. Journal of Agricultural and Food Chemistry 51 (16):4799–803. doi: 10.1021/jf0343027.
  • Hamid, A. A., O. O. Aiyelaagbe, L. A. Usman, O. M. Ameen, and A. Lawal. 2010. Antioxidants: Its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry 4 (8):142–51.
  • Hematyar, N., T. Rustad, S. Sampels, and T. Kastrup Dalsgaard. 2019. Relationship between lipid and protein oxidation in fish. Aquaculture Research 50 (5):1393–403. doi: 10.1111/are.14012.
  • Hu, H., X. Bai, A. Wen, A. A. Shah, S. Dai, Q. Ren, & L. Wang. (2016). Assessment of interactions between glutamine and glucose on meat quality, AMPK, and glutamine concentrations in pectoralis major meat of broilers under acute heat stress. Journal of Applied Poultry Research 25 (3):370–378. doi: 10.3382/japr/pfw021
  • Hu, L., Ren, S., Shen, Q., Chen, J., Ye, X., & Ling, J. (2017). Proteomic study of the effect ofdifferent cooking methods on protein oxidation in fish fillets. RSC Advances, 7(44), 27496-27505. doi: 10.1039/C7RA03408C
  • Huang, D., B. Ou, and R. L. Prior. 2005. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry 53 (6):1841–56. doi: 10.1021/jf030723c.
  • Ighodaro, O. M., and O. A. Akinloye. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54 (4):287–93. doi: 10.1016/j.ajme.2017.09.001.
  • Isom, A. L., S. Barnes, L. Wilson, M. Kirk, L. Coward, and V. Darley-Usmar. 2004. Modification of Cytochrome c by 4-hydroxy-2-nonenal: Evidence for histidine, lysine, and arginine-aldehyde adducts. Journal of the American Society for Mass Spectrometry 15 (8):1136–47. doi: 10.1016/j.jasms.2004.03.013.
  • Jiang, Q., Z. Zhang, F. Yang, P. Gao, D. Yu, Y. Xu, and W. Xia. 2022. Impact of protein oxidation induced by different cooking methods in channel fish (Ietalurus punetaus) on structure and in vitro digestion of protein. International Journal of Food Science & Technology 57 (9):6016–27. doi: 10.1111/ijfs.15948.
  • Kamga, C., S. Krishnamurthy, and S. Shiva. 2012. Myoglobin and mitochondria: A relationship bound by oxygen and nitric oxide. Nitric Oxide : Biology and Chemistry 26 (4):251–8. doi: 10.1016/j.niox.2012.03.005.
  • Kehm, R., T. Baldensperger, J. Raupbach, and A. Höhn. 2021. Protein oxidation-formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biology 42:101901. doi: 10.1016/j.redox.2021.101901.
  • Klouche, K., M. Morena, B. Canaud, B. Descomps, J. J. Beraud, and J. P. Cristol. 2004. Mechanism of in vitro heme‐induced LDL oxidation: Effects of antioxidants. European Journal of Clinical Investigation 34 (9):619–25. doi: 10.1111/j.1365-2362.2004.01395.x.
  • Knothe, G., and R. O. Dunn. 2003. Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. Journal of the American Oil Chemists’ Society 80 (10):1021–6. doi: 10.1007/s11746-003-0814-x.
  • Larsson, K., H. Harrysson, R. Havenaar, M. Alminger, and I. Undeland. 2016. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion. Food & Function 7 (2):1176–87. doi: 10.1039/c5fo01401h.
  • Lee, S. H, and I. A. Blair. 2000. Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chemical Research in Toxicology 13 (8):698–702. doi: 10.1021/tx000101a. 10956056
  • Lee, C.-H., J. D. Reed, and M. P. Richards. 2006. Ability of various polyphenolic classes from cranberry to inhibit lipid oxidation in mechanically separated turkey and cooked ground pork. Journal of Muscle Foods 17 (3):248–66. 10.1111/j.1745-4573.2006.00048.x.
  • Lee, S. K., N. Tatiyaborworntham, E. W. Grunwald, and M. P. Richards. 2015. Myoglobin and haemoglobin-mediated lipid oxidation in washed muscle: Observations on crosslinking, ferryl formation, porphyrin degradation, and haemin loss rate. Food Chemistry 167:258–63. doi: 10.1016/j.foodchem.2014.06.098.
