252
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advance in probiotics for the elimination of pesticide residues in food and feed: mechanisms, product toxicity, and reinforcement strategies

, , ORCID Icon, , , & show all

References

  • Ailijiang, N., J. Chang, P. Liang, X. Zhang, and X. Huang. 2021. Electrical stimulation on biodegradation of phenolics in a novel anaerobic–aerobic-coupled upflow bioelectrochemical reactor. Chemical Engineering Journal 421:127840. doi: 10.1016/j.cej.2020.127840.
  • Akdeniz, V., and A. S. Akalin. 2022. Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: Activation or inactivation. Critical Reviews in Food Science and Nutrition 62 (4):889–904. doi: 10.1080/10408398.2020.1830027.
  • Al Daccache, M., M. Koubaa, D. Salameh, R. G. Maroun, N. Louka, and E. Vorobiev. 2020. Ultrasound-assisted fermentation for cider production from Lebanese apples. Ultrasonics Sonochemistry 63:104952. doi: 10.1016/j.ultsonch.2019.104952.
  • Aswathi, A., A. Pandey, and R. K. Sukumaran. 2020. Rapid degradation of the organophosphate pesticide – Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource Technology 318:124093. doi: 10.1016/j.biortech.2019.122025.
  • Bacila, D. M., A. CunhaJr., I. F. Weber, G. N. Scheuermann, A. Coldebella, L. Caron, L. Molognoni, H. Daguer, L. Igarashi Mafra, and V. Feddern. 2018. Degradation of 4,4′-dinitrocarbanilide in chicken breast by thermal processing. Journal of Agricultural and Food Chemistry 66 (31):8391–7. doi: 10.1021/acs.jafc.8b02370.
  • Bangar, S. P., N. Sharma, M. Kumar, F. Ozogul, S. S. Purewal, and M. Trif. 2021. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Bioscience 44:101444. doi: 10.1016/j.fbio.2021.101444.
  • Bempelou, E. D., J. G. Vontas, K. S. Liapis, and V. N. Ziogas. 2018. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by the epiphytic yeasts Rhodotorula glutinis and Rhodotorula rubra. Ecotoxicology 27 (10):1368–78. doi: 10.1007/s10646-018-1992-7.
  • Bhalerao, T. S., and P. R. Puranik. 2007. Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. International Biodeterioration & Biodegradation 59 (4):315–21. doi: 10.1016/j.ibiod.2006.09.002.
  • Bhalerao, T. S., and P. R. Puranik. 2009. Microbial degradation of monocrotophos by Aspergillus oryzae. International Biodeterioration & Biodegradation 63 (4):503–8. doi: 10.1016/j.ibiod.2008.11.011.
  • Bizaj, E., F. Čuš, and P. Raspor. 2011. Removal of pyrimethanil and fenhexamid from Saccharomyces cerevisiae liquid cultures. Food Technology and Biotechnology 49 (4):474–80.
  • Burden, N., S. K. Maynard, L. Weltje, and J. R. Wheeler. 2016. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Regulatory Toxicology and Pharmacology 80:241–6. doi: 10.1016/j.yrtph.2016.05.032.
  • Carranza, C. S., J. P. Regñicoli, M. E. Aluffi, N. Benito, S. M. Chiacchiera, C. L. Barberis, and C. E. Magnoli. 2019. Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. International Journal of Environmental Science and Technology 16 (12):7673–82. doi: 10.1007/s13762-019-02347-x.
  • Chen, C. S., T. W. Wu, H. L. Wang, S. H. Wu, and C. J. Tien. 2015. The ability of immobilized bacterial consortia and strains from river biofilms to degrade the carbamate pesticide methomyl. International Journal of Environmental Science and Technology 12 (9):2857–66. doi: 10.1007/s13762-014-0675-z.
  • Chen, X., Q. Zhou, F. Liu, Q. Peng, and P. Teng. 2019. Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase. Chemosphere 233:49–56. doi: 10.1016/j.chemosphere.2019.05.144.
