495
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties

, , &

References

  • Adan, R. A. H., Beek, E. M. Van Der, Buitelaar, J. K. Cryan, J. F. Hebebrand, J. Higgs, S. Schellekens, H, and Dickson, S. L. 2019. Nutritional psychiatry : Towards improving mental health by what you eat. European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology 29 (12):1321–32. doi: 10.1016/j.euroneuro.2019.10.011.[Mismatch]
  • Adefegha, S. A., A. Salawi, A. Bumrungpert, S. Khorasani, M. R. Mozafari, and E. Taghavi. 2022. Encapsulation of polyphenolic compounds for health promotion and disease prevention: Challenges and opportunities. Nano Micro Biosystems 1 (2):1–12. doi: 10.22034/NMBJ.2023.163756
  • Adrian, G., M. Mihai, and D. C. Vodnar. 2019. The use of chitosan, alginate, and pectin in the. Polymers 11:1837. doi: 10.3390/polym11111837
  • Afsharzadeh, M. Hashemi, and A. Mokhtarzadeh, Ramezani M. 2018. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artificial Cells Nanomedicine Biotechnology 1401: 1095–1110. doi: 10.1080/21691401.2017.1376675.
  • Ahirrao, S. P., P. S. Gide, B. Shrivastav, and P. Sharma. 2014. Ionotropic gelation: A promising cross linking technique for hydrogels. Research and Reviews: Journal of Pharmaceutics and Nanotechnology 2 (1):1–6.
  • Ahmad, M., P. Mudgil, A. Gani, F. Hamed, F. A. Masoodi, and S. Maqsood. 2019. Nano-encapsulation of catechin in starch nanoparticles : Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry 270 (July 2018):95–104. doi: 10.1016/j.foodchem.2018.07.024.
  • Akbari-Alavijeh, S., R. Shaddel, and S. M. Jafari. 2020. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids. 105 (November 2019):105774. doi: 10.1016/j.foodhyd.2020.105774.
  • Akhavan, S., E. Assadpour, I. Katouzian, and S. M. Jafari. 2018. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology 74 (February):132–46. doi: 10.1016/j.tifs.2018.02.001.
  • Andersen, T., P. Auk-Emblem, and M. Dornish. 2015. 3D cell culture in alginate hydrogels. Microarrays (Basel, Switzerland) 4 (2):133–61. doi: 10.3390/microarrays4020133.
  • Andishmand, H., S. Azadmard-Damirchi, H. Hamishekar, M. Torbati, M. Saeed, G. P. Savage, C. Tan, and S. Mahdi. 2023. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel 311 (January): 10283–102847
  • Antonov, Y. A., M. Celus, C. Kyomugasho, M. Hendrickx, P. Moldenaers, and R. Cardinaels. 2019. Complexation of pectins varying in overall charge with lysozyme in aqueous buffered solutions. Food Hydrocolloids. 94 (October 2018):268–78. doi: 10.1016/j.foodhyd.2019.02.049.
  • Antonov, Y. A., I. L. Zhuravleva, M. Celus, C. Kyomugasho, M. Hendrickx, P. Moldenaers, and R. Cardinaels. 2022. Effect of overall charge and local charge density of pectin on the structure and thermal stability of lysozyme. Journal of Thermal Analysis and Calorimetry 147 (11):6271–86. doi: 10.1007/s10973-021-10954-5.
  • Arroyo-Maya, I. J., and D. J. McClements. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International 69:1–8. doi: 10.1016/j.foodres.2014.12.005.
  • Ashley, D., D. Marasini, C. Brownmiller, J. A. Lee, F. Carbonero, and S. Lee. 2019. Impact of grain sorghum polyphenols on microbiota of normal weight and overweight/obese subjects during in vitro fecal fermentation. Nutrients (11): 217. doi: 10.3390/nu11020217.
  • Assadpour, E., and S. M. Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Ayala-Fuentes, J. C., and R. A. Chavez-Santoscoy. 2021. Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavonoids in the food industry. Foods 10 (11):2701. doi: 10.3390/foods10112701.
  • Bai, Y., Z. Zhang, A. Zhang, L. Chen, C. He, X. Zhuang, and X. Chen. 2012. Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamic acid)-based microgels for oral insulin controlled release. Carbohydrate Polymers 89 (4):1207–14. doi: 10.1016/j.carbpol.2012.03.095.
  • Bajpai, V. K., M. Kamle, S. Shukla, D. Kumar, P. Chandra, S. Kyu, P. Kumar, Y. Suk, and Y. Han. 2018. Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drugs Analysis 26:1201–1214. doi: 10.1016/j.jfda.2018.06.011.
  • Baliyan, N., R. Rani, P. Kaur, Y. K. Yadava, and L. Kumar. 2020. Nanoencapsulation development for interactive foods. Chemical Science Review and Letters 9 (36):1039–57. doi: 10.37273/chesci.CS205107155.
  • Ban, E., and A. Kim. 2022. Coacervates : Recent developments as nanostructure delivery platforms for therapeutic biomolecules. International Journal of Pharmaceutics 624 (July):122058. doi: 10.1016/j.ijpharm.2022.122058.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, Ont.) 120 (September 2018):130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Bauer, S. 2012. Mass spectrometry for characterizing plant cell wall polysaccharides. Frontiers in Plant Science 3 (Mar):45. doi: 10.3389/fpls.2012.00045.
  • Bealer, E. J., S. Onissema-Karimu, A. Rivera-Galletti, M. Francis, J. Wilkowski, and X. Hu. 2020. Protein – Polysaccharide composite materials.  Polymers 12:464. doi: 10.3390/polym12020464.
  • Besford, Q. A., F. Cavalieri, and F. Caruso. 2020. Glycogen as a building block for advanced biological materials. Advanced Materials (Deerfield Beach, Fla.) 32 (18): E 1904625. doi: 10.1002/adma.201904625.
  • Bié, J., B. Sepodes, P. C. B. Fernandes, and M. H. L. Ribeiro. 2023. Polyphenols in health and disease: Gut microbiota, bioaccessibility, and bioavailability. Compounds 3 (1):40–72. doi: 10.3390/compounds3010005.
  • Borges, V., V. Maciel, C. M. P. Yoshida, and T. Teixeira. 2015. Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydrate Polymers 132:537–45. doi: 10.1016/j.carbpol.2015.06.047.
  • Braga, A. R. C., D. C. Murador, L. M. de Souza Mesquita, and V. V. de Rosso. 2018. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68 (February 2017):31–40. doi: 10.1016/j.jfca.2017.07.031.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Bulatao, R. M., J. P. A. Samin, J. R. Salazar, and J. J. Monserate. 2017. Encapsulation of anthocyanins from black rice (Oryza sativa L.) bran extract using chitosan-alginate nanoparticles. Journal of Food Research 6 (3):40. doi: 10.5539/jfr.v6n3p40.
  • Busato, B., E. Cristina, D. A. Abreu, C. Lucia, D. O. Petkowicz, G. R. Martinez, and G. R. Noleto. 2020. Pectin from Brassica oleracea var. italica triggers immunomodulating effects in vivo. International Journal of Biological Macromolecules 161:431–40. doi: 10.1016/j.ijbiomac.2020.06.051.
  • Caballero, S., Y. O. Li, D. J. Mcclements, and G. Davidov. 2022. Encapsulation and delivery of bioactive citrus pomace polyphenols : A review. Critical Reviews in Food Science and Nutrituin 62. doi: 10.1080/10408398.2021.1922873.
  • Calvini, P., A. Gorassini, G. Luciano, and E. Franceschi. 2006. FTIR and WAXS analysis of periodate oxycellulose: Evidence for a cluster mechanism of oxidation. Vibrational Spectroscopy 40 (2):177–83. doi: 10.1016/j.vibspec.2005.08.004.
  • Câmara, J. S., B. R. Albuquerque, J. Aguiar, R. C. G. Corrêa, J. L. Gonçalves, D. Granato, J. A. M. Pereira, L. Barros, and I. C. F. R. Ferreira. 2020. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 10 (1):37. doi: 10.3390/foods10010037.
  • Cao, N., X. Tang, R. J. Gao, L. Kong, J. Zhang, W. Qin, N. Hu, A. Zhang, K. Ma, L. Li, et al. 2021. Galectin-3 participates in PASMC migration and proliferation by interacting with TGF-β1. Life Sciences 274 (February):119347. doi: 10.1016/j.lfs.2021.119347.
  • Cardona, F., C. Andrés-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuño. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22. doi: 10.1016/j.jnutbio.2013.05.001.