  • Li, F., X. J. Wu, and W. Wu. 2020. Effects of malondialdehyde‐induced protein oxidation on the structural characteristics of rice protein. International Journal of Food Science & Technology 55 (2):760–8. doi: 10.1111/ijfs.14379.
  • Li, F., X. Wu, and W. Wu. 2021. Effects of oxidative modification by malondialdehyde on the in vitro digestion properties of rice bran protein. Journal of Cereal Science 97:103158. doi: 10.1016/j.jcs.2020.103158.
  • Li, Y. W., B. Li, J. He, and P. Qian. 2011. Structure–activity relationship study of antioxidative peptides by QSAR modeling: The amino acid next to C‐terminus affects the activity. Journal of Peptide Science : An Official Publication of the European Peptide Society 17 (6):454–62. doi: 10.1002/psc.1345.
  • Liguori, I., G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore, D. Bonaduce, et al. 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging 13:757–72. doi: 10.2147/CIA.S158513.
  • Lin, D., H-g. Lee, Q. Liu, G. Perry, M. A. Smith, and L. M. Sayre. 2005. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chemical Research in Toxicology 18 (8):1219–31. doi: 10.1021/tx050080q. 16097795
  • Liu, W., N. A. Porter, C. Schneider, A. R. Brash, and H. Yin. 2011. Formation of 4-hydroxynonenal from cardiolipin oxidation: Intramolecular peroxyl radical addition and decomposition. Free Radical Biology & Medicine 50 (1):166–78. doi: 10.1016/j.freeradbiomed.2010.10.709.
  • Long, E. K., D. M. Olson, and D. A. Bernlohr. 2013. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radical Biology & Medicine 63:390–8. doi: 10.1016/j.freeradbiomed.2013.05.030.
  • Lorenzo, J. M., P. E. S. Munekata, J. C. Baldin, D. Franco, R. Domínguez, M. A. Trindade, and M. Tindade. 2017. The use of natural antioxidants to replace chemical antioxidants in foods. Strategies for Obtaining Healthier Foods, ed. Lorenzo, JM, Carballo, FJ, Eds, 205–28. Nova Science Publishers, Inc. New York, USA.
  • Lv, L., H. Lin, Z. Li, F. Yuan, Q. Gao, and J. Ma. 2016. Effect of 4-hydroxy-2-nonenal treatment on the IgE binding capacity and structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chemistry 212:313–22. doi: 10.1016/j.foodchem.2016.05.152.
  • Lv, Y., L. Chen, H. Wu, X. Xu, G. Zhou, B. Zhu, and X. Feng. 2019. (-)-Epigallocatechin-3-gallate-mediated formation of myofibrillar protein emulsion gels under malondialdehyde-induced oxidative stress. Food Chemistry 285:139–46. doi: 10.1016/j.foodchem.2019.01.147.
  • Lynch, M. P, and C. Faustman. 2000. Effect of aldehyde lipid oxidation products on myoglobin. Journal of Agricultural and Food Chemistry 48 (3):600–4. doi: 10.1021/jf990732e. 10725121
  • Klein, L., D. Phillips, F. Kong, B. Bowker, and A. Mohan. 2022. 4-oxo-2-nonenal (4-ONE)-induced degradation of bovine skeletal muscle proteins. Journal of Agricultural and Food Chemistry 70 (39):12641–50. doi: 10.1021/acs.jafc.2c05550.
  • Madian, A. G., F. E. Regnier, and A. Zeng. 2017. Analysis of protein carbonylation. In Protein carbonylation: Principles, analysis, and biological implications, 24–47.
  • Maheswarappa, N. B., K. U. Rani, Y. P. Kumar, V. V. Kulkarni, and S. Rapole. 2016. Proteomic based approach for characterizing 4-hydroxy-2-nonenal induced oxidation of buffalo (Bubalus bubalis) and goat (Capra hircus) meat myoglobins. Proteome Science 14 (1):18. doi: 10.1186/s12953-016-0108-7.