  • Chu, Y. H., X. X. Yu, X. Jin, Y. T. Wang, D. J. Zhao, P. Zhang, G. M. Sun, and Y. H. Zhang. 2018. Purification and characterization of alkaline phosphatase from lactic acid bacteria. RSC Advances 9 (1):354–60. doi: 10.1039/c8ra08921c.
  • Deng, W., D. Lin, K. Yao, H. Yuan, Z. Wang, J. Li, L. Zou, X. Han, K. Zhou, L. He, et al. 2015. Characterization of a novel beta-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of beta-cypermethrin. Applied Microbiology and Biotechnology 99 (19):8187–98. doi: 10.1007/s00253-015-6690-2.
  • Dixit, R., Wasiullah, D. Malaviya, K. Pandiyan, U. B. Singh, A. Sahu, R. Shukla, B. P. Singh, J. P. Rai, P. K. Sharma, et al. 2015. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes, Sustainability 7 (2):2189–212. doi: 10.3390/su7022189.
  • Dordevic, T. M., and R. D. Durovic-Pejcev. 2015. Dissipation of chlorpyrifos-methyl by Saccharomyces cerevisiae during wheat fermentation. LWT-Food Science and Technology 61 (2):516–23. doi: 10.1016/j.lwt.2014.12.044.
  • Dordevic, T. M., and R. D. Durovic-Pejcev. 2016. The potency of Saccharomyces cerevisiae and Lactobacillus plantarum to dissipate organophosphorus pesticides in wheat during fermentation. Journal of Food Science and Technology 53 (12):4205–15. doi: 10.1007/s13197-016-2408-4.
  • Dordevic, T. M., S. S. Siler-Marinkovic, R. D. Durovic-Pejcev, S. I. Dimitrijevic-Brankovic, and J. S. Gajic Umiljendic. 2013. Dissipation of pirimiphos-methyl during wheat fermentation by Lactobacillus plantarum. Letters in Applied Microbiology 57 (5):412–9. doi: 10.1111/lam.12128.
  • Dordevic, T. M., S. S. Siler-Marinkovic, R. D. Ethurovic, S. I. Dimitrijevic-Brankovic, and J. S. Gajic Umiljendic. 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture 93 (13):3377–83. doi: 10.1002/jsfa.6188.
  • Duan, J., Z. Cheng, J. Bi, and Y. Xu. 2018. Residue behavior of organochlorine pesticides during the production process of yogurt and cheese. Food Chemistry 245:119–24. doi: 10.1016/j.foodchem.2017.10.017.
  • Ehrampoush, M. H., A. Sadeghi, M. T. Ghaneian, and Z. Bonyadi. 2017. Optimization of diazinon biodegradation from aqueous solutions by Saccharomyces cerevisiae using response surface methodology. AMB Express 7 (1):68. doi: 10.1186/s13568-017-0366-5.
  • Fang, L., Q. Shi, L. Xu, T. Shi, X. Wu, Q. X. Li, and R. Hua. 2020. Enantioselective uptake determines degradation selectivity of chiral profenofos in Cupriavidus nantongensis X1(T). Journal of Agricultural and Food Chemistry 68 (24):6493–501. doi: 10.1021/acs.jafc.0c00132.
  • Fang, L., Y. Xu, L. Xu, T. Shi, X. Ma, X. Wu, Q. X. Li, and R. Hua. 2021. Enhanced biodegradation of organophosphorus insecticides in industrial wastewater via immobilized Cupriavidus nantongensis X1(T). The Science of the Total Environment 755 (Pt 1):142505. doi: 10.1016/j.scitotenv.2020.142505.
  • Fernandez-Lopez, M. G., C. Popoca-Ursino, E. Sanchez-Salinas, R. Tinoco-Valencia, J. L. Folch-Mallol, E. Dantan-Gonzalez, and M. L. Ortiz-Hernandez. 2017. Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils. MicrobiologyOpen 6:E507. doi: 10.1002/mbo3.507.
