501
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Stability of milk proteins subjected to UHT treatments: challenges and future perspectives

, &

References

  • Abdallah, M., L. Azevedo-Scudeller, W. Sun, A. Descamps, P. Gourdin, M. Hiolle, A. Baniel, C. Lesur, and G. Delaplace. 2023. Impact of casein demineralization on the fouling of uht plant and the heat stability of high protein beverages: A pilot scale study. Food and Bioproducts Processing 137:45–55. doi: 10.1016/j.fbp.2022.10.012.
  • Anema, S. G. 2017. Storage stability and age gelation of reconstituted ultra-high temperature skim milk. International Dairy Journal 75:56–67. doi: 10.1016/j.idairyj.2017.06.006.
  • Anema, S. G. 2019. Age gelation, sedimentation, and creaming in uht milk: A review. Comprehensive Reviews in Food Science and Food Safety 18 (1):140–66. doi: 10.1111/1541-4337.12407.
  • Broyard, C., and F. Gaucheron. 2015. Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Science & Technology 95 (6):831–62. doi: 10.1007/s13594-015-0220-y.
  • Burton, H. 1968. Section G. Deposits from whole milk in heat treatment plant—A review and discussion. Journal of Dairy Research 35 (2):317–30. doi: 10.1017/S0022029900019038.
  • Çakır-Fuller, E. 2015. Enhanced heat stability of high protein emulsion systems provided by microparticulated whey proteins. Food Hydrocolloids. 47:41–50. doi: 10.1016/j.foodhyd.2015.01.003.
  • Chavan, R. S., S. R. Chavan, C. D. Khedkar, and A. H. Jana. 2011. Uht milk processing and effect of plasmin activity on shelf life: A review. Comprehensive Reviews in Food Science and Food Safety 10 (5):251–68. doi: 10.1111/j.1541-4337.2011.00157.x.
  • Chevalier, F., J. M. Chobert, M. Dalgalarrondo, Y. Choiset, and T. Haertlé. 2002. Maillard glycation of β‐lactoglobulin induces conformation changes. Nahrung/Food 46 (2):58–63. doi: 10.1002/1521-3803(20020301)46:2<58::AID-FOOD58>3.0.CO;2-Y.
  • Dalgleish, D. G., and M. Corredig. 2012. The structure of the casein micelle of milk and its changes during processing. Annual Review of Food Science and Technology 3 (1):449–67. doi: 10.1146/annurev-food-022811-101214.
  • Datta, N., and H. Deeth. 2001. Age gelation of uht milk—A review. Food and Bioproducts Processing 79 (4):197–210. doi: 10.1205/096030801753252261.
  • Datta, N., A. J. Elliott, M. L. Perkins, and H. C. Deeth. 2002. Ultra-high (UHT) treatment of milk: Comparison of direct and indirect modes of heating. Australian Journal of Dairy Technology 57:211–27.
  • De Kort, E., M. Minor, T. Snoeren, T. Van Hooijdonk, and E. Van Der Linden. 2012. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity. International Dairy Journal 26 (2):112–9. doi: 10.1016/j.idairyj.2012.03.014.
  • De Souza, A. B., A. Xavier, R. Stephani, and G. M. Tavares. 2023. Sedimentation in uht high-protein dairy beverages: Influence of sequential preheating coupled with homogenisation or supplementation with carbohydrates. International Dairy Journal 137:105505. doi: 10.1016/j.idairyj.2022.105505.
  • Deeth, H. C., and M. J. Lewis. 2015. Practical consequences of calcium addition to and removal from milk and milk products. International Journal of Dairy Technology 68 (1):1–10. doi: 10.1111/1471-0307.12188.
  • Drapala, K. P., M. A. Auty, D. M. Mulvihill, and J. A. O’mahony. 2016. Improving thermal stability of hydrolysed whey protein-based infant formula emulsions by protein–carbohydrate conjugation. Food Research International (Ottawa, Ont.) 88 (Pt A):42–51. doi: 10.1016/j.foodres.2016.01.028.
  • Eisner, M. D. 2021. Direct and indirect heating of milk–A technological perspective beyond time–temperature profiles. International Dairy Journal 122:105145. doi: 10.1016/j.idairyj.2021.105145.
  • Fox, P. F., and P. L. Mcsweeney. 2013. Advanced Dairy Chemistry. Volume 1: Proteins, Parts a&b. New York, NY: Springer.
  • Gaur, V. 2017. Sedimentation Reduction in UHT Milk. Canterbury, New Zeland: University of Canterbury. doi: 10.26021/2092.