  • Mali, V. R., and S. S. Palaniyandi. 2014. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radical Research 48 (3):251–63. doi: 10.3109/10715762.2013.864761.
  • Martin, H. J., and E. Maser. 2009. Role of human aldo–keto-reductase AKR1B10 in the protection against toxic aldehydes. Chemico-Biological Interactions 178 (1-3):145–50. doi: 10.1016/j.cbi.2008.10.021.
  • Mohan, A., D. Kafle, R. K. Singh, and Y.-C. Hung. 2022. Effects of 4-Oxo-2-nonenal on biochemical properties of bovine heart mitochondria. Food Science & Nutrition 10 (6):1830–40. doi: 10.1002/fsn3.2799. 35702292
  • Mohan, A., M. C. Hunt, S. Muthukrishnan, T. J. Barstow, and T. A. Houser. 2010. Myoglobin redox form stabilization by compartmentalized lactate and malate dehydrogenases. Journal of Agricultural and Food Chemistry 58 (11):7021–9. doi: 10.1021/jf100714g. 20465309
  • Mohan, A., A. Roy, K. Duggirala, and L. Klein. 2022. Oxidative reactions of 4-oxo-2-Nonenal in meat and meat products. LWT 165:113747. doi: 10.1016/j.lwt.2022.113747.
  • Moumtaz, S., B. C. Percival, D. Parmar, K. L. Grootveld, P. Jansson, and M. Grootveld. 2019. Toxic aldehyde generation in and food uptake from culinary oils during frying practices: Peroxidative resistance of a monounsaturate-rich algae oil. Scientific Reports 9 (1):4125. doi: 10.1038/s41598-019-39767-1.
  • Nair, M. N., S. P. Suman, S. Li, P. Joseph, and C. M. Beach. 2014. Lipid oxidation-induced oxidation in emu and ostrich myoglobins. Meat Science 96 (2 Pt A):984–93. doi: 10.1016/j.meatsci.2013.08.029. 24231676
  • Naveena, B. M., C. Faustman, N. Tatiyaborworntham, S. Yin, R. Ramanathan, and R. A. Mancini. 2010. Detection of 4-hydroxy-2-nonenal adducts of turkey and chicken myoglobins using mass spectrometry. Food Chemistry 122 (3):836–40. doi: 10.1016/j.foodchem.2010.02.062.
  • Nieva-Echevarría, B., E. Goicoechea, M. J. Manzanos, and M. D. Guillén. 2018. Effects of different cooking methods on the lipids and volatile components of farmed and wild European sea bass (Dicentrarchus labrax). Food Research International (Ottawa, Ont.) 103:48–58. doi: 10.1016/j.foodres.2017.10.029. 29389639
  • Okazaki, Y., Y. Wang, H. Tanaka, M. Mizuno, K. Nakamura, H. Kajiyama, H. Kano, K. Uchida, F. Kikkawa, M. Hori, et al. 2014. Direct exposure of non-equilibrium atmospheric pressure plasma confers simultaneous oxidative and ultraviolet modifications in biomolecules. Journal of Clinical Biochemistry and Nutrition 55 (3):207–15. doi: 10.3164/jcbn.14-40.
  • Papac-Milicevic, N., C. L. Busch, and C. J. Binder. 2016. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Advances in Immunology 131:1–59.
  • Papuc, C., V. Nicorescu, D. Crivineanu, &. C, and G. Goran. 2009. Phytochemical constituents and free radical scavenging activity of extracts from sea buckthorn fruits (Hippophae rhamnoides. Acta Hortic. (806):187–92. doi: 10.17660/ActaHortic.2009.806.22.
  • Papuc, C., G. V. Goran, C. N. Predescu, and V. Nicorescu. 2017. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Comprehensive Reviews in Food Science and Food Safety 16 (1):96–123. doi: 10.1111/1541-4337.12241.
  • Peña-Ramos, E. A, and Y. L. Xiong. 2003. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Science 64 (3):259–63. doi: 10.1016/S0309-1740(02)00187-0. 22063011
  • Pizzimenti, S., E. Ciamporcero, M. Daga, P. Pettazzoni, A. Arcaro, G. Cetrangolo, R. Minelli, C. Dianzani, A. Lepore, F. Gentile, et al. 2013. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Frontiers in Physiology 4:242. doi: 10.3389/fphys.2013.00242.
