2,745
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems

, &

References

  • Abdelsattar, A. S., F. Abdelrahman, A. Dawoud, I. F. Connerton, and A. El-Shibiny. 2019. Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. AMB Express 9 (1):98. doi:10.1186/s13568-019-0810-9.
  • Abedon, S. 2011. Phage therapy pharmacology: Calculating phage dosing. Advances in applied microbiology 77:1–40. doi:10.1016/B978-0-12-387044-5.00001-7.
  • Abhisingha, M., J. Dumnil, and C. Pitaksutheepong. 2020. Efficiency of phage cocktail to reduce Salmonella Typhimurium on chicken meat during low temperature storage. LWT 129:109580. doi:10.1016/j.lwt.2020.109580.
  • Ackermann, H. W. 2001. Frequency of morphological phage descriptions in the year 2000. Archives of Virology 146 (5):843–57. doi:10.1007/s007050170120.
  • Ackermann, H.-W. 2003. Bacteriophage observations and evolution. Research in Microbiology 154 (4):245–51. doi:10.1016/s0923-2508(03)00067-6.
  • Ackermann, H.-W. 2009. Phage classification and characterization. In Methods in molecular biology, 127–40. New York, NY: Humana Press. doi:10.1007/978-1-60327-164-6_13.
  • AgriPhage™. n.d. Product info. Accessed March 16, 2023. https://www.agriphage.com/product-info/.
  • Ahmadi, H., D. Radford, A. M. Kropinski, L.-T. Lim, and S. Balamurugan. 2017. Thermal-stability and reconstitution ability of Listeria phages P100 and A511. Frontiers in Microbiology 8:2375. doi:10.3389/fmicb.2017.02375.
  • Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: Classification, preparation, and applications. Nanoscale Research Letters 8 (1):102. doi:10.1186/1556-276X-8-102.
  • Alves, D., A. Marques, C. Milho, M. J. Costa, L. M. Pastrana, M. A. Cerqueira, and S. M. Sillankorva. 2019. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology 291:121–7. doi:10.1016/j.ijfoodmicro.2018.11.026.
  • Alves, D., M. A. Cerqueira, L. M. Pastrana, and S. Sillankorva. 2020. Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Research International (Ottawa, Ont.) 128:108791. doi:10.1016/j.foodres.2019.108791.
  • Amarillas, L., L. Lightbourn‐Rojas, A. K. Angulo‐Gaxiola, J. Basilio Heredia, A. González‐Robles, and J. León‐Félix. 2018. The antibacterial effect of chitosan‐based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. Journal of Food Safety 38 (6):e12571. doi:10.1111/jfs.12571.
  • Anany, H., W. Chen, R. Pelton, and M. W. Griffiths. 2011. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Applied and Environmental Microbiology 77 (18):6379–87. doi:10.1128/AEM.05493-11.
  • APS Biocontrol. n.d. Products. Accessed March 16, 2023. https://www.apsbiocontrol.com/technology.
  • ARM & HAMMER™. n.d. Finalyse SAL. Accessed March 16, 2023. https://ahfoodchain.com/en/segments/food-production/products/finalyse-sal.
  • Atterbury, R. J., M. A. P. V. Bergen, F. Ortiz, M. A. Lovell, J. A. Harris, A. D. Boer, J. A. Wagenaar, V. M. Allen, and P. A. Barrow. 2007. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Applied and Environmental Microbiology 73 (14):4543–9. doi:10.1128/AEM.00049-07.
  • Atterbury, R. J., P. L. Connerton, C. E. R. Dodd, C. E. D. Rees, and I. F. Connerton. 2003. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Applied and Environmental Microbiology 69 (10):6302–6. doi:10.1128/AEM.69.10.6302-6306.2003.
  • Bai, J., B. Jeon, and S. Ryu. 2019. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiology 77:52–60. doi:10.1016/j.fm.2018.08.011.
  • Balogh, B., J. B. Jones, M. T. Momol, S. M. Olson, A. Obradovic, P. King, and L. E. Jackson. 2003. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease 87 (8):949–54. doi:10.1094/pdis.2003.87.8.949.