  • Ferrando, L., and V. Matamoros. 2020. Attenuation of nitrates, anti­biotics and pesticides from groundwater using immobilised microalgae-based systems. The Science of the Total Environment 703:134740. doi: 10.1016/j.scitotenv.2019.134740.
  • Fomina, M., and G. M. Gadd. 2014. Biosorption: Current perspectives on concept, definition and application. Bioresource Technology 160:3–14. doi: 10.1016/j.biortech.2013.12.102.
  • Fu, G. M., Y. Chen, R. Y. Li, X. Q. Yuan, C. M. Liu, B. Li, and Y. Wan. 2017. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Preparative Biochemistry & Biotechnology 47 (8):782–8. doi: 10.1080/10826068.2017.1342260.
  • Fu, H., P. Tan, R. Wang, S. Li, H. Liu, Y. Yang, and Z. Wu. 2022. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials 424 (Pt B):127494. doi: 10.1016/j.jhazmat.2021.127494.
  • Gavahian, M., G. N. Mathad, C. A. F. Oliveira, and A. Mousavi Khaneghah. 2021. Combinations of emerging technologies with fermentation: Interaction effects for detoxification of mycotoxins? Food Research International 141:110104. doi: 10.1016/j.foodres.2021.110104.
  • Haque, M. A., S. Y. Hong, C. E. Hwang, S. C. Kim, and K. M. Cho. 2018. Cloning of an organophosphorus hydrolase (opdD) gene of Lactobacillus sakei WCP904 isolated from chlorpyrifos-impregnated kimchi and hydrolysis activities of its gene product for organophosphorus pesticides. Applied Biological Chemistry 61 (6):643–51. doi: 10.1007/s13765-018-0397-x.
  • Haque, A. M., C. E. Hwang, S. C. Kim, D. Y. Cho, H. Y. Lee, K. M. Cho, and J. H. Lee. 2020. Biodegradation of organophosphorus insecticides by two organophosphorus hydrolase genes (opdA and opdE) from isolated Leuconostoc mesenteroides WCP307 of kimchi origin. Process Biochemistry 94:340–8. doi: 10.1016/j.procbio.2020.04.026.
  • Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology 11 (8):506–14. doi: 10.1038/nrgastro.2014.66.
  • Hu, K., W. Deng, Y. Zhu, K. Yao, J. Li, A. Liu, X. Ao, L. Zou, K. Zhou, L. He, et al. 2019. Simultaneous degradation of beta-cypermethrin and 3-phenoxybenzoic acid by Eurotium cristatum ET1, a novel “golden flower fungus” strain isolated from Fu Brick Tea. Microbiology Open 8 (7):e776. doi: 10.1002/mbo3.776.
  • Islam, S. M., R. K. Math, K. M. Cho, W. J. Lim, S. Y. Hong, J. M. Kim, M. G. Yun, J. J. Cho, and H. D. Yun. 2010. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. Journal of Agricultural and Food Chemistry 58 (9):5380–6. doi: 10.1021/jf903878e.
  • Joo, S. H., and Y. S. Keum. 2018. Oxidative metabolism of quinazoline insecticide fenazaquin by Aspergillus niger. Applied Biological Chemistry 61 (6):681–7. doi: 10.1007/s13765-018-0404-2.
  • Kashyap, N., K. Roy, and V. S. Moholkar. 2020. Mechanistic investigations in ultrasound-assisted biodegradation of phenanthrene. Ultrasonics Sonochemistry 62:104890. doi: 10.1016/j.ultsonch.2019.104890.
  • Kumral, A., N. A. Kumral, and O. Gurbuz. 2020. Chlorpyrifos and deltamethrin degradation potentials of two Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) strains. Turkish Journal of Entomology 44 (2):165–76. doi: 10.16970/entoted.625156.