  • Poon, H. F., V. Calabrese, G. Scapagnini, and D. A. Butterfield. 2004. Free radicals: Key to brain aging and heme oxygenase as a cellular response to oxidative stress. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 59 (5):478–93. doi: 10.1093/gerona/59.5.m478.
  • Purohit, A., R. K. Singh, W. L. Kerr, and A. Mohan. 2014. Influence of redox reactive iron, lactate, and succinate on the myoglobin redox stability and mitochondrial respiration. Journal of Agricultural and Food Chemistry 62 (52):12570–5. doi: 10.1021/jf5037596. 25469461
  • Ramanathan, R., R. A. Mancini, S. P. Suman, and C. M. Beach. 2014. Covalent binding of 4-hydroxy-2-nonenal to lactate dehydrogenase decreases NADH formation and metmyoglobin reducing activity. Journal of Agricultural and Food Chemistry 62 (9):2112–7. doi: 10.1021/jf404900y. 24552270
  • Ramanathan, R., R. A. Mancini, S. P. Suman, and M. E. Cantino. 2012. Effects of 4-hydroxy-2-nonenal on beef heart mitochondrial ultrastructure, oxygen consumption, and metmyoglobin reduction. Meat Science 90 (3):564–71. doi: 10.1016/j.meatsci.2011.09.017.
  • Refsgaard, H. H., L. Tsai, and E. R. Stadtman. 2000. Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proceedings of the National Academy of Sciences of the United States of America 97 (2):611–6. doi: 10.1073/pnas.97.2.611.
  • Rhee, K. S., and Y. A. Ziprin. 1987. Lipid oxidation in retail beef, pork and chicken muscles as affected by concentrations of heme pigments and nonheme iron and microsomal enzymic lipid peroxidation activity. Journal of Food Biochemistry 11 (1):1–15. doi: 10.1111/j.1745-4514.1987.tb00109.x.
  • Saito, F., S. Iwamoto, and R. Yamauchi. 2011. 4-Oxo-2-nonenal as a pro-oxidant during the autoxidation of methyl linoleate inbulk phase. Food Chemistry 124 (4):1496–9. doi: 10.1016/j.foodchem.2010.08.001.
  • Sapkota, M., and T. A. Wyatt. 2015. Alcohol, aldehydes, adducts and airways. Biomolecules 5 (4):2987–3008. doi: 10.3390/biom5042987.
  • Sawicki, K. T., H. C. Chang, and H. Ardehali. 2015. Role of heme in cardiovascular physiology and disease. Journal of the American Heart Association 4 (1):e001138. doi: 10.1161/JAHA.114.001138.
  • Sayre, L. M., D. Lin, Q. Yuan, X. Zhu, and X. Tang. 2006. Protein adducts generated from products of lipid oxidation: Focus on HNE and ONE. Drug Metabolism Reviews 38 (4):651–75. doi: 10.1080/03602530600959508.
  • Sobral, M. M. C., S. Casal, M. A. Faria, S. C. Cunha, and I. M. Ferreira. 2020. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 141:111401. doi: 10.1016/j.fct.2020.111401.
  • Soladoye, O. P., M. L. Juárez, J. L. Aalhus, P. Shand, and M. Estévez. 2015. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety 14 (2):106–22. doi: 10.1111/1541-4337.12127.
  • Sousa, B. C., A. R. Pitt, and C. M. Spickett. 2017. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radical Biology & Medicine 111:294–308. doi: 10.1016/j.freeradbiomed.2017.02.003.
  • Steppeler, C., J. E. Haugen, R. Rødbotten, and B. Kirkhus. 2016. Formation of malondialdehyde, 4-hydroxynonenal, and 4-hydroxyhexenal during in vitro digestion of cooked beef, pork, chicken, and salmon. Journal of Agricultural and Food Chemistry 64 (2):487–96. doi: 10.1021/acs.jafc.5b04201.
  • Suman, S. P., C. Faustman, S. L. Stamer, and D. C. Liebler. 2007. Proteomics of lipid oxidation‐induced oxidation of porcine and bovine oxymyoglobins. Proteomics 7 (4):628–40. doi: 10.1002/pmic.200600313.