  • Bao, H., P. Zhang, H. Zhang, Y. Zhou, L. Zhang, and R. Wang. 2015. Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7 (8):4836–53. doi:10.3390/v7082847.
  • Bardina, C., D. A. Spricigo, P. Cortés, and M. Llagostera. 2012. Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Applied and Environmental Microbiology 78 (18):6600–7. doi:10.1128/AEM.01257-12.
  • Bennacef, C., S. Desobry-Banon, L. Probst, and S. Desobry. 2021. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocolloids. 118:106782. doi:10.1016/j.foodhyd.2021.106782.
  • Bigwood, T., J. A. Hudson, and C. Billington. 2009. Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiology Letters 291 (1):59–64. doi:10.1111/j.1574-6968.2008.01435.x.
  • Bigwood, T., J. A. Hudson, C. Billington, G. V. Carey-Smith, and J. A. Heinemann. 2008. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiology 25 (2):400–6. doi:10.1016/j.fm.2007.11.003.
  • Blaustein, A. R., and C. Searle. 2013. Ultraviolet radiation. In Encyclopedia of biodiversity, 296–303. Cambridge, MA: Elsevier. doi:10.1016/b978-0-12-384719-5.00147-7.
  • Bonnain, C., M. Breitbart, and K. N. Buck. 2016. The ferrojan horse hypothesis: Iron-virus interactions in the ocean. Frontiers in Marine Science 3:1–11. doi:10.3389/fmars.2016.00082.
  • Boo, Y. C. 2020. Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials. Antioxidants 9 (7):637. https://link.gale.com/apps/doc/A641063408/AONE?u=learn&sid=bookmark-AONE&xid=4e5aba6c. doi:10.3390/antiox9070637.
  • Borin, J. M., S. Avrani, J. E. Barrick, K. L. Petrie, and J. R. Meyer. 2021. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proceedings of the National Academy of Sciences 118 (23):e2104592118. doi:10.1073/pnas.2104592118.
  • Born, Y., L. Bosshard, B. Duffy, M. J. Loessner, and L. Fieseler. 2015. Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage, 5 (4):e1074330. doi:10.1080/21597081.2015.1074330.
  • Brimrose. n.d. Prevention & treatment. Accessed March 16, 2023. https://www.brimrosetechnology.com/prevention-treatment.
  • Brovko, L. Y., H. Anany, and M. W. Griffiths. 2012. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. In Advances in food and nutrition research, ed. J. Henry, vol. 67, 241–88. Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-394598-3.00006-X.
  • Bueno, E., P. García, B. Martínez, and A. Rodríguez. 2012. Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology 158 (1):23–7. doi:10.1016/j.ijfoodmicro.2012.06.012.
  • Burrell, C. J., C. R. Howard, and F. A. Murphy. 2017. Virion structure and composition. In Fenner and white’s medical virology, C. J. Burrell, C. R. Howard, & F. A. Murphy eds., 5th ed., 27–37. Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-375156-0.00003-5.
  • Cademartiri, R., H. Anany, I. Gross, R. Bhayani, M. Griffiths, and M. A. Brook. 2010. Immobilization of bacteriophages on modified silica particles. Biomaterials 31 (7):1904–10. doi:10.1016/j.biomaterials.2009.11.029.
  • Campbell, A. 2003. The future of bacteriophage biology. Nature Reviews. Genetics 4 (6):471–7. doi:10.1038/nrg1089.
  • Carrigy, N. B., L. Liang, H. Wang, S. Kariuki, T. E. Nagel, I. F. Connerton, and R. Vehring. 2020. Trileucine and pullulan improve anti-campylobacter bacteriophage stability in engineered spray-dried microparticles. Annals of Biomedical Engineering 48 (4):1169–80. doi:10.1007/s10439-019-02435-6.
  • Carter, C. D., A. Parks, T. Abuladze, M. Li, J. Woolston, J. Magnone, A. Senecal, A. M. Kropinski, and A. Sulakvelidze. 2012. Bacteriophage cocktail significantly reduces Escherichia coli O157. Bacteriophage, 2 (3):178–85. doi:10.4161/bact.22825.