  • Li, C., Y. Ma, Z. Mi, R. Huo, T. Zhou, H. Hai, L. Y. Kwok, Z. Sun, Y. Chen, and H. Zhang. 2018. Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation. Frontiers in Microbiology 9:2048. doi: 10.3389/fmicb.2018.02048.
  • Liu, J., D. Pan, X. Wu, H. Chen, H. Cao, Q. X. Li, and R. Hua. 2018. Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilized Leucobacter sp. The Science of the Total Environment 615:78–86. doi: 10.1016/j.scitotenv.2017.09.208.
  • Liu, J., L. Tan, J. Wang, Z. Wang, H. Ni, and L. Li. 2016. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere 157:200–7. doi: 10.1016/j.chemosphere.2016.05.031.
  • Low, F. L., I. C. Shaw, and J. A. Gerrard. 2005. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening. Letters in Applied Microbiology 40 (2):133–7. doi: 10.1111/j.1472-765X.2004.01633.x.
  • Lu, J., R. Li, Y. Chang, Y. Zhang, N. Zhang, L. Tao, and W. Xu. 2021. Effects of different parameters on the removal of atrazine in a water environment by Aspergillus oryzae biosorption. Journal of Pesticide Science 46 (2):214–21. doi: 10.1584/jpestics.D20-043.
  • Lu, Q., Y. Zhang, N. Li, Y. Tang, C. Zhang, W. Wang, J. Zhou, F. Chen, and B. E. Rittmann. 2020. Using ultrasonic treated sludge to accelerate pyridine and p-nitrophenol biodegradation. International Biodeterioration & Biodegradation 153:105051. doi: 10.1016/j.ibiod.2020.105051.
  • Mali, H., C. Shah, D. M. Rudakiya, D. H. Patel, U. Trivedi, and R. B. Subramanian. 2022. A novel organophosphate hydrolase from Arthrobacter sp. HM01: Characterization and applications. Bioresource Technology 349:126870. doi: 10.1016/j.biortech.2022.126870.
  • Matsushita, T., S. Honda, T. Kuriyama, Y. Fujita, T. Kondo, Y. Matsui, N. Shirasaki, H. Takanashi, and T. Kameya. 2018. Identification of mutagenic transformation products generated during oxidation of 3-methyl-4-nitrophenol solutions by orbitrap tandem mass spectrometry and quantitative structure-activity relationship analyses. Water Research 129:347–56. doi: 10.1016/j.watres.2017.11.033.
  • Mesquini, J. A., A. C. Sawaya, B. G. Lopez, V. M. Oliveira, and N. R. Miyasaka. 2015. Detoxification of atrazine by endophytic Streptomyces sp. isolated from sugarcane and detection of nontoxic metabolite. Bulletin of Environmental Contamination and Toxicology 95 (6):803–9. doi: 10.1007/s00128-015-1673-7.
  • Mirza Alizadeh, A., H. Hosseini, N. Mollakhalili Meybodi, F. Hashempour-Baltork, M. Alizadeh-Sani, B. Tajdar-Oranj, M. Pirhadi, and A. Mousavi Khaneghah. 2022. Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Research International 152:110324. doi: 10.1016/j.foodres.2021.110324.
  • Mohammadi, M., M. Shadnoush, S. Sohrabvandi, M. Yousefi, N. Khorshidian, and A. M. Mortazavian. 2021. Probiotics as potential detoxification tools for mitigation of pesticides: A mini review. International Journal of Food Science & Technology 56 (5):2078–87. doi: 10.1111/ijfs.14880.
  • Mojiri, A., J. L. Zhou, B. Robinson, A. Ohashi, N. Ozaki, T. Kindaichi, H. Farraji, and M. Vakili. 2020. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 253:126646. doi: 10.1016/j.chemosphere.2020.126646.