  • Carnauba, R. A., F. M. Sarti, N. M. A. Hassimotto, and F. M. Lajolo. 2022. Assessment of dietary intake of bioactive food compounds according to income level in the Brazilian population. The British Journal of Nutrition 127 (8):1232–9. doi: 10.1017/S0007114521001987.
  • Carrasco-Sandoval, J., M. Aranda-Bustos, K. Henríquez-Aedo, A. López-Rubio, and M. J. Fabra. 2021. Bioaccessibility of different types of phenolic compounds co-encapsulated in alginate/chitosan-coated zein nanoparticles. LWT 149 (June):112024. doi: 10.1016/j.lwt.2021.112024.
  • Carvalho, R., S. D. Soares, M. G. Martins, C. Alves, J. Otávio, C. Silva, B. E. Teixeira-Costa, M. D. S. Figueira, and O. Vasconcelos. 2022. Bioactive, technological-functional potential and morphological structures of passion fruit albedo (Passiflora edulis). Food Science and Technology 42 2061:1–10 doi: 10.1590/fst.22222
  • Chang, C., T. Wang, Q. Hu, and Y. Luo. 2017. Zein/caseinate/pectin complex nanoparticles: Formation and characterization. International Journal of Biological Macromolecules 104 (Pt A):117–24. doi: 10.1016/j.ijbiomac.2017.05.178.
  • Chatterjee, N. S., P. K. Dara, S. Perumcherry Raman, D. K. Vijayan, J. Sadasivam, S. Mathew, C. N. Ravishankar, and R. Anandan. 2021. Nanoencapsulation in low-molecular-weight chitosan improves in vivo antioxidant potential of black carrot anthocyanin. Journal of the Science of Food and Agriculture 101 (12):5264–71. doi: 10.1002/jsfa.11175.
  • Chen, C., Z. Li, C. Wang, S. Liu, Y. Wang, M. Zhang, Y. Tian, J. Lv, H. Xu, and G. Xia. 2023. Stability and antioxidant activity of chitosan/β-Lactoglobulin on anthocyanins from Aronia melanocarpa. LWT 173:114335. doi: 10.1016/j.lwt.2022.114335.
  • Chen, Y., Q. Li, T. Zhao, Z. Zhang, G. Mao, W. Feng, X. Wu, and L. Yang. 2017. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chemistry 237:887–94. doi: 10.1016/j.foodchem.2017.06.054.
  • Chen, S., D. J. McClements, L. Jian, Y. Han, L. Dai, L. Mao, and Y. Gao. 2019. Core-shell biopolymer nanoparticles for co-delivery of curcumin and piperine: Sequential electrostatic deposition of hyaluronic acid and chitosan shells on the zein core. ACS Applied Materials & Interfaces 11 (41):38103–15. doi: 10.1021/acsami.9b11782.
  • Chi, J., J. Ge, X. Yue, J. Liang, Y. Sun, X. Gao, and P. Yue. 2019. Preparation of nanoliposomal carriers to improve the stability of anthocyanins. LWT 109 (December 2018):101–7. doi: 10.1016/j.lwt.2019.03.070.
  • Cialdella-Kam, L., S. G. Id, M. P. Meaney, A. M. Knab, R. A. S. Id, and D. C. Nieman. 2017. Quercetin and green tea extract supplementation downregulates genes related to tissue inflammatory responses to a 12-week high fat-diet in mice. Nutrients: 773. doi: 10.3390/nu9070773.
  • Comunian, T. A., M. P. Silva, and C. J. F. Souza. 2021. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends in Food Science & Technology 108 (January):269–80. doi: 10.1016/j.tifs.2021.01.003.
  • Cordeiro, A. S., Y. Farsakoglu, J. Crecente, C. María, D. Fuente, and S. F. González. 2021. Carboxymethyl ‑ β ‑ glucan/chitosan nanoparticles : New thermostable and efficient carriers for antigen delivery. Drug Delivery and Translational Research 11 (4):1689–702. doi: 10.1007/s13346-021-00968-9.
  • Cory, H., S. Passarelli, J. Szeto, M. Tamez, and J. Mattei. 2018. The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition 5 (September):87. doi: 10.3389/fnut.2018.00087.
  • Cosme, P., A. B. Rodríguez, and J. G. M. Espino. 2020. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9: 1263. doi:10.3390/antiox9121263
  • Curtis, P. J., V. Van Der Velpen, L. Berends, A. Jennings, M. Feelisch, A. M. Umpleby, M. Evans, B. O. Fernandez, M. S. Meiss, M. Minnion, et al. 2019. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. The American Journal of Clinical Nutrition 109 (6):1535–45. doi: 10.1093/ajcn/nqy380.
  • Dacoba, T. G., R. W. Omange, H. Li, J. Crecente-Campo, M. Luo, and M. J. Alonso. 2019. Polysaccharide nanoparticles can efficiently modulate the immune response against an HIV peptide antigen. ACS Nano 13 (5):4947–59. doi: 10.1021/acsnano.8b07662.
  • De Ferrars, R. M., C. Czank, Q. Zhang, N. P. Botting, P. A. Kroon, A. Cassidy, and C. D. Kay. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology 171 (13):3268–82. doi: 10.1111/bph.12676.
  • Dias, R., C. B. Pereira, P. Rosa, N. Mateus, and V. Freitas. 2021. Recent advances on dietary polyphenol’s potential roles in Celiac Disease. Trends in Food Science & Technology 107 (October 2020):213–25. doi: 10.1016/j.tifs.2020.10.033.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020a. Bioactive-loaded nanocarriers for functional foods: From designing to bioavailability. Current Opinion in Food Science 33:21–9. doi: 10.1016/j.cofs.2019.11.006.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020b. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety 19 (6):2862–84. doi: 10.1111/1541-4337.12623.
  • Dobrzynska, M., M. Napierala, and E. Florek. 2020. Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules 10 (9):1–17. doi: 10.3390/biom10091268.
  • Dobson, C. C., W. Mottawea, A. Rodrigue, B. L. Buzati Pereira, R. Hammami, K. A. Power, and N. Bordenave. 2019. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. In Advances in food and nutrition research. 1st ed., vol. 90: 135–168. Elsevier Inc. ISSN 1043-4526. doi: 10.1016/bs.afnr.2019.02.010.
  • Dogan Ergin, A., Z. S. Bayindir, A. T. Ozcelikay, and N. Yuksel. 2021. A novel delivery system for enhancing bioavailability of S-adenosyl-L-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation. Journal of Drug Delivery Science and Technology 61 (September 2020):102096. doi: 10.1016/j.jddst.2020.102096.
  • Duda-Chodak, A., T. Tarko, P. Satora, and P. Sroka. 2015. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition 54 (3):325–41. doi: 10.1007/s00394-015-0852-y.
  • Dushkin, A. V., T. G. Tolstikova, M. V. Khvostov, and G. A. Tolstikov. 2012. Complexes of polysaccharides and glycyrrhizic acid with drug molecules − Mechanochemical synthesis and pharmacological activity. Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 573–602.
  • Enaru, B., G. Drețcanu, T. D. Pop, A. Stǎnilǎ, and Z. Diaconeasa. 2021. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 10 (12):1967. doi: 10.3390/antiox10121967.
  • Escobar-Puentes, A. A., A. García-Gurrola, S. Rincón, A. Zepeda, and F. Martínez-Bustos. 2020. Effect of amylose/amylopectin content and succinylation on properties of corn starch nanoparticles as encapsulants of anthocyanins. Carbohydrate Polymers 250 (July):116972. doi: 10.1016/j.carbpol.2020.116972.
  • Estruel-Amades, S., M. Massot-Cladera, J. P. Francisco, and À. Franch. 2019. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients 2019, 11, 324. doi: 10.3390/nu11020324.
  • Ezhilarasi, P. N., P. Karthik, N. Chhanwal, and C. Anandharamakrishnan. 2013. Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology 6 (3):628–47. doi: 10.1007/s11947-012-0944-0.
  • Faria, A., I. Fernandes, S. Norberto, N. Mateus, and C. Calhau. 2014. Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry 62 (29):6898–902. doi: 10.1021/jf501808a.
  • Faridi Esfanjani, A., E. Assadpour, and S. M. Jafari. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology 76 (April):56–66. doi: 10.1016/j.tifs.2018.04.002.
  • Faridi, A., and S. M. Jafari. 2016. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces 146:532–43 doi: 10.1016/j.colsurfb.2016.06.053.
  • Fathi, M., Á. Martín, and D. J. McClements. 2014. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology 39 (1):18–39. doi: 10.1016/j.tifs.2014.06.007.