  • Gaur, V., J. Schalk, and S. G. Anema. 2018. Sedimentation in uht milk. International Dairy Journal 78:92–102. doi: 10.1016/j.idairyj.2017.11.003.
  • Hebishy, E., Y. Joubran, E. Murphy, and J. A. O’mahony. 2019. Influence of calcium-binding salts on heat stability and fouling of whey protein isolate dispersions. International Dairy Journal 91:71–81. doi: 10.1016/j.idairyj.2018.12.003.
  • Horne, D. 2011. Casein, molecular structure. Encyclopedia of Dairy Sciences 3:772–9.
  • Kiani, H., M.-A. Ebrahimzadeh-Mousavi, Z. Emam-Djomeh, and M. S. Yarmand. 2008. Effect of gellan gum on the stability and physical properties of acidified milk protein solutions. Australian Journal of Dairy Technology 63 (3):87.
  • Kulmyrzaev, A., C. Bryant, and D. J. Mcclements. 2000. Influence of sucrose on the thermal denaturation, gelation, and emulsion stabilization of whey proteins. Journal of Agricultural and Food Chemistry 48 (5):1593–7. doi: 10.1021/jf9911949.
  • Lewis, M., A. Grandison, M.-J. Lin, and A. Tsioulpas. 2011. Ionic calcium and pH as predictors of stability of milk to UHT processing. Milchwissenschaft-Milk Science International 66 (2):197–200.
  • Liu, J., Q. Ru, and Y. Ding. 2012. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Research International 49 (1):170–83. doi: 10.1016/j.foodres.2012.07.034.
  • Malmgren, B., Y. Ardö, M. Langton, A. Altskär, M. G. Bremer, P. Dejmek, and M. Paulsson. 2017. Changes in proteins, physical stability and structure in directly heated uht milk during storage at different temperatures. International Dairy Journal 71:60–75. doi: 10.1016/j.idairyj.2017.03.002.
  • McMahon, D. J. 1996. Age-gelation of UHT milk: Changes that occur during storage on shelf-life and the mechanism by which age-gelation occurs, Heat Treatments and Alternative Methods. International Dairy Federation—Ref. S.I. 9602, Vienna, Austria, International Dairy Federation, pp 315–25.
  • Medrano, A., C. Abirached, L. Panizzolo, P. Moyna, and M. C. Añon. 2009. The effect of glycation on foam and structural properties of β-lactoglobulin. Food Chemistry 113 (1):127–33. doi: 10.1016/j.foodchem.2008.07.036.
  • Mehta, B. M., and H. C. Deeth. 2016. Blocked lysine in dairy products: Formation, occurrence, analysis, and nutritional implications. Comprehensive Reviews in Food Science and Food Safety 15 (1):206–18. doi: 10.1111/1541-4337.12178.
  • Nishinari, K., and E. Doi. 2012. Food hydrocolloids: Structures, Properties, and Functions. New York, NY: Springer Science & Business Media.
  • Nunes, L., and G. M. Tavares. 2019. Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends in Food Science & Technology 90:88–99. doi: 10.1016/j.tifs.2019.06.004.
  • O’connell, J., and P. Fox. 1999. Heat-induced changes in the calcium sensitivity of caseins. International Dairy Journal 9 (12):839–47. doi: 10.1016/S0958-6946(00)00012-1.
  • Oliveira, K. B., C. N. Kobori, and J. C. S. R. Ubaldo. 2019. Avaliação da qualidade físico-química, rotulagem e ocorrência de adulterações em amostras de leite uht. Revista Do Instituto De Laticínios Cândido Tostes 74 (3):195–206. doi: 10.14295/2238-6416.v74i3.757.
  • Oliver, C. M., L. D. Melton, and R. A. Stanley. 2006. Creating proteins with novel functionality via the maillard reaction: A review. Critical Reviews in Food Science and Nutrition 46 (4):337–50. doi: 10.1080/10408690590957250.
  • Pereyra, R., K. A. Schmidt, and L. Wicker. 1997. Interaction and stabilization of acidified casein dispersions with low and high methoxyl pectins. Journal of Agricultural and Food Chemistry 45 (9):3448–51. doi: 10.1021/jf970198f.
  • Prakash, S., T. Huppertz, O. Karvchuk, and H. Deeth. 2010. Ultra-high-temperature processing of chocolate flavoured milk. Journal of Food Engineering 96 (2):179–84. doi: 10.1016/j.jfoodeng.2009.07.008.
  • Rich, L. M., and E. A. Foegeding. 2000. Effects of sugars on whey protein isolate gelation. Journal of Agricultural and Food Chemistry 48 (10):5046–52. doi: 10.1021/jf000272l.