  • Mortazavian, A. M., N. Khorshidian, and A. G. Cruz, eds. 2021. In Vitro Functionality of Probiotics in Food Products. Hauppauge, New York, USA: Nova Science Publishing Ltd.
  • Pandiselvam, R., R. Kaavya, Y. Jayanath, K. Veenuttranon, P. Lueprasitsakul, V. Divya, A. Kothakota, and S. V. Ramesh. 2020. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–A review. Trends in Food Science & Technology 97:38–54. doi: 10.1016/j.tifs.2019.12.017.
  • Peng, K., M. Koubaa, O. Bals, and E. Vorobiev. 2020. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Research International 137:109544. doi: 10.1016/j.foodres.2020.109544.
  • Pinto, G. D. A., I. M. Castro, M. A. L. Miguel, and M. G. B. Koblitz. 2019. Lactic acid bacteria – Promising technology for organophosphate degradation in food: A pilot study. LWT 110:353–9. doi: 10.1016/j.lwt.2019.02.037.
  • Pinto, A. P., C. Serrano, T. Pires, E. Mestrinho, L. Dias, D. M. Teixeira, and A. T. Caldeira. 2012. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. The Science of the Total Environment 435–436:402–10. doi: 10.1016/j.scitotenv.2012.07.027.
  • Rezaei, F., R. Nejati, M. Sayadi, and A. Nematollahi. 2021. Diazinon reduction in apple juice using probiotic bacteria during fermentation and storage under refrigeration. Environmental Science and Pollution Research International 28 (43):61213–24. doi: 10.1007/s11356-021-15007-w.
  • Sarao, L. K., and M. Arora. 2017. Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition 57 (2):344–71. doi: 10.1080/10408398.2014.887055.
  • Sarlak, Z., K. Khosravi-Darani, M. Rouhi, F. Garavand, R. Mohammadi, and M. R. Sobhiyeh. 2021. Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics. Food Control 126:108006. doi: 10.1016/j.foodcont.2021.108006.
  • Shah, P. C., V. R. Kumar, S. G. Dastager, and J. M. Khire. 2017. Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Express 7 (1):66. doi: 10.1186/s13568-017-0370-9.
  • Shi, T., L. Fang, H. Qin, X. Wu, Q. X. Li, and R. Hua. 2019. Minute-speed biodegradation of organophosphorus insecticides by Cupriavidus nantongensis X1(T). Journal of Agricultural and Food Chemistry 67 (49):13558–67. doi: 10.1021/acs.jafc.9b06157.
  • Soares, P. R. S., W. G. Birolli, I. M. Ferreira, and A. L. M. Porto. 2021. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Marine Pollution Bulletin 166:112185. doi: 10.1016/j.marpolbul.2021.112185.
  • Średnicka, P., E. Juszczuk-Kubiak, M. Wójcicki, M. Akimowicz, and M. Ł. Roszko. 2021. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food and Chemical Toxicology 153:112306. doi: 10.1016/j.fct.2021.112306.
  • Sun, T., J. Miao, M. Saleem, H. Zhang, Y. Yang, and Q. Zhang. 2020. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. Journal of Hazardous Materials 398:122941. doi: 10.1016/j.jhazmat.2020.122941.
  • Tian, J., Q. Dong, C. Yu, R. Zhao, J. Wang, and L. Chen. 2016. Biodegradation of the organophosphate trichlorfon and its major degradation products by a novel Aspergillus sydowii PA F-2. Journal of Agricultural and Food Chemistry 64 (21):4280–7. doi: 10.1021/acs.jafc.6b00909.
  • Tiwari, M. K., and S. Guha. 2014. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments. Water Research 51:73–85. doi: 10.1016/j.watres.2013.12.014.
  • Trinder, M., T. W. McDowell, B. A. Daisley, S. N. Ali, H. S. Leong, M. W. Sumarah, and G. Reid. 2016. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Applied and Environmental Microbiology 82 (20):6204–13. doi: 10.1128/AEM.01510-16.