  • Feng, J., Y. Wu, L. Zhang, Y. Li, S. Liu, H. Wang, and C. Li. 2019. Enhanced chemical stability, intestinal absorption, and intracellular antioxidant activity of cyanidin-3- o-glucoside by composite nanogel encapsulation. Journal of Agricultural and Food Chemistry 67 (37):10432–47. doi: 10.1021/acs.jafc.9b04778.
  • Fernandes, I., A. Faria, V. de Freitas, C. Calhau, and N. Mateus. 2015. Multiple-approach studies to assess anthocyanin bioavailability. Phytochemistry Reviews 14 (6):899–919. doi: 10.1007/s11101-015-9415-3.
  • Fernandes, A., N. Mateus, and V. Freitas. 2023. Polyphenol-dietary fiber conjugates from fruits and vegetables: Nature and biological fate in a food and nutrition perspective. Foods 12: 1052. doi: 10.3390/foods12051052
  • Fernandes, A., J. Oliveira, F. Fonseca, F. Ferreira-da-Silva, N. Mateus, J. P. Vincken, and V. de Freitas. 2020. Molecular binding between anthocyanins and pectic polysaccharides – Unveiling the role of pectic polysaccharides structure. Food Hydrocolloids. 102 (December 2019):105625. doi: 10.1016/j.foodhyd.2019.105625.
  • Fernández, J., S. Redondo-Blanco, E. M. Miguélez, C. J. Villar, A. Clemente, and F. Lombó. 2015. Healthy effects of prebiotics and their metabolites against intestinal diseases and colorectal cancer. AIMS Microbiology 1 (1):48–71. doi: 10.3934/microbiol.2015.1.48.
  • Fisher, A., M. Watling, A. Smith, and A. Knight. 2010. Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100–800 µg in healthy volunteers. International Journal of Clinical Pharmacology and Therapeutics 48 (12):860–7. doi: 10.5414/cpp48860.
  • Fleschhut, J., F. Kratzer, G. Rechkemmer, and S. E. Kulling. 2006. Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition 45 (1):7–18. doi: 10.1007/s00394-005-0557-8.
  • Focsan, A. L., and N. E. Polyakov. 2019. Supramolecular carotenoid complexes of enhanced solubility and stability—The way of bioavailability improvement. Molecules 24: 3947. doi: 10.3390/molecules24213947
  • Fraga, C. G., K. D. Croft, D. O. Kennedy, and F. A. Tomás-Barberán. 2019. The effects of polyphenols and other bioactives on human health. Food & Function 10 (2):514–28. doi: 10.1039/c8fo01997e.
  • Frosi, I., L. Ferron, R. Colombo, and A. Papetti. 2022. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Critical Reviews in Food Science and Nutrition 19 :1–19. doi: 10.1080/10408398.2022.2157371.
  • Gaber Ahmed, G. H., A. Fernández-González, and M. E. Díaz García. 2020. Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocolloids. 108 (May 2019):105806. doi: 10.1016/j.foodhyd.2020.105806.
  • Garavand, F., M. Jalai-Jivan, E. Assadpour, and S. Mahdi. 2021. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry 364 (April):130376. doi: 10.1016/j.foodchem.2021.130376.
  • Garg, U., S. Chauhan, U. Nagaich, and N. Jain. 2019. Current advances in chitosan nanoparticles based drug delivery and targeting. Tabriz University of Medical Sciences 7 (3):113–7. doi: 10.15171/jcvtr.2015.24.
  • Ge, J., X. Yue, S. Wang, J. Chi, J. Liang, Y. Sun, X. Gao, and P. Yue. 2019. Nanocomplexes composed of chitosan derivatives and β-lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Food Research International (Ottawa, Ont.) 116:336–45. doi: 10.1016/j.foodres.2018.08.045.
  • Gharibzahedi, S. M. T., F. J. Marti-Quijal, F. J. Barba, and Z. Altintas. 2022. Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. International Journal of Biological Macromolecules 202 (January):494–507. doi: 10.1016/j.ijbiomac.2022.01.088.
  • Gonçalves, A. C., G. Alves, A. Lopes, and R. Silva. 2022. Employ of anthocyanins in nanocarriers for nano delivery : In vitro and in vivo experimental approaches for chronic diseases. Pharmaceutics 14: 2272. doi: 10.3390/pharmaceutics14112272
  • Gonçalves, R. F. S., J. T. Martins, C. M. M. Duarte, A. A. Vicente, and A. C. Pinheiro. 2018. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science & Technology 78 (June):270–91. doi: 10.1016/j.tifs.2018.06.011.
  • Goodarzi, N., R. Varshochian, G. Kamalinia, F. Atyabi, and R. Dinarvand. 2013. A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydrate Polymers 92 (2):1280–93. doi: 10.1016/j.carbpol.2012.10.036.
  • Gopi Krishna, P., S. Kameswaran, T. Sri Ranjani, and Y. Gunavathi. 2021. Recent developments in nanoencapsulation of bioactive compounds of microbial sources and their biomedical applications. In Recent developments in applied microbiology and biochemistry. Academic Press 2: 141–152. doi: 10.1016/b978-0-12-821406-0.00014-x.
  • Gopinath, V., S. Saravanan, A. R. Al-Maleki, M. Ramesh, and J. Vadivelu. 2018. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 107 (July):96–108. doi: 10.1016/j.biopha.2018.07.136.
  • Gottesmann, M., F. M. Goycoolea, T. Steinbacher, T. Menogni, and A. Hensel. 2020. Smart drug delivery against Helicobacter pylori: Pectin-coated, mucoadhesive liposomes with antiadhesive activity and antibiotic cargo. Applied Microbiology and Biotechnology 104 (13):5943–57. doi: 10.1007/s00253-020-10647-3.
  • Grgić, J., G. Šelo, M. Planinić, M. Tišma, and A. Bucić-Kojić. 2020. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 9 (10):1–36. doi: 10.3390/antiox9100923.
  • Gu, J., J. M. Thomas-Ahner, K. M. Riedl, M. T. Bailey, Y. Vodovotz, S. J. Schwartz, and S. K. Clinton. 2019. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Molecular Nutrition & Food Research 63 (8):e1800636. doi: 10.1002/mnfr.201800636.
  • Guadarrama-Escobar, O. R., P. Serrano-Castañeda, E. Anguiano-Almaz, V. Alma, M. Concepci, R. Vera-Graziano, M. I. Morales-Florido, B. Rodriguez-Perez, I. M. Rodriguez-Cruz, J. Esteban, et al. 2023. Chitosan nanoparticles as oral drug carriers. International Journal of Molecular Sciences 24 :1–17. doi: 10.3390/ijms24054289
  • Gummel, J., F. Boué, B. Demé, and F. Cousin. 2006. Charge stoichiometry inside polyelectrolyte-protein complexes: A direct SANS measurement for the PSSNa-lysozyme system. The Journal of Physical Chemistry. B 110 (49):24837–46. doi: 10.1021/jp064383k.
  • Hanhineva, K., R. Törrönen, I. Bondia-Pons, J. Pekkinen, M. Kolehmainen, H. Mykkänen, and K. Poutanen. 2010. Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences 11 (4):1365–402. doi: 10.3390/ijms11041365.
  • Hasanvand, E., M. Fathi, A. Bassiri, M. Javanmard, and R. Abbaszadeh. 2015. Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food and Bioproducts Processing Novel Starch Based Nanocarrier for Vitamin D Fortification of Milk: Production and Characterization 96:264–77. doi: 10.1016/j.fbp.2015.09.007.
  • Hassan, E., S. Fadel, W. Abou-Elseoud, and M. Mahmoud. 2022. Cellulose nanofibers/pectin/pomegranate extract nanocomposite as antibacterial and antioxidant films and coating for paper.
  • He, Y., D. Chen, Y. Liu, X. Sun, W. Guo, L. An, Z. Shi, L. Wen, Z. Wang, and H. Yu. 2022. Protective effect and mechanism of soybean insoluble dietary fiber on the color stability of malvidin-3- O –glucoside. Foods 11: 1474. doi: 10.3390/foods11101474
  • He, B., J. Ge, P. Yue, X. Y. Yue, R. Fu, J. Liang, and X. Gao. 2017. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chemistry 221:1671–7. doi: 10.1016/j.foodchem.2016.10.120.