  • Tallineau, C., L. Barrier, B. Fauconneau, A. Guettier, and A. Piriou. 1995. Lack of correlation between TBARS production and PUFA degradation during incubation of membrane erythrocytes in an OH⋅(Fe2+/H2O2) generator system. Biological Trace Element Research 47 (1-3):3–7. doi: 10.1007/BF02790095.
  • Tang, J., C. Faustman, T. A. Hoagland, R. A. Mancini, M. Seyfert, and M. C. Hunt. 2005. Postmortem oxygen consumption by mitochondria and its effects on myoglobin form and stability. Journal of Agricultural and Food Chemistry 53 (4):1223–30. doi: 10.1021/jf048646o.
  • Traverso, N., S. Menini, E. P. Maineri, S. Patriarca, P. Odetti, D. Cottalasso, U. M. Marinari, and M. A. Pronzato. 2004. Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 59 (9):B890–B895. doi: 10.1093/gerona/59.9.b890.
  • Tsikas, D. 2017. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry 524:13–30. doi: 10.1016/j.ab.2016.10.021.
  • Tufarelli, V., V. Laudadio, and E. Casalino. 2016. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. Environmental Science and Pollution Research International 23 (7):6197–204. doi: 10.1007/s11356-015-5852-1.
  • Ullrich, V. 2005. Cytochrome P450 and biological hydroxylation reactions. In: Effert, S., Meyer-Erkelenz, J.D. (eds) Biochemistry. Topics in Current Chemistry, vol 83. Springer, Berlin, Heidelberg. doi: 10.1007/BFb0019663.
  • Van Hecke, T., E. Vossen, L. Y. Hemeryck, J. Vanden Bussche, L. Vanhaecke, and S. De Smet. 2015. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer. Food Chemistry 187:29–36. doi: 10.1016/j.foodchem.2015.04.029. 25976994
  • Veberg, A., G. Vogt, and J. P. Wold. 2006. Fluorescence in aldehyde model systems related to lipid oxidation. LWT - Food Science and Technology 39 (5):562–70. doi: 10.1016/j.lwt.2005.03.009.
  • Viau, M., C. Genot, L. Ribourg, and A. Meynier. 2016. Amounts of the reactive aldehydes, malonaldehyde, 4‐hydroxy‐2‐hexenal, and 4‐hydroxy‐2‐nonenal in fresh and oxidized edible oils do not necessary reflect their peroxide and anisidine values. European Journal of Lipid Science and Technology 118 (3):435–44. doi: 10.1002/ejlt.201500103.
  • Wang, Z., Z. He, X. Gan, and H. Li. 2018. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Science 146:131–9. doi: 10.1016/j.meatsci.2018.08.006.
  • Wang, Z., Z. He, A. M. Emara, X. Gan, and H. Li. 2019. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chemistry 288:405–12. doi: 10.1016/j.foodchem.2019.02.126.
  • Wen, C., J. Zhang, H. Zhang, Y. Duan, and H. Ma. 2020. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology 105:308–22. doi: 10.1016/j.tifs.2020.09.019.
  • Wongwichian, C., S. Klomklao, W. Panpipat, S. Benjakul, and M. Chaijan. 2015. Interrelationship between myoglobin and lipid oxidations in oxeye scad (Selar boops) muscle during iced storage. Food Chemistry 174:279–85. doi: 10.1016/j.foodchem.2014.11.071. 25529681
  • Wu, W., C. Zhang, and Y. Hua. 2009. Structural modification of soy protein by the lipid peroxidation product malondialdehyde. Journal of the Science of Food and Agriculture 89 (8):1416–23. doi: 10.1002/jsfa.3606.
  • Wu, W., C. Zhang, X. Kong, and Y. Hua. 2009. Oxidative modification of soy protein by peroxyl radicals. Food Chemistry 116 (1):295–301. doi: 10.1016/j.foodchem.2009.02.049.
  • Xing, T., F. Gao, R. K. Tume, G. Zhou, and X. Xu. 2019. Stress effects on meat quality: A mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety 18 (2):380–401. doi: 10.1111/1541-4337.12417.