  • U.S. EPA. 2016. Toxicity Estimation Software Tool (TEST). https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.
  • Umapathi, R., B. Park, S. Sonwal, G. M. Rani, Y. Cho, and Y. S. Huh. 2022. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science & Technology 119:69–89. doi: 10.1016/j.tifs.2021.11.018.
  • Verma, S., and S. Chatterjee. 2021. Biodegradation of profenofos, an acetylcholine esterase inhibitor by a psychrotolerant strain Rahnella sp. PFF2 and degradation pathway analysis. International Biodeterioration & Biodegradation 158:105169. doi: 10.1016/j.ibiod.2020.105169.
  • Wanapaisan, P., N. Laothamteep, F. Vejarano, J. Chakraborty, M. Shintani, C. Muangchinda, T. Morita, C. Suzuki-Minakuchi, K. Inoue, H. Nojiri, et al. 2018. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. Journal of Hazardous Materials 342:561–70. doi: 10.1016/j.jhazmat.2017.08.062.
  • Wang, B., Y. Ma, W. Zhou, J. Zheng, J. Zhu, J. He, and S. Li. 2011. Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1. World Journal of Microbiology and Biotechnology 27 (10):2315–24. doi: 10.1007/s11274-011-0698-2.
  • Wang, Y. S., T. H. Wu, Y. Yang, C. L. Zhu, C. L. Ding, and C. C. Dai. 2016. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 51 (5):316–25. doi: 10.1080/03601234.2015.1128744.
  • Wang, Y., X. Zhang, L. Wang, C. Wang, W. Fan, M. Wang, and J. Wang. 2019. Effective biodegradation of pentachloronitrobenzene by a novel strain Peudomonas putida QTH3 isolated from contaminated soil. Ecotoxicology and Environmental Safety 182:109463. doi: 10.1016/j.ecoenv.2019.109463.
  • Wei, J., Y. Chen, T. Atawula, W. Jide, and B. Wu. 2018. Degradation of pesticide residues by gaseous chlorine dioxide on table grapes. Postharvest Biology and Technology 137:142–8. doi: 10.1016/j.postharvbio.2017.12.001.
  • Wochner, K. F., T. A. Becker-Algeri, E. Colla, E. Badiale-Furlong, and D. A. Drunkler. 2018. The action of probiotic microorganisms on chemical contaminants in milk. Critical Reviews in Microbiology 44 (1):112–23. doi: 10.1080/1040841X.2017.1329275.
  • Xue, S., J. Li, L. Zhou, J. Gao, G. Liu, L. Ma, Y. He, and Y. Jiang. 2019. Simple purification and immobilization of his-tagged organophosphohydrolase from cell culture supernatant by metal organic frameworks for degradation of organophosphorus pesticides. Journal of Agricultural and Food Chemistry 67 (49):13518–25. doi: 10.1021/acs.jafc.9b05206.
  • Yang, Y., J. Shi, Y. Yang, J. Yin, J. Zhang, and B. Shao. 2019. Transformation of sulfamethazine during the chlorination disinfection process: Transformation, kinetics, and toxicology assessment. Journal of Environmental Sciences 76:48–56. doi: 10.1016/j.jes.2018.03.024.
  • Yigit, N., and Y. S. Velioglu. 2020. Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition 60 (21):3622–41. doi: 10.1080/10408398.2019.1702501.
  • Yu, Z., Y. Su, Y. Zhang, P. Zhu, Z. Mei, X. Zhou, and H. Yu. 2021. Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review. Food Chemistry 357:129805. doi: 10.1016/j.foodchem.2021.129805.
  • Yuan, S., C. Li, H. Yu, Y. Xie, Y. Guo, and W. Yao. 2021a. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. LWT 147:111672. doi: 10.1016/j.lwt.2021.111672.