  • Henriques, J. F., D. Serra, T. C. P. Dinis, and L. M. Almeida. 2020. The anti-neuroinflammatory role of anthocyanins and their metabolites for the prevention and treatment of brain disorders. Internacional Journal Molecular Science 21: 8653. doi:10.3390/ijms21228653
  • Hidalgo, M., M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, J. P. E. Spencer, G. R. Gibson, and S. De Pascual-Teresa. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry 60 (15):3882–90. doi: 10.1021/jf3002153.
  • Horn, J., D. E. Mayer, S. Chen, and E. A. Mayer. 2022. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry 12:164. doi: 10.1038/s41398-022-01922-0.
  • Hossain, M. K., A. A. Dayem, J. Han, Y. Yin, K. Kim, S. K. Saha, G. Yang, H. Y. Choi, and S. Cho. 2016. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International Journal of Molecular Sciences 17 (4):569. doi: 10.3390/ijms17040569.
  • Hua, S., Matos, M. B. C. De, Metselaar, J. M. Storm, G, and Hua, S. 2018. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization Frontiers in Pharmacology 9 (July):1–14. doi: 10.3389/fphar.2018.00790.
  • Huang, X., Y. Liu, Y. Zou, X. Liang, Y. Peng, D. J. McClements, and K. Hu. 2019. Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids. 93 (February):261–9. doi: 10.1016/j.foodhyd.2019.02.039.
  • Imran, A., M. U. Arshad, M. S. Arshad, M. Imran, F. Saeed, and M. Sohaib. 2018. Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats. Lipids in Health and Disease 17:157. doi: 10.1186/s12944-018-0808-3
  • Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Zeng, X. 2008. Optimization of fabrication parameters to produce chitosan - tripolyphosphate nanoparticles for delivery of tea catechins. Journal of Agricultural and Food Chemestry 56 (16):7451–8. doi: 10.1021/jf801111.
  • Iskender, H., E. Dokumacioglu, T. M. Sen, I. Ince, Y. Kanbay, and S. Saral. 2017. The effect of hesperidin and quercetin on oxidative stress, NF- k B and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 90:500–8. doi: 10.1016/j.biopha.2017.03.102.
  • Jafari, S. M., A. F. Esfanjani, and I. Katouzian. 2017. Safety of nanoencapsulated food ingredients. In Nanoencapsulation of food bioactive ingredients. Elsevier Inc., Amsterdam, Netherlands doi: 10.1016/B978-0-12-809740-3.00010-6.
  • Jafari, S. M., and D. J. McClements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. In Advances in food and nutrition research. 1st ed., vol. 81: 1–30. Elsevier Inc. doi: 10.1016/bs.afnr.2016.12.008.
  • Jaime, L., and S. Santoyo. 2021. The health benefits of the bioactive compounds in foods. Foods 10 (2):3–6. doi: 10.3390/foods10020325.
  • Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175:556–67. doi: 10.1016/j.foodchem.2014.12.013.
  • Jamar, G., D. Estadella, and L. P. Pisani. 2017. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors (Oxford, England) 43 (4):507–16. doi: 10.1002/biof.1365.
  • Jiang, J., I. Eliaz, and D. Sliva. 2013. Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells. Integrative Cancer Therapies 12 (2):145–52. doi: 10.1177/1534735412442369.
  • Jokioja, J., B. Yang, and K. M. Linderborg. 2021. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Comprehensive Reviews in Food Science and Food Safety 20 (6):5570–615. doi: 10.1111/1541-4337.12836.
  • Kamel, S., N. Ali, K. Jahangir, S. M. Shah, and A. A. El-Gendy. 2008. Pharmaceutical significance of cellulose: A review. Express Polymer Letters 2 (11):758–78. doi: 10.3144/expresspolymlett.2008.90.
  • Kamiloglu, S., M. Tomas, T. Ozdal, and E. Capanoglu. 2021. Effect of food matrix on the content and bioavailability of flavonoids. Trends in Food Science & Technology 117 (April 2020):15–33. doi: 10.1016/j.tifs.2020.10.030.
  • Kardum, N., and M. Glibetic. 2018. Polyphenols and their interactions with other dietary compounds: Implications for Human Health. In Advances in Food and Nutrition Research. 1st ed., vol. 84: 103–144. Academic Press. ISSN 1043-4526. doi: 10.1016/bs.afnr.2017.12.001.
  • Karim, N., M. Rezaul, I. Shishir, Y. Li, O. Y. Zineb, J. Mo, J. Tangpong, and W. Chen. 2022. Pelargonidin- 3 - O -glucoside encapsulated pectin-chitosan-nanoliposomes recovers palmitic acid-induced hepatocytes injury. Antioxidants 11: 623. doi: 10.3390/antiox11040623
  • Karimi, M., M. Eslami, P. Sahandi-Zangabad, F. Mirab, N. Farajisafiloo, Z. Shafaei, D. Ghosh, M. Bozorgomid, F. Dashkhaneh, and M. R. Hamblin. 2016. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 8 (5):696–716. doi: 10.1002/wnan.1389.
  • Karimi, M., P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin. 2017. Smart nanostructures for cargo delivery: Uncaging and activating by light. Journal of the American Chemical Society 139 (13):4584–610. doi: 10.1021/jacs.6b08313.
  • Kasprzak-Drozd, K., T. Oniszczuk, M. Stasiak, and A. Oniszczuk. 2021. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Internacional Journal Molecular Science 2;22(7):3715. doi: 10.3390/ijms22073715.
  • Khalid, M., Bilal, M., D.-f, Huang, Saeed-ur-Rahman. (2019), Role of flavonoids in plant interactions with the environment and against human pathogens—A review. ScienceDirect Role of Flavonoids in Plant Interactions with the Environment and against Human Pathogens - A Review. 18(1), 211–230. doi: 10.1016/S2095-3119(19)62555-4.
  • Khalil, I., W. A. Yehye, A. E. Etxeberria, A. A. Alhadi, S. M. Dezfooli, N. B. M. Julkapli, W. J. Basirun, and A. Seyfoddin. 2020. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants 9 (1): 24 doi: 10.3390/antiox9010024.
  • Khotimchenko, M. 2020. Pectin polymers for colon-targeted antitumor drug delivery. International Journal of Biological Macromolecules 158:1110–24. doi: 10.1016/j.ijbiomac.2020.05.002.
  • Khvostov, M. V., S. A. Borisov, T. G. Tolstikova, A. V. Dushkin, B. D. Tsyrenova, Y. S. Chistyachenko, N. E. Polyakov, G. G. Dultseva, A. A. Onischuk, and S. V. An’kov. 2017. Supramolecular Complex of ibuprofen with larch polysaccharide arabinogalactan: Studies on bioavailability and pharmacokinetics. European Journal of Drug Metabolism and Pharmacokinetics 42 (3):431–40. doi: 10.1007/s13318-016-0357-y.
  • Kim, J., M.-B. Wie, M. Ahn, A. Tanaka, H. Matsuda, and T. Shin. 2019. Benefits of hesperidin in central nervous system disorders : A review. Anatomy Cell Biology 52(4):369–377. doi: 10.5115/acb.19.119
  • Ko, A., J. S. Lee, H. Sop Nam, and H. Gyu Lee. 2017. Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. Journal of Food Biochemistry 41 (2):e12316. doi: 10.1111/jfbc.12316.
  • Koch, W. 2019. Dietary polyphenols—important non-nutrients in the prevention of chronic noncommunicable. Nutrients 11(5):1039. doi: 10.3390/nu11051039
  • Kong, R., X. Zhu, E. S. Meteleva, N. E. Polyakov, M. V. Khvostov, D. S. Baev, T. G. Tolstikova, A. V. Dushkin, and W. Su. 2018. Atorvastatin calcium inclusion complexation with polysaccharide arabinogalactan and saponin disodium glycyrrhizate for increasing of solubility and bioavailability. Drug Delivery and Translational Research 8 (5):1200–13. doi: 10.1007/s13346-018-0565-x.
  • Kou, L., Y. D. Bhutia, Q. Yao, Z. He, J. Sun, and V. Ganapathy. 2018. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Frontiers in Pharmacology 9 (January):27. doi: 10.3389/fphar.2018.00027.
  • Kumar, M. N. V. R., R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb. 2004. Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews 104 (12):6017–84. doi: 10.1021/cr030441b.
  • Kumar, S., and A. K. Pandey. 2013. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013:1–16. doi: 10.1155/2013/162750.
  • Lara-Espinoza, C., E. Carvajal-Millán, R. Balandrán-Quintana, Y. López-Franco, and A. Rascón-Chu. 2018. Pectin and pectin-based composite materials: Beyond food texture. Molecules 23 (4):942 doi: 10.3390/molecules23040942.