  • Chang, R. Y., J. Wong, A. Mathai, S. Morales, E. Kutter, W. Britton, J. Li, and H.-K. Chan. 2017. Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 121:1–13. doi:10.1016/j.ejpb.2017.09.002.
  • CheilJedang. n.d. Biotector. Accessed March 16, 2023. https://www.cjbio.net/kr/products/biotector.do.
  • Chen, Y., E. Sun, J. Song, Y. Tong, and B. Wu. 2018. Three Salmonella enterica serovar Enteritidis bacteriophages from the Siphoviridae family are promising candidates for phage therapy. Canadian Journal of Microbiology 64 (11):865–75. doi:10.1139/cjm-2017-0740.
  • Chickering, D. E., and E. Mathiowitz. 1995. Bioadhesive microspheres: I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa. Journal of Controlled Release 34 (3):251–62. doi:10.1016/0168-3659(95)00011-v.
  • Choi, I., D. S. Yoo, Y. Chang, S. Y. Kim, and J. Han. 2021. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chemistry 346:128883. doi:10.1016/j.foodchem.2020.128883.
  • Choińska-Pulit, A., P. Mituła, P. Śliwka, W. Łaba, and A. Skaradzińska. 2015. Bacteriophage encapsulation: Trends and potential applications. Trends in Food Science & Technology 45 (2):212–21. doi:10.1016/j.tifs.2015.07.001.
  • Clavijo, V., D. Baquero, S. Hernandez, J. C. Farfan, J. Arias, A. Arévalo, P. Donado-Godoy, and M. Vives-Flores. 2019. Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poultry Science 98 (10):5054–63. doi:10.3382/ps/pez251.
  • Cole, L. 2005. Xanthomonas Campestris pv. Vesicatoria and Pseudomonas Syringae pv. tomato specific bacteriophages; exemption from the requirement of a tolerance (Document No. 05-24540). Environmental Protection Agency. https://www.federalregister.gov/documents/2005/12/28/05-24540/xanthomonas-campestris-pv-vesicatoria-and-pseudomonas-syringae-pv-tomato-specific-bacteriophages
  • Colom, J., M. Cano-Sarabia, J. Otero, J. Aríñez-Soriano, P. Cortés, D. Maspoch, and M. Llagostera. 2017. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Scientific Reports 7 (1):41441. doi:10.1038/srep41441.
  • Colom, J., M. Cano-Sarabia, J. Otero, P. Cortés, D. Maspoch, and M. Llagostera. 2015. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Applied and Environmental Microbiology 81 (14):4841–9. doi:10.1128/aem.00812-15.
  • Cong, C., B. Wei, H. Cui, X. Li, Y. Yuan, L. Wang, S. Li, and Y. Xu. 2021. Isolation, characterization and comparison of lytic Epseptimavirus phages targeting Salmonella. Food Research International (Ottawa, Ont.) 147:110480. doi:10.1016/j.foodres.2021.110480.
  • Cuervo, A., M. Fàbrega-Ferrer, C. Machón, J. J. Conesa, F. J. Fernández, R. Pérez-Luque, M. Pérez-Ruiz, J. Pous, M. C. Vega, J. L. Carrascosa, et al. 2019. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nature Communications 10 (1):3746. doi:10.1038/s41467-019-11705-9.
  • Cui, H., L. Yuan, and L. Lin. 2017. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydrate Polymers 177:156–64. doi:10.1016/j.carbpol.2017.08.137.
  • Dąbrowska, K. 2019. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Medicinal Research Reviews 39 (5):2000–25. doi:10.1002/med.21572.
  • De León-Zapata, M. A., L. Pastrana-Castro, M. L. Rua-Rodríguez, O. B. Alvarez-Pérez, R. Rodríguez-Herrera, and C. N. Aguilar. 2016. Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi. Food Chemistry 198:62–7. doi:10.1016/j.foodchem.2015.11.034.
  • Degroot, A. R., and R. J. Neufeld. 2001. Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes. Enzyme and Microbial Technology 29 (6-7):321–7. doi:10.1016/s0141-0229(01)00393-3.