  • Yuan, S., C. Li, H. Yu, Y. Xie, Y. Guo, and W. Yao. 2021b. Selective uptake determines the variation in degradation of organophosphorus pesticides by Lactobacillus plantarum. Food Chemistry 360:130106. doi: 10.1016/j.foodchem.2021.130106.
  • Yuan, S., F. Yang, H. Yu, Y. Xie, Y. Guo, and W. Yao. 2021. Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation. Food Chemistry 360:130042. doi: 10.1016/j.foodchem.2021.130042.
  • Yuan, S., F. Yang, H. Yu, Y. Xie, Y. Guo, and W. Yao. 2022. Ultrasonic stimulation of milk fermentation: Effects on degradation of pesticides and physiochemical, antioxidant, and flavor properties of yogurt. Journal of the Science of Food and Agriculture 102 (14):6612–22. doi: 10.1002/jsfa.12028.
  • Zhang, Y. H., D. Xu, X. H. Zhao, Y. Song, Y. L. Liu, and H. N. Li. 2016. Biodegradation of two organophosphorus pesticides in whole corn silage as affected by the cultured Lactobacillus plantarum. 3 Biotech 6 (1):73. doi: 10.1007/s13205-016-0364-3.
  • Zhang, X., Y. Gao, P. Zang, Y. Zhao, Z. He, H. Zhu, S. Song, and L. Zhang. 2019. Study on the simultaneous degradation of five pesticides by Paenibacillus polymyxa from Panax ginseng and the characteristics of their products. Ecotoxicology and Environmental Safety 168:415–22. doi: 10.1016/j.ecoenv.2018.10.093.
  • Zhang, M., Y. Ming, H. Guo, Y. Zhu, Y. Yang, S. Chen, L. He, X. Ao, A. Liu, K. Zhou, et al. 2021. Screening of lactic acid bacteria for their capacity to bind cypermethrin in vitro and the binding characteristics and its application. Food Chemistry 347:129000. doi: 10.1016/j.foodchem.2021.129000.
  • Zhang, M., Y. Wen, X. Luo, X. Wang, J. Li, A. Liu, L. He, S. Chen, X. Ao, Y. Yang, et al. 2020. Characterization, mechanism of cypermethrin biosorption by Saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells. Journal of Hazardous Materials 407:124350. doi: 10.1016/j.jhazmat.2020.124350.
  • Zhang, Y. H., D. Xu, J. Q. Liu, and X. H. Zhao. 2014. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production. Food Chemistry 164:173–8. doi: 10.1016/j.foodchem.2014.05.059.
  • Zhang, H., X. Yuan, T. Xiong, H. Wang, and L. Jiang. 2020. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal 398:125657. doi: 10.1016/j.cej.2020.125657.
  • Zhao, T., K. Hu, J. Li, Y. Zhu, A. Liu, K. Yao, and S. Liu. 2021. Current insights into the microbial degradation for pyrethroids: Strain safety, biochemical pathway, and genetic engineering. Chemosphere 279:130542. doi: 10.1016/j.chemosphere.2021.130542.
  • Zhao, S., W. Xu, W. Zhang, H. Wu, C. Guang, and W. Mu. 2021. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. Bioresource Technology 323:124641. doi: 10.1016/j.biortech.2020.124641.
  • Zhou, X. W., H. F. Liu, and X. H. Zhao. 2015. The potencies of three microorganisms to dissipate four organophosphorus pesticides in three food materials during traditional fermentation. Journal of Food Science and Technology 52 (11):7353–60. doi: 10.1007/s13197-015-1848-6.
  • Zhou, X. W., and X. H. Zhao. 2015. Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters. Journal of the Science of Food and Agriculture 95 (2):260–6. doi: 10.1002/jsfa.6710.
  • Zhu, Y., J. Li, K. Yao, N. Zhao, K. Zhou, X. Hu, L. Zou, X. Han, A. Liu, and S. Liu. 2016. Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation. Applied Microbiology and Biotechnology 100 (22):9773–86. doi: 10.1007/s00253-016-7847-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.