  • Lee, H. C., A. M. Jenner, C. S. Low, and Y. K. Lee. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology 157 (9):876–84. doi: 10.1016/j.resmic.2006.07.004.
  • Leiva, A., S. Bonardd, M. Pino, C. Saldías, G. Kortaberria, and D. Radić. 2015. Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles. European Polymer Journal 68:419–31. doi: 10.1016/j.eurpolymj.2015.04.032.
  • Li, D., F. Xu, and J. Li. 2022. Chapter 4 - Pectin-based micro- and nanomaterials in drug delivery. In: Advances in Food and Nutrition Research. Academic Press 84:103–144. ISSN 1043-4526. doi: 10.1016/B978-0-323-90986-0.00015-7.
  • Liang, J., L. Cao, L. Zhang, and X. Wan. 2014. Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles. Food Science and Biotechnology 23 (2):569–75. doi: 10.1007/s10068-014-0078-4.
  • Liang, S., X. Wu, X. Hu, T. Wang, and F. Jin. 2018. Recognizing depression from the microbiota – gut – brain axis. International Journal of Molecular Sciences 19 (6):1592. doi: 10.3390/ijms19061592.
  • Liang, J., H. Yan, H. J. Yang, H. W. Kim, X. Wan, J. Lee, and S. Ko. 2016. Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Food Science and Biotechnology 25 (6):1583–90. doi: 10.1007/s10068-016-0244-y.
  • Lila, M. A., B. Burton-Freeman, M. Grace, and W. Kalt. 2016. Unraveling anthocyanin bioavailability for human health. Annual Review of Food Science and Technology 7:375–93. doi: 10.1146/annurev-food-041715-033346.
  • Lin, K., Y. Li, E. D. Toit, L. Wendt, and J. Sun. 2021. Effects of polyphenol supplementations on improving depression, anxiety, and quality of life in patients with depression. Frontiers in Psychiatry 12 (November):1–13. doi: 10.3389/fpsyt.2021.765485.
  • Lin, L., W. Xu, H. Liang, L. He, S. Liu, Y. Li, B. Li, and Y. Chen. 2015. Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids and Surfaces. B, Biointerfaces 126:459–66. doi: 10.1016/j.colsurfb.2014.12.051.
  • Lopez-Rubio, A., B. M. Flanagan, E. P. Gilbert, and M. J. Gidley. 2008. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 89 (9):761–8. doi: 10.1002/bip.21005.
  • Lu, X., J. Chen, Z. Guo, Y. Zheng, M. C. Rea, H. Su, X. Zheng, B. Zheng, and S. Miao. 2019. Using polysaccharides for the enhancement of functionality of foods: A review. Trends in Food Science & Technology 86 (October 2018):311–27. doi: 10.1016/j.tifs.2019.02.024.
  • Luo, Y., and Q. Wang. 2014. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International Journal of Biological Macromolecules 64:353–67. doi: 10.1016/j.ijbiomac.2013.12.017.
  • Maaliki, D., A. A. Shaito, G. Pintus, A. El-Yazbi, and A. H. Eid. 2019. Flavonoids in hypertension: A brief review of the underlying mechanisms. Current Opinion in Pharmacology 45 (May):57–65. doi: 10.1016/j.coph.2019.04.014.
  • Magni, G., B. Riboldi, K. Petroni, and S. Ceruti. 2022. Flavonoids bridging the gut and the brain : Intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochemical Pharmacology 205 (July):115257. doi: 10.1016/j.bcp.2022.115257.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47. doi: 10.1093/ajcn/79.5.727.
  • Manzoor, M., J. Singh, J. D. Bandral, A. Gani, and R. Shams. 2020. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. International Journal of Biological Macromolecules 165 (Pt A):554–67. doi: 10.1016/j.ijbiomac.2020.09.182.
  • Marín, L., E. M. Miguélez, C. J. Villar, and F. Lombó. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism : Antimicrobial properties. BioMed Research International 2015:1–18. doi: 10.1155/2015/905215.
  • Martínez Rivas, C. J., M. Tarhini, W. Badri, K. Miladi, H. Greige-Gerges, Q. A. Nazari, S. A. Galindo Rodríguez, R. Á. Román, H. Fessi, and A. Elaissari. 2017. Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics 532 (1):66–81. doi: 10.1016/j.ijpharm.2017.08.064.
  • Martínez-Ballesta, M., Á. Gil-Izquierdo, C. García-Viguera, and R. Domínguez-Perles. 2018. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods 7 (5):1–29. doi: 10.3390/foods7050072.
  • Mas-Capdevila, J. Teichenne, C. Domenech-Coca, and A. Caimari. 2020. Ef ect of hesperidin on cardiovascular disease risk factors  : The Role of Intestinal Microbiota.
  • Matalanis, A., O. G. Jones, and D. J. McClements. 2011. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids. 25 (8):1865–80. doi: 10.1016/j.foodhyd.2011.04.014.
  • Mitchell, M. J., M. M. Billingsley, R. M. Haley, R. Langer, M. E. Wechsler, and N. A. Peppas. 2021. Engineering precision nanoparticles. Nature Reviews Drug Discovery 20: 101–124. doi: 10.1038/s41573-020-0090-8.
  • Mohammadi, A., S. M. Jafari, E. Assadpour, and A. Faridi Esfanjani. 2016. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules 82:816–22. doi: 10.1016/j.ijbiomac.2015.10.025.
  • Mohammed, H. A. 2022. Anthocyanins: Traditional uses, structural and functional variations, approaches to increase yields and products ‘ quality, hepatoprotection, liver longevity, and commercial products. International Journal Molecular Science 23(4):2149. doi: 10.3390/ijms23042149.
  • Mohnen, D. 2008. Pectin structure and biosynthesis. Current Opinion in Plant Biology 11 (3):266–77. doi: 10.1016/j.pbi.2008.03.006.
  • Moreira, H. R., F. Munarin, R. Gentilini, L. Visai, P. L. Granja, M. C. Tanzi, and P. Petrini. 2014. Injectable pectin hydrogels produced by internal gelation: PH dependence of gelling and rheological properties. Carbohydrate Polymers 103 (1):339–47. doi: 10.1016/j.carbpol.2013.12.057.
  • Morris, G. A., S. M. Kök, S. E. Harding, and G. G. Adams. 2010. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnology & Genetic Engineering Reviews 27 (1):257–84. doi: 10.1080/02648725.2010.10648153.
  • Mu, R., X. Hong, Y. Zheng, Y. Ni, Y. Li, J. Pang, Q. Wang, and J. Xiao. 2019. Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science & Technology 93 (September):136–44. doi: 10.1016/j.tifs.2019.09.013.
  • Mudgil, D., and S. Barak. 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules 61:1–6. doi: 10.1016/j.ijbiomac.2013.06.044.
  • Munin, A., and F. Edwards-Lévy. 2011. Encapsulation of natural polyphenolic compounds; a review. In Pharmaceutics 3 (4):793–829. doi: 10.3390/pharmaceutics3040793.
  • Muvva, A., I. A. Chacko, V. Ghate, and S. A. Lewis. 2020. Modified pectins for colon-specific drug delivery. Indian Journal of Pharmaceutical Education and Research 54 (2s):s12–s18. doi: 10.5530/ijper.54.2s.57.
  • Nasrollahzadeh, M., M. Sajjadi, S. Iravani, and R. S. Varma. 2021. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydrate Polymers 251 (September 2020):116986. doi: 10.1016/j.carbpol.2020.116986.
  • Needham, B. D., R. K. Daouk, and S. K. Mazmanian. 2020. Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews. Neuroscience 21 (12):717–31. doi: 10.1038/s41583-020-00381-0.
  • Neilson, A. P., K. M. Goodrich, and M. G. Ferruzzi. 2017. Bioavailability and metabolism of bioactive compounds from foods. In Nutrition in the prevention and treatment of disease. 4th ed.: 301-319 Elsevier Inc., Amsterdam, doi: 10.1016/B978-0-12-802928-2.00015-1.
  • Nguyen, S., S. J. Alund, M. Hiorth, A. L. Kjøniksen, and G. Smistad. 2011. Studies on pectin coating of liposomes for drug delivery. Colloids and Surfaces. B, Biointerfaces 88 (2):664–73. doi: 10.1016/j.colsurfb.2011.07.058.
  • Ninan, N., M. Muthiah, I. K. Park, A. Elain, S. Thomas, and Y. Grohens. 2013. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydrate Polymers 98 (1):877–85. doi: 10.1016/j.carbpol.2013.06.067.