  • Xiong, Y. L., and A. Guo. 2020. Animal and plant protein oxidation: Chemical and functional property significance. Foods 10 (1):40. doi: 10.3390/foods10010040.
  • Xu, G., Y. Liu, M. M. Kansal, and L. M. Sayre. 1999. Rapid cross-linking of proteins by 4-ketoaldehydes and 4-hydroxy-2-alkenals does not arise from the lysine-derived monoalkylpyrroles. Chemical Research in Toxicology 12 (9):862–8. doi: 10.1021/tx990056a.
  • Yancey, E. J., J. P. Grobbel, M. E. Dikeman, J. S. Smith, K. A. Hachmeister, E. C. Chambers, P. Gadgil, G. A. Milliken, and E. A. Dressler. 2006. Effects of total iron, myoglobin, hemoglobin, and lipid oxidation of uncooked muscles on livery flavor development and volatiles of cooked beef steaks. Meat Science 73 (4):680–6. doi: 10.1016/j.meatsci.2006.03.013.
  • Yin, J., W. Zhang, and M. P. Richards. 2017. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate. Food Chemistry 234:230–5. doi: 10.1016/j.foodchem.2017.04.182.
  • Yin, S., C. Faustman, N. Tatiyaborworntham, R. Ramanathan, and Q. Sun. 2013. The effects of HNE on ovine oxymyoglobin redox stability in a microsome model. Meat Science 95 (2):224–8. doi: 10.1016/j.meatsci.2013.04.055.
  • Yin, Y., L. Zhou, J. Cai, F. Feng, L. Xing, and W. Zhang. 2022. Effect of malondialdehyde on the digestibility of beef myofibrillar protein: potential mechanisms from structure to modification site. Foods 11 (15):2176. doi: 10.3390/foods11152176.
  • Yılmaz, B., T. Ö. Şahin, and D. Ağagündüz. 2023. Oxidative changes in ten vegetable oils caused by the deep-frying process of potato. Journal of Food Biochemistry 2023:1–11. doi: 10.1155/2023/6598528.
  • Yonny, M. E., E. M. García, A. López, J. I. Arroquy, and M. A. Nazareno. 2016. Measurement of malondialdehyde as oxidative stress biomarker in goat plasma by HPLC-DAD. Microchemical Journal 129:281–5. doi: 10.1016/j.microc.2016.07.010.
  • Zhang, W., S. Xiao, and D. U. Ahn. 2013. Protein oxidation: basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition 53 (11):1191–201. doi: 10.1080/10408398.2011.577540.
  • Zhao, J., J. Chen, H. Zhu, and Y. L. Xiong. 2012. Mass spectrometric evidence of malonaldehyde and 4-hydroxynonenal adductions to radical-scavenging soy peptides. Journal of Agricultural and Food Chemistry 60 (38):9727–36. doi: 10.1021/jf3026277.
  • Zhao, L., S. Wang, and Y. Huang. 2014. Antioxidant function of tea dregs protein hydrolysates in liposome–meat system and its possible action mechanism. International Journal of Food Science & Technology 49 (10):2299–306. doi: 10.1111/ijfs.12546.
  • Zhong, S., L. Li, X. Shen, Q. Li, W. Xu, X. Wang, Y. Tao, and H. Yin. 2019. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radical Biology & Medicine 144:266–78. doi: 10.1016/j.freeradbiomed.2019.03.036.
  • Zhou, X., Z. Zhang, X. Liu, D. Wu, Y. Ding, G. Li, and Y. Wu. 2020. Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Comprehensive Reviews in Food Science and Food Safety 19 (2):503–29. doi: 10.1111/1541-4337.12535.
  • Zhu, X., M. M. Gallogly, J. J. Mieyal, V. E. Anderson, and L. M. Sayre. 2009. Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal. Chemical Research in Toxicology 22 (6):1050–9. doi: 10.1021/tx9000144.
  • Zorova, L. D., I. B. Pevzner, A. A. Chupyrkina, S. D. Zorov, D. N. Silachev, E. Y. Plotnikov, and D. B. Zorov. 2016. The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chemico-Biological Interactions 256:64–70. doi: 10.1016/j.cbi.2016.06.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.