  • Saha, D., and S. Bhattacharya. 2010. Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology 47 (6):587–97. doi: 10.1007/s13197-010-0162-6.
  • Santiago, L. A., O. M. Fadel, and G. M. Tavares. 2021. How does the thermal-aggregation behavior of black cricket protein isolate affect its foaming and gelling properties? Food Hydrocolloids. 110:106169. doi: 10.1016/j.foodhyd.2020.106169.
  • Scudeller, L. A., P. Blanpain-Avet, T. Six, S. Bellayer, M. Jimenez, T. Croguennec, C. André, and G. Delaplace. 2021. Calcium chelation by phosphate ions and its influence on fouling mechanisms of whey protein solutions in a plate heat exchanger. Foods (Basel, Switzerland) 10 (2):259. doi: 10.3390/foods10020259.
  • Shi, D., C. Li, A. K. Stone, B. Guldiken, and M. T. Nickerson. 2023. Recent developments in processing, functionality, and food applications of microparticulated proteins. Food Reviews International 39 (3):1309–32. doi: 10.1080/87559129.2021.1933515.
  • Singh, J., A. Dean, S. Prakash, B. Bhandari, and N. Bansal. 2021. Ultra high temperature stability of milk protein concentrate: Effect of mineral salts addition. Journal of Food Engineering 300:110503. doi: 10.1016/j.jfoodeng.2021.110503.
  • Singh, J., S. Prakash, B. Bhandari, and N. Bansal. 2019a. Comparison of ultra high temperature (uht) stability of high protein milk dispersions prepared from milk protein concentrate (mpc) and conventional low heat skimmed milk powder (smp). Journal of Food Engineering 246:86–94. doi: 10.1016/j.jfoodeng.2018.11.003.
  • Singh, J., S. Prakash, B. Bhandari, and N. Bansal. 2019b. Ultra high temperature (uht) stability of casein-whey protein mixtures at high protein content: Heat induced protein interactions. Food Research International (Ottawa, Ont.) 116:103–13. doi: 10.1016/j.foodres.2018.12.049.
  • Singh, J., S. Prakash, B. Bhandari, and N. Bansal. 2020. Ultra‐high temperature (uht) stability of chocolate flavored high protein beverages. Journal of Food Science 85 (10):3012–9. doi: 10.1111/1750-3841.15397.
  • Smulders, P. E. A, and M. Somers. 2012. Heat stable nutritional beverage and method of preparing it: Google Patents.
  • Spagnuolo, P. A., D. Dalgleish, H. Goff, and E. Morris. 2005. Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocolloids. 19 (3):371–7. doi: 10.1016/j.foodhyd.2004.10.003.
  • Syrbe, A., W. Bauer, and H. Klostermeyer. 1998. Polymer science concepts in dairy systems—An overview of milk protein and food hydrocolloid interaction. International Dairy Journal 8 (3):179–93. doi: 10.1016/S0958-6946(98)00041-7.
  • Tobin, J. T., S. M. Fitzsimons, A. L. Kelly, P. M. Kelly, M. A. Auty, and M. A. Fenelon. 2010. Microparticulation of mixtures of whey protein and inulin. International Journal of Dairy Technology 63 (1):32–40. doi: 10.1111/j.1471-0307.2009.00550.x.
  • Tromp, R. H., C. G. De Kruif, M. Van Eijk, and C. Rolin. 2004. On the mechanism of stabilisation of acidified milk drinks by pectin. Food Hydrocolloids. 18 (4):565–72. doi: 10.1016/j.foodhyd.2003.09.005.
  • Truong, T. H., K. Kirkpatrick, and S. G. Anema. 2017. Role of β-lactoglobulin in the fouling of stainless steel surfaces by heated milk. International Dairy Journal 66:18–26. doi: 10.1016/j.idairyj.2016.10.007.
  • Wagoner, T. B., and E. A. Foegeding. 2017. Whey protein–pectin soluble complexes for beverage applications. Food Hydrocolloids. 63:130–8. doi: 10.1016/j.foodhyd.2016.08.027.
  • WHO. 2011. Codex alimentarius: General standard for food additives. Codex Alimentarius: General standard for food additives. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Wijayanti, H. B., N. Bansal, and H. C. Deeth. 2014. Stability of whey proteins during thermal processing: A review. Comprehensive Reviews in Food Science and Food Safety 13 (6):1235–51. doi: 10.1111/1541-4337.12105.
  • Zhang, G., E. A. Foegeding, and C. C. Hardin. 2004. Effect of sulfated polysaccharides on heat-induced structural changes in β-lactoglobulin. Journal of Agricultural and Food Chemistry 52 (12):3975–81. doi: 10.1021/jf035037s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.