  • Noore, S., N. K. Rastogi, C. O. Donnell, and B. Tiwari. 2021. Novel bioactive extraction and nano-encapsulation. Encyclopedia 1 (3):632–64. doi: 10.3390/encyclopedia1030052.
  • Nurkeeva, Z. S., G. A. Mun, and V. V. Khutoryanskiy. 2003. Interpolymer complexes of water-soluble nonionic polysaccharides with polycarboxylic acids and their applications. Macromolecular Bioscience 3 (6):283–95. doi: 10.1002/mabi.200390037.
  • Obayashi, S. K., M. S. Hinohara, T. N. Agai, and Y. K. Onishi. 2013. Transport mechanisms for soy isoflavones and microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes. Bioscience, Biotechnology and Biochemistry 77 (11):2210–7. doi: 10.1271/bbb.130404.
  • Osadchiy, V., C. R. Martin, and E. A. Mayer. 2020. Gut microbiome and modulation of CNS function. Comprehensive Physiology 10:57–72. doi: 10.1002/cphy.c180031.
  • Osvaldt Rosales, T. K., M. Pessoa da Silva, F. R. Lourenço, N. M. Aymoto Hassimotto, and J. P. Fabi. 2021. Nanoencapsulation of anthocyanins from blackberry (Rubus spp.) through pectin and lysozyme self-assembling. Food Hydrocolloids. 114 (December 2020):106563. doi: 10.1016/j.foodhyd.2020.106563.
  • Ozdal, T., D. A. Sela, J. Xiao, D. Boyacioglu, F. Chen, and E. Capanoglu. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8 (2):78. doi: 10.3390/nu8020078.
  • Pacheco-Ordaz, R., M. Antunes-Ricardo, J. A. Gutiérrez-Uribe, and G. A. González-Aguilar. 2018. Intestinal permeability and cellular antioxidant activity of phenolic compounds from mango (Mangifera indica cv. ataulfo) peels. International Journal of Molecular Sciences 19 (2):514 doi: 10.3390/ijms19020514.
  • Panchal, S. K., O. D. John, M. L. Mathai, and L. Brown. 2022. Anthocyanins in chronic diseases : The power of purple. Nutrients 14(10):2161. doi: 10.3390/nu14102161.
  • Panche, A. N., A. D. Diwan, and S. R. Chandra. 2016. Flavonoids: An overview. Journal of Nutritional Science 5:e47. doi: 10.1017/jns.2016.41.
  • Pandey, M., N. Mohamad, and M. C. I. M. Amin. 2014. Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: Development, characterization, and toxicity studies in ICR mice model. Molecular Pharmaceutics 11 (10):3596–608. doi: 10.1021/mp500337r.
  • Pandima, K., D. Sheeja, S. Fazel, A. Sureda, J. Xiao, S. Mohammad, and M. Daglia. 2015. Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research 99:1–10. doi: 10.1016/j.phrs.2015.05.002.
  • Paredes, A. J., C. M. Asencio, L. J. Manuel, and D. A. Allemandi. 2016. Nano encapsulation in the food industry : Manufacture, application sand characterization. Journal of Bioengenireering and Nanoprocessing 1 (1):56–79.
  • Park, J. H., G. Saravanakumar, K. Kim, and I. C. Kwon. 2010. Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews 62 (1):28–41. doi: 10.1016/j.addr.2009.10.003.
  • Pateiro, M., B. Gómez, P. E. S. Munekata, F. J. Barba, P. Putnik, D. B. Kovačević, and J. M. Lorenzo. 2021. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 26 (6):1547. doi: 10.3390/molecules26061547.
  • Peng, H., S. Chen, M. Luo, F. Ning, X. Zhu, and H. Xiong. 2016. Preparation and self-assembly mechanism of bovine serum albumin-citrus peel pectin conjugated hydrogel: A potential delivery system for Vitamin C. Journal of Agricultural and Food Chemistry 64 (39):7377–84. doi: 10.1021/acs.jafc.6b02966.
  • Pérez, S., and D. Samain. 2010. Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry 64 (C):25–116. doi: 10.1016/S0065-2318(10)64003-6.
  • Polia, F., M. Pastor-Belda, A. Martínez-Blázquez, M. N. Horcajada, F. A. Tomás-Barberán, and R. García-Villalba. 2022. Technological and biotechnological processes to enhance the bioavailability of dietary (poly)phenols in humans. Journal of Agricultural and Food Chemistry 70 (7):2092–107. doi: 10.1021/acs.jafc.1c07198.
  • Posocco, B., E. Dreussi, J. De Santa, G. Toffoli, M. Abrami, F. Musiani, M. Grassi, R. Farra, F. Tonon, G. Grassi, et al. 2015. Polysaccharides for the delivery of antitumor drugs. Materials 8 (5):2569–615. doi: 10.3390/ma8052569.
  • Prabaharan, M., and J. F. Mano. 2005. Chitosan-based particles as controlled drug delivery systems. Drug Delivery 12 (1):41–57. doi: 10.1080/10717540590889781.
  • Prado, S. B. R., do, Castro-Alves, V. C. Ferreira, G. F, and Fabi, J. P. 2019. Ingestion of non-digestible carbohydrates from plant-source foods and decreased risk of colorectal cancer: A review on the biological effects and the mechanisms of action. Frontiers in Nutrition 6 (May):72. doi: 10.3389/fnut.2019.00072.
  • Quadrado, R. F. N., and A. R. Fajardo. 2020. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arabian Journal of Chemistry 13 (1):2183–94. doi: 10.1016/j.arabjc.2018.04.004.
  • Rashidinejad, A., S. Boostani, A. Babazadeh, A. Rehman, A. Rezaei, S. Akbari-Alavijeh, R. Shaddel, and S. M. Jafari. 2021. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International (Ottawa, Ont.) 142 (February):110186. doi: 10.1016/j.foodres.2021.110186.
  • Rastogi, H., and S. Jana. 2016. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells. European Journal of Drug Metabolism and Pharmacokinetics 41 (1):33–43. doi: 10.1007/s13318-014-0234-5.
  • Rehman, A., S. Mahdi, Q. Tong, T. Riaz, E. Assadpour, R. Muhammad, S. Niazi, I. Mahmood, Q. Shehzad, A. Ali, et al. 2020. Drug nanodelivery systems based on natural polysaccharides against different diseases. Advances in Colloid and Interface Science 284:102251. doi: 10.1016/j.cis.2020.102251.
  • Reichembach, L. H., C. Lúcia, and D. O. Petkowicz. 2021. Food hydrocolloids pectins from alternative sources and uses beyond sweets and jellies : An overview. Food Hydrocolloids. 118 (December 2020):106824. doi: 10.1016/j.foodhyd.2021.106824.
  • Rein, M. J., M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S. K. Thakkar, and M. da Silva Pinto. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75 (3):588–602. doi: 10.1111/j.1365-2125.2012.04425.x.
  • Rinaudo, M. 2006. Chitin and chitosan: properties and applications. Progress in Polymer Science (Oxford) 31 (7):603–32. doi: 10.1016/j.progpolymsci.2006.06.001.
  • Rodríguez-Daza, M. C., L. Daoust, L. Boutkrabt, G. Pilon, T. Varin, S. Dudonné, É. Levy, A. Marette, D. Roy, and Y. Desjardins. 2020. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Scientific Reports 10 (1):2217. doi: 10.1038/s41598-020-58863-1.
  • Rosales, T. K. O., and J. P. Fabi. 2023a. Pectin-based nanoencapsulation strategy to improve the bioavailability of bioactive compounds. International Journal of Biological Macromolecules 229 (December 2022):11–21. doi: 10.1016/j.ijbiomac.2022.12.292.
  • Rosales, T. K. O., and J. P. Fabi. 2023b. Polysaccharides as natural nanoencapsulants for controlled. In: Smart nanomaterials for bioencapsulation. Elsevier, Amsterdam 1:23–38. ISBN:9780323912297
  • Rosales, T. K. O., and J. P. Fabi. 2023b. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Frontiers in Nutrition 10:1144677. doi: 10.3389/fnut.2023.1144677.
  • Rosales, O., Freitas, L. D. Rebouças, K. Minami, A. Toniazzo, T., and C. C. 2023. Food hydrocolloids nanoencapsulated anthocyanins : A new technological approach to increase physical-chemical stability and bioaccessibility 139: 108516 (September 2022) doi: 10.1016/j.foodhyd.2023.108516.