  • Díaz, A., L. J. Del Valle, N. Rodrigo, M. T. Casas, G. Chumburidze, R. Katsarava, and J. Puiggalí. 2018. Antimicrobial activity of poly(ester urea) electrospun fibers loaded with bacteriophages. Fibers 6 (2):33. https://www.mdpi.com/2079-6439/6/2/33. doi:10.3390/fib6020033.
  • Dini, C., G. A. Islan, P. J. De Urraza, and G. R. Castro. 2012. Novel biopolymer matrices for microencapsulation of phages: Enhanced protection against acidity and protease activity. Macromolecular Bioscience 12 (9):1200–8. doi:10.1002/mabi.201200109.
  • Donati, V. L., I. Dalsgaard, K. Sundell, D. Castillo, M. Er-Rafik, J. Clark, T. Wiklund, M. Middelboe, and L. Madsen. 2021. Phage-mediated control of Flavobacterium psychrophilum in aquaculture: In vivo experiments to compare delivery methods. Frontiers in Microbiology 12:628309. doi:10.3389/fmicb.2021.628309.
  • Egyeki, M., G. Turóczy, Z. Majer, K. Tóth, A. Fekete, P. Maillard, and G. Csík. 2003. Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: Efficiency and mechanism of action. Biochimica et Biophysica Acta 1624 (1-3):115–24. doi:10.1016/j.bbagen.2003.10.003.
  • El-Shibiny, A., A. Scott, A. Timms, Y. Metawea, P. Connerton, and I. Connerton. 2009. Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. Journal of Food Protection 72 (4):733–40. doi:10.4315/0362-028x-72.4.733.
  • Endersen, L., and A. Coffey. 2020. The use of bacteriophages for food safety. Current Opinion in Food Science 36:1–8. doi:10.1016/j.cofs.2020.10.006.
  • Erbay, Z., N. Koca, F. Kaymak-Ertekin, and M. Ucuncu. 2015. Optimization of spray drying process in cheese powder production. Food and Bioproducts Processing 93:156–65. doi:10.1016/j.fbp.2013.12.008.
  • Ergin, F. 2022. Effect of freeze drying, spray drying and electrospraying on the morphological, thermal, and structural properties of powders containing phage Felix O1 and activity of phage Felix O1 during storage. Powder Technology 404:117516. doi:10.1016/j.powtec.2022.117516.
  • Ergin, F., Z. Atamer, E. M. Comak Göcer, M. Demir, J. Hinrichs, and A. Kucukcetin. 2021. Optimization of Salmonella bacteriophage microencapsulation in alginate-caseinate formulation using vibrational nozzle technique. Food Hydrocolloids. 113:106456. doi:10.1016/j.foodhyd.2020.106456.
  • Fekete, A., G. Rontó, L. A. Feigin, V. V. Tikhonychev, and K. Módos. 1982. Temperature dependent structural changes of intraphage T7 DNA. Biophysics of Structure and Mechanism 9 (1):1–9. doi:10.1007/bf00536011.
  • Fellows, P. 2017. Pasteurisation. In Food processing technology, 563–80. Amsterdam, NL: Elsevier. doi:10.1016/b978-0-08-100522-4.00011-0.
  • Ferguson, S., C. Roberts, E. Handy, and M. Sharma. 2013. Lytic bacteriophages reduce Escherichia coli O157. Bacteriophage, 3 (1):e24323. doi:10.4161/bact.24323.
  • Flaherty, J. E., G. C. Somodi, J. B. Jones, B. K. Harbaugh, and L. E. Jackson. 2000. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 35 (5):882–4. doi:10.21273/HORTSCI.35.5.882.
  • Galogahi, F. M., Y. Zhu, H. An, and N.-T. Nguyen. 2020. Core-shell microparticles: Generation approaches and applications. Journal of Science: Advanced Materials and Devices, 5 (4):417–35. doi:10.1016/j.jsamd.2020.09.001.
  • Gbassi, G. K., and T. Vandamme. 2012. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics 4 (1):149–63. doi:10.3390/pharmaceutics4010149.
  • Gill, J. J. 2010. Practical and theoretical considerations for the use of bacteriophages in food systems. In Bacteriophages in the Control of Food‐ and Waterborne Pathogens, eds P. M. Sabour and M. W. Griffiths, 217–35. Amsterdam, Netherlands. doi:10.1128/9781555816629.ch11.
  • Gomez-Garcia, J., A. Chavez-Carbajal, N. Segundo-Arizmendi, M. G. Baron-Pichardo, S. E. Mendoza-Elvira, E. Hernandez-Baltazar, A. P. Hynes, and O. Torres-Angeles. 2021. Efficacy of Salmonella bacteriophage S1 delivered and released by alginate beads in a chicken model of infection. Viruses 13 (10):1932. doi:10.3390/v13101932.
  • González-Menéndez, E., L. Fernández, D. Gutiérrez, D. Pando, B. Martínez, A. Rodríguez, and P. García. 2018. Strategies to encapsulate the Staphylococcus aureus bacteriophage phiIPLA-RODI. Viruses 10 (9):495. doi:10.3390/v10090495.
  • Guan, J., A. Oromí-Bosch, S. D. Mendoza, S. Karambelkar, J. D. Berry, and J. Bondy-Denomy. 2022. Bacteriophage genome engineering with CRISPR–Cas13a. Nature Microbiology 7 (12):1956–66. doi:10.1038/s41564-022-01243-4.
  • Guenther, S., D. Huwyler, S. Richard, and M. J. Loessner. 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and Environmental Microbiology 75 (1):93–100. doi:10.1128/AEM.01711-08.
  • Guo, Y., J. Li, M. S. Islam, T. Yan, Y. Zhou, L. Liang, I. F. Connerton, K. Deng, and J. Li. 2021. Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Research International (Ottawa, Ont.) 147:110492. doi:10.1016/j.foodres.2021.110492.
  • Hammerl, J. A., A. Barac, P. Erben, J. Fuhrmann, A. Gadicherla, F. Kumsteller, A. Lauckner, F. Müller, and S. Hertwig. 2021. Properties of two broad host range phages of Yersinia enterocolitica isolated from wild animals. International Journal of Molecular Sciences 22 (21):11381. doi:10.3390/ijms222111381.
  • Handa, H., S. Gurczynski, M. P. Jackson, G. Auner, J. Walker, and G. Mao. 2008. Recognition of Salmonella typhimurium by immobilized phage P22 monolayers. Surface Science 602 (7):1392–400. doi:10.1016/j.susc.2008.01.036.
  • Hankin, E. H. 1896. L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur 10 (11):511–23.
  • Hegedüs, M., G. Kovács, K. Módos, G. Rontó, H. Lammer, C. Panitz, and A. Fekete. 2006. Exposure of phage T7 to simulated space environment: The effect of vacuum and UV-C radiation. Journal of Photochemistry and Photobiology. B, Biology 82 (2):94–104. doi:10.1016/j.jphotobiol.2005.09.002.
  • Hodyra-Stefaniak, K., P. Miernikiewicz, J. Drapała, M. Drab, E. Jończyk-Matysiak, D. Lecion, Z. Kaźmierczak, W. Beta, J. Majewska, M. Harhala, et al. 2015. Mammalian host-versus-phage immune response determines phage fate in vivo. Scientific Reports 5 (1):14802. doi:10.1038/srep14802.
  • Hosseinidoust, Z., A. L. J. Olsson, and N. Tufenkji. 2014. Going viral: Designing bioactive surfaces with bacteriophage. Colloids and Surfaces. B, Biointerfaces 124:2–16. doi:10.1016/j.colsurfb.2014.05.036.
  • Hu, Y. O. O., L. W. Hugerth, C. Bengtsson, A. Alisjahbana, M. Seifert, A. Kamal, Å. Sjöling, T. Midtvedt, E. Norin, J. Du, et al. 2018. Bacteriophages synergize with the gut microbial community to combat Salmonella. mSystems 3 (5):e00119-00118. doi:10.1128/mSystems.00119-18.
  • Huang, C., J. Shi, W. Ma, Z. Li, J. Wang, J. Li, and X. Wang. 2018. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Research International (Ottawa, Ont.) 111:631–41. doi:10.1016/j.foodres.2018.05.071.
  • Huang, K., and N. Nitin. 2019. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 502:18–25. doi:10.1016/j.aquaculture.2018.12.026.
  • Huang, K., and N. Nitin. 2020. Food-grade microscale dispersion enhances UV stability and antimicrobial activity of a model bacteriophage (T7) for reducing bacterial contamination (Escherichia coli) on the plant surface. Journal of Agricultural and Food Chemistry 68 (39):10920–7. doi:10.1021/acs.jafc.0c02795.
  • Hudson, J. A., T. Bigwood, A. Premaratne, C. Billington, B. Horn, and L. McIntyre. 2010. Potential to use ultraviolet-treated bacteriophages to control foodborne pathogens. Foodborne Pathogens and Disease 7 (6):687–93. doi:10.1089/fpd.2009.0453.
  • Intralytix. n.d. 2023. ListShield™. Accessed August 24, 2023. https://www.intralytix.com/product/1.
  • Intralytix. n.d. Bacteriaophage products. Accessed March 16, 2023. http://www.intralytix.com/index.php?page=prod.
  • Iriarte, F. B., B. Balogh, M. T. Momol, L. M. Smith, M. Wilson, and J. B. Jones. 2007. Factors affecting survival of bacteriophage on tomato leaf surfaces. Applied and Environmental Microbiology 73 (6):1704–11. doi:10.1128/AEM.02118-06.
  • Islam, M. S., Y. Zhou, L. Liang, I. Nime, K. Liu, T. Yan, X. Wang, and J. Li. 2019. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses 11 (9):841. doi:10.3390/v11090841.
  • Jaiswal, A., H. Koley, A. Ghosh, A. Palit, and B. Sarkar. 2013. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes and Infection 15 (2):152–6. doi:10.1016/j.micinf.2012.11.002.
  • Jancheva, M., and T. Böttcher. 2021. A metabolite of Pseudomonas triggers prophage-selective lysogenic to lytic conversion in Staphylococcus aureus. Journal of the American Chemical Society 143 (22):8344–51. doi:10.1021/jacs.1c01275.
  • Jarvis, N. A., C. A. O’Bryan, T. M. Dawoud, S. H. Park, Y. M. Kwon, P. G. Crandall, and S. C. Ricke. 2016. An overview of Salmonella thermal destruction during food processing and preparation. Food Control. 68:280–90. doi:10.1016/j.foodcont.2016.04.006.
  • Jurczak-Kurek, A., T. Gąsior, B. Nejman-Faleńczyk, S. Bloch, A. Dydecka, G. Topka, A. Necel, M. Jakubowska-Deredas, M. Narajczyk, M. Richert, et al. 2016. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6 (1):34338. doi:10.1038/srep34338.
  • Kadiri, A.-C., R. Günther, and B. R. Fischer, (2019). Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery. Catalysts, 9(9), 723. doi:10.3390/catal9090723.
  • Kafri, Y., D. Mukamel, and L. Peliti. 2000. Why is the DNA denaturation transition first order? Physical Review Letters 85 (23):4988–91. doi:10.1103/physrevlett.85.4988.
  • Kasman, L. M., A. Kasman, C. Westwater, J. Dolan, M. G. Schmidt, and J. S. Norris. 2002. Overcoming the phage replication threshold: A mathematical model with implications for phage therapy. Journal of Virology 76 (11):5557–64. doi:10.1128/JVI.76.11.5557-5564.2002.
  • Kikuchi, A., M. Kawabuchi, A. Watanabe, M. Sugihara, Y. Sakurai, and T. Okano. 1999. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. Journal of Controlled Release 58 (1):21–8. doi:10.1016/s0168-3659(98)00141-2.
  • Kim, B. J., T. Park, H. C. Moon, S.-Y. Park, D. Hong, E. H. Ko, J. Y. Kim, J. W. Hong, S. W. Han, Y.-G. Kim, et al. 2014. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation. Angewandte Chemie (International ed. in English) 53 (52):14443–6. doi:10.1002/anie.201408454.
  • Kim, C., R. Alrefaei, M. Bushlaibi, E. Ndegwa, P. Kaseloo, and C. Wynn. 2019. Influence of growth temperature on thermal tolerance of leading foodborne pathogens. Food Science & Nutrition 7 (12):4027–36. doi:10.1002/fsn3.1268.
  • Kim, S. H., S. Kim, S. G. Chun, M-s Park, J. H. Park, and B-k Lee. 2008. Phage types and pulsed-field gel electrophoresis patterns of Salmonella enterica serovar Enteritidis isolated from humans and chickens. Journal of Microbiology (Seoul, Korea) 46 (2):209–13. doi:10.1007/s12275-007-0197-1.
  • Kim, S., S.-H. Kim, M. Rahman, and J. Kim. 2018. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. Journal of Microbiology (Seoul, Korea) 56 (12):917–25. doi:10.1007/s12275-018-8310-1.
  • Kolenda, C., Medina, M., Bonhomme, M., Laumay, F., Roussel-Gaillard, T., Martins-Simoes, P., Tristan, A., Pirot, F., Ferry, T., Laurent, F., & Santella, B. (2022). Phage therapy against Staphylococcus aureus: Selection and optimization of production protocols of novel broad-spectrum silviavirus phages. Pharmaceutics, 14(9), 1885. doi:10.3390/pharmaceutics14091885.
  • Koo, C. K., K. Senecal, A. Senecal, and S. R. Nugen. 2016. Dehydration of bacteriophages in electrospun nanofibers: Effect of excipients in polymeric solutions. Nanotechnology 27 (48):485102. doi:10.1088/0957-4484/27/48/485102.
  • Korehei, R., and J. F. Kadla. 2014. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydrate Polymers 100:150–7. doi:10.1016/j.carbpol.2013.03.079.
  • Korehei, R., and J. Kadla. 2013. Incorporation of T4 bacteriophage in electrospun fibres. Journal of Applied Microbiology 114 (5):1425–34. doi:10.1111/jam.12158.
  • Krasaekoopt, W., B. Bhandari, and H. Deeth. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13 (1):3–13. doi:10.1016/s0958-6946(02)00155-3.
  • Kutter, E., B. Guttman, and K. Carlson. 1994. The transition from host to phage metabolism after T4 infection. Molecular Biology of Bacteriophage 4:343–6.
  • Lepock, J. R. 2004. Role of nuclear protein denaturation and aggregation in thermal radiosensitization. International Journal of Hyperthermia 20 (2):115–30. doi:10.1080/02656730310001637334.
  • Li, D., Z. Wei, and C. Xue. 2021. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety 20 (6):5345–69. doi:10.1111/1541-4337.12840.
  • Lima, D. S., E. T. Tenório-Neto, M. K. Lima-Tenório, M. R. Guilherme, D. B. Scariot, C. V. Nakamura, E. C. Muniz, and A. F. Rubira. 2018. pH-responsive alginate-based hydrogels for protein delivery. Journal of Molecular Liquids 262:29–36. doi:10.1016/j.molliq.2018.04.002.
  • Liu, A., Y. Liu, L. Peng, X. Cai, L. Shen, M. Duan, Y. Ning, S. Liu, C. Li, Y. Liu, et al. 2020. Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on lettuce and tofu. LWT 118:108791. doi:10.1016/j.lwt.2019.108791.
  • López de Dicastillo, C., L. Settier-Ramírez, R. Gavara, P. Hernández-Muñoz, and G. López Carballo. 2021. Development of biodegradable films loaded with phages with antilisterial properties. Polymers 13 (3):327. https://www.mdpi.com/2073-4360/13/3/327. doi:10.3390/polym13030327.
  • Lorenzo-Rebenaque, L., D. J. Malik, P. Catalá-Gregori, C. Marin, and S. Sevilla-Navarro. 2021. In Vitro and In Vivo gastrointestinal survival of non-encapsulated and microencapsulated Salmonella bacteriophages: Implications for bacteriophage therapy in poultry. Pharmaceuticals (Basel, Switzerland) 14 (5):434. doi:10.3390/ph14050434.
  • Lu, T. K., and J. J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America 104 (27):11197–202. doi:10.1073/pnas.0704624104.
  • Luna-Solano, G., M. A. Salgado-Cervantes, G. C. Rodríguez-Jimenes, and M. A. García-Alvarado. 2005. Optimization of brewer’s yeast spray drying process. Journal of Food Engineering 