  • Rosales, T. K. O., Hassimotto, N. M. A., Lajolo, F. M., Fabi, J. P. 2022. Nanotechnology as a tool to mitigate the effects of intestinal microbiota on metabolization of anthocyanins. Antioxidants11(3):506. doi: 10.3390/antiox11030506.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2019. Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science & Technology Starch-Based Nanocarriers as Cutting-Edge Natural Cargos for Nutraceutical Delivery 88 (March):397–415. doi: 10.1016/j.tifs.2019.04.004.
  • Sadeghi, R., L. Mehryar, M. Karimi, and J. Kokini. 2017. Nanocapsule formation by individual biopolymer nanoparticles. In Nanoencapsulation technologies for the food and nutraceutical industries 1. Elsevier Inc., Amsterdam. doi: 10.1016/B978-0-12-809436-5.00011-2.
  • Sadeghi, M. and G. Rezanejade Bardajee. 2018. Dye removal from aqueous solutions using novel nanocomposite hydrogel derived from sodium montmorillonite nanoclay and modified starch. International Journal of Environmental Science and Technology 15 (11):2303–16. doi: 10.1007/s13762-017-1531-8.
  • Salarbashi, D., J. Bazeli, and E. F. Rad. 2020. An update on the new achievements in the nanocapsulation of anthocyanins. Nanomedicine Journal 0 (2):87–97. doi: 10.22038/nmj.2020.14628.
  • Salehi, B., J. Sharifi-Rad, F. Cappellini, Z. Reiner, D. Zorzan, M. Imran, B. Sener, M. Kilic, M. El-Shazly, N. M. Fahmy, et al. 2020. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Frontiers in Pharmacology 11 (August):1300. doi: 10.3389/fphar.2020.01300.
  • Santos, H. A., and I. N. Savina. 2023. Introduction to the RSC advances themed collection on nanomaterials in drug delivery. RSC Advances 13 (3):1933–4. doi: 10.1039/d2ra90132c.
  • Sarkar, A., S. Zhang, B. Murray, J. A. Russell, and S. Boxal. 2017a. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces. Colloids and Surfaces. B, Biointerfaces 158:137–46. doi: 10.1016/j.colsurfb.2017.06.037.
  • Sato, M., A. Okuno, K. Suzuki, N. Ohsawa, E. Inoue, Y. Miyaguchi, and A. Toyoda. 2019. Dietary intake of the citrus flavonoid hesperidin affects stress-resilience and brain kynurenine levels in a subchronic and mild social defeat stress model in mice. Bioscience, Biotechnology, and Biochemistry 83 (9):1756–65. doi: 10.1080/09168451.2019.1621152.
  • Selyutina, O., I. Apanasenko, A. Shilov, S. Khalikov, and N. Polyakov. 2017. Effect of natural polysaccharides and oligosaccharides on the permeability of cell membranes. Russian Chemical Bulletin 66 (1):129–35. doi: 10.1007/s11172-017-1710-2.
  • Semwal, D. K., R. B. Semwal, S. Combrinck, and A. Viljoen. 2016. Myricetin : A dietary molecule with diverse. Nutrients 8 (2):90. doi: 10.3390/nu8020090.
  • Shen, Y., N. Zhang, J. Tian, G. Xin, L. Liu, X. Sun, and B. Li. 2022. Advanced approaches for improving bioavailability and controlled release of anthocyanins. Journal of Controlled Release : official Journal of the Controlled Release Society 341 (June 2021):285–99. doi: 10.1016/j.jconrel.2021.11.031.
  • Shishir, M. R. I., N. Karim, V. Gowd, J. Xie, X. Zheng, and W. Chen. 2019. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocolloids. 95 (December 2018):432–44. doi: 10.1016/j.foodhyd.2019.04.059.
  • Shivashankara, K. S., and S. N. Acharya. 2010. Bioavailability of dietary polyphenols and the cardiovascular diseases. The Open Nutraceuticals Journal 3 (1):227–41. doi: 10.2174/1876396001003010227.
  • Siddiqui, S., N. Bahmid, A. Taha, I. Khalifa, S. Khan, H. Rostamabadi, and S. Jafari. 2022. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Critical Reviews in Food Science and Nutrition :1–21. doi: 10.1080/10408398.2022.2056870.
  • Siddiqui, I. A., D. J. Bharali, M. Nihal, V. M. Adhami, N. Khan, J. C. Chamcheu, M. I. Khan, S. Shabana, S. A. Mousa, and H. Mukhtar. 2014. Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine : nanotechnology, Biology, and Medicine 10 (8):1619–26. doi: 10.1016/j.nano.2014.05.007.
  • Singh, A. K. Cabral, C. Kumar, R. Ganguly, R, and Pandey, A. K. 2019. Beneficial ef ects of dietary polyphenols on gut microbiota and strategies to improve Delivery Efficiency. Nutrients. Sep 13;11(9):2216. doi: 10.3390/nu11092216.
  • Singh, A. N., and A. Yethiraj. 2020. Driving force for the complexation of charged polypeptides. The Journal of Physical Chemistry. B 124 (7):1285–92. doi: 10.1021/acs.jpcb.9b09553.
  • Sogias, I. A., A. C. Williams, and V. V. Khutoryanskiy. 2008. Why is chitosan mucoadhesive? Biomacromolecules 9 (7):1837–42. doi: 10.1021/bm800276d.
  • Song, J., Y. Yu, M. Chen, Z. Ren, L. Chen, C. Fu, Z. f Ma, and Z. Li. 2022. Advancement of protein- and polysaccharide-based biopolymers for anthocyanin encapsulation. Frontiers in Nutrition 9 (June):938829. doi: 10.3389/fnut.2022.938829.
  • Sriamornsak, P. 2011. Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery 8 (8):1009–23. doi: 10.1517/17425247.2011.584867.
  • Stenger, C., B. Zeeb, J. Hinrichs, and J. Weiss. 2017. Formation of concentrated biopolymer particles composed of oppositely charged WPI and pectin for food applications. Journal of Dispersion Science and Technology 38 (9):1258–65. doi: 10.1080/01932691.2016.1234381.
  • Suhag, R., R. Kumar, A. Dhiman, A. Sharma, P. Prabhakar, K. Gopalakrishnan, R. Kumar, and A. Singh. 2022. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Critical Reviews in Food Science and Nutrition 24:1–20. doi: 10.1080/10408398.2022.2043237.
  • Suleria, H. A. R., C. J. Barrow, and F. R. Dunshea. 2020. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 9(9):1206. doi: 10.3390/foods9091206.
  • Sun, J., J. Chen, Z. Mei, Z. Luo, L. Ding, X. Jiang, and W. Bai. 2020. Synthesis, structural characterization, and evaluation of cyanidin-3-O-glucoside-loaded chitosan nanoparticles. Food Chemistry 330 (April):127239. doi: 10.1016/j.foodchem.2020.127239.
  • Tahir, A., R. Shabir Ahmad, M. Imran, M. H. Ahmad, M. Kamran Khan, N. Muhammad, M. U. Nisa, M. Tahir Nadeem, A. Yasmin, H. S. Tahir, et al. 2021. Recent approaches for utilization of food components as nano-encapsulation: a review. International Journal of Food Properties 24 (1):1074–96. doi: 10.1080/10942912.2021.1953067.
  • Takeuchi, H., J. Thongborisute, Y. Matsui, H. Sugihara, H. Yamamoto, and Y. Kawashima. 2005. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Advanced Drug Delivery Reviews 57 (11):1583–94. doi: 10.1016/j.addr.2005.07.008.
  • Tanaka, K. T. Tanaka, H. Yamamura, and T. Matsui. 2019. Absorption and metabolic behavior of hesperidin (Rutinosylated hesperetin) after single oral administration to sprague-dawley rats. Journal of Agricultural and Food Chemistry 67 (35):9812–9. doi: 10.1021/acs.jafc.9b03594.
  • Talavéra, S., C. Felgines, O. Texier, C. Besson, C. Manach, J. L. Lamaison, and C. Rémésy. 2004. Anthocyanins are efficiently absorbed from the small intestine in rats. The Journal of Nutrition 134 (9):2275–9. doi: 10.1093/jn/134.9.2275.
  • Tian, L., Y. Tan, G. Chen, G. Wang, J. Sun, S. Ou, W. Chen, and W. Bai. 2019. Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition 59 (6):982–91. doi: 10.1080/10408398.2018.1533517.
  • Tie, S., and M. Tan. 2022. Current advances in multifunctional nanocarriers based on marine polysaccharides for colon delivery of food polyphenols. Journal of Agricultural and Food Chemistry 70 (4):903–15. doi: 10.1021/acs.jafc.1c05012.
  • Tomas, M. 2022. Effect of dietary fiber addition on the content and in vitro bioaccessibility of antioxidants in red raspberry puree. Food Chemistry 375 (June 2021):131897. doi: 10.1016/j.foodchem.2021.131897.
  • Tomas-Barberan, F. A., M. V. Selma, and J. C. Esp. 2018. B ©. Journal of Agricultural and Food Chemistry 66 (14):3593–4. doi: 10.1021/acs.jafc.8b00827.
  • Toydemir, G., D. Boyacioglu, E. Capanoglu, I. M. Van Der Meer, M. M. M. Tomassen, R. D. Hall, J. J. Mes, and J. Beekwilder. 2013. Investigating the transport dynamics of anthocyanins from unprocessed fruit and processed fruit juice from sour cherry (Prunus cerasus L.) across intestinal epithelial cells. Journal of Agricultural and Food Chemistry 61 (47):11434–41. doi: 10.1021/jf4032519.
  • Tsirigotis-Maniecka, M., Ł. Lamch, I. Chojnacka, R. Gancarz, and K. A. Wilk. 2017. Microencapsulation of hesperidin in polyelectrolyte complex microbeads : Physico-chemical evaluation and release behavior. Journal of Food Engineering 214:104–16. doi: 10.1016/j.jfoodeng.2017.06.015.
  • Van de Velde, F., M. E. Pirovani, and S. R. Drago. 2018. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. Journal of Food Composition and Analysis 72 (March):22–31. doi: 10.1016/j.jfca.2018.05.007.
  • Van de Velde, F., C. Vignatti, M. Paula Méndez-Galarraga, M. Gomila, C. Fenoglio, M. Donda Zbinden, and M. Élida Pirovani. 2022. Intestinal and colonic bioaccessibility of phenolic compounds from fruit smoothies as affected by the thermal processing and the storage conditions. Food Research International (Ottawa, Ont.) 155 (February):111086. doi: 10.1016/j.foodres.2022.111086.
  • van Dorsten, F. A., C. H. Grün, E. J. J. van Velzen, D. M. Jacobs, R. Draijer, and J. P. M. van Duynhoven. 2010. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Molecular Nutrition & Food Research 54 (7):897–908. doi: 10.1002/mnfr.200900212.
  • Verediano, T. A., H. Stampini Duarte Martino, M. C. Dias Paes, and E. Tako. 2021. Effects of anthocyanin on intestinal health: A systematic review. Nutrients 13 (4): 1331. doi: 10.3390/nu13041331.
  • Victoria-Campos, C. I., J. d J. Ornelas-Paz, N. E. Rocha-Guzmán, J. A. Gallegos-Infante, M. L. Failla, J. D. Pérez-Martínez, C. Rios-Velasco, and V. Ibarra-Junquera. 2022. Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chemistry 383 (July 2021):132451. doi: 10.1016/j.foodchem.2022.132451.
  • Viebke, C., S. Al-Assaf, and G. O. Phillips. 2014. Food hydrocolloids and health claims. Bioactive Carbohydrates and Dietary Fibre 4 (2):101–14. doi: 10.1016/j.bcdf.2014.06.006.
  • Walia, N., N. Dasgupta, S. Ranjan, C. Ramalingam, and M. Gandhi. 2019. Methods for nanoemulsion and nanoencapsulation of food bioactives. Environmental Chemistry Letters 17 (4):1471–83. doi: 10.1007/s10311-019-00886-w.
  • Wang, Z., C. J. Barrow, and F. R. Dunshea. 2021. A comparative investigation on phenolic composition, characterization and antioxidant potentials of five different australian grown pear varieties. Antioxidants 10(2):151. doi: 10.3390/antiox10020151.
  • Wang, D., J. Tan, H. Kang, L. Ma, X. Jin, R. Liu, and Y. Huang. 2011. Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Synthesis, Self-Assembly and Drug Release Behaviors of pH-Responsive Copolymers Ethyl Cellulose- graft -PDEAEMA through ATRP 84 (1):195–202. doi: 10.1016/j.carbpol.2010.11.023.
  • Westfall, S., and G. M. Pasinetti. 2019. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders. Frontiers in Neuroscience 13 (November):1–24. doi: 10.3389/fnins.2019.01196.
  • Wijaya, C. J.,S. Ismadji, andS. Gunawan. 2021. A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals. Molecules 26 (3):676 10.3390/molecules26030676.
  • Williamson, R. E., J. E. Burn, and C. H. Hocart. 2002. Towards the mechanism of cellulose synthesis. Trends in Plant Science 7 (10):461–7. doi: 10.1016/S1360-1385(02)02335-X.
  • Wu, C. L., Chen, Q. H. Li, X. Y. Su, J. Hui, He, S. Liu, J, and Yuan, Y. 2020. Formation and characterisation of food protein–polysaccharide thermal complex particles: Effects of pH, temperature and polysaccharide type. International Journal of Food Science & Technology 55 (3):1368–74. doi: 10.1111/ijfs.14416.
  • Wu, T., C. Wu, S. Fu, L. Wang, C. Yuan, S. Chen, and Y. Hu. 2017. Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers 155:192–200. doi: 10.1016/j.carbpol.2016.08.076.
  • Wusigale, Liang, L., Yangchao, Luo. (2020). Casein and pectin: Structures, interactions, and applications. Trends in Food Science and Technology, 97(September 2019), 391–403. doi: 10.1016/j.tifs.2020.01.027.
  • Yahfoufi, N., N. Alsadi, M. Jambi, and C. Matar. 2018. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10 (11):1–23. doi: 10.3390/nu10111618.
  • Yang, Z., D. Julian, X. Peng, Z. Xu, M. Meng, L. Chen, and Z. Jin. 2023. Fabrication of Zein – carboxymethyl cellulose nanoparticles for co-delivery of quercetin and resveratrol. Journal of Food Engineering 341 (October 2022) doi: 10.1016/j.jfoodeng.2022.111322
  • Yu, H., and Q. Huang. 2010. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry 119 (2):669–74. doi: 10.1016/j.foodchem.2009.07.018.
  • Zamora-Ros, R., C. Biessy, J. A. Rothwell, A. Monge, M. Lajous, A. Scalbert, R. López-Ridaura, and I. Romieu. 2018. Dietary polyphenol intake and their major food sources in the Mexican Teachers’ Cohort. The British Journal of Nutrition 120 (3):353–60. doi: 10.1017/S0007114518001381.
  • Zhai, X., D. Lin, D. Liu, and X. Yang. 2018. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Food Research International (Ottawa, Ont.) 103 (October 2017):12–20. doi: 10.1016/j.foodres.2017.10.030.
  • Zhang, L., A. Beatty, L. Lu, A. Abdalrahman, T. M. Makris, G. Wang, and Q. Wang. 2020. Materials science & engineering c microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. Materials Science & Engineering. C, Materials for Biological Applications 111 (January):110768. doi: 10.1016/j.msec.2020.110768.
  • Zhang, J., G. Jia, Z. Wanbin, J. Minghao, Y. Wei, J. Hao, X. Liu, Z. Gan, and A. Sun. 2021. Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocolloids. 112 (December 2019):106280. doi: 10.1016/j.foodhyd.2020.106280.
  • Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Jin Z, Qiu C. 2022. Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods 23;11(15):2189. doi: 10.3390/foods11152189.
  • Zhang, H., and R. Tsao. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science 8:33–42. doi: 10.1016/j.cofs.2016.02.002.
  • Zhang, Q., Y. Zhou, W. Yue, W. Qin, H. Dong, and T. Vasanthan. 2021. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends in Food Science & Technology 109 (January):169–96. doi: 10.1016/j.tifs.2021.01.026.
  • Zhao, X., X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, and M. Tan. 2020a. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocolloids. 109 (February):106114. doi: 10.1016/j.foodhyd.2020.106114.
  • Zhao, X., X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, and M. Tan. 2020b. Food HYDROCOLLOIDS FACILe synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocolloids. 109 (June):106114. doi: 10.1016/j.foodhyd.2020.106114.
  • Zhou, N., X. Gu, T. Zhuang, Y. Xu, L. Yang, and M. Zhou. 2020. Gut microbiota: A pivotal hub for polyphenols as antidepressants. Journal of Agricultural and Food Chemistry 68 (22):6007–20. doi: 10.1021/acs.jafc.0c01461.
  • Zhu, F. 2017. Encapsulation and delivery of food ingredients using starch based systems. Food Chemistry 229:542–52. doi: 10.1016/j.foodchem.2017.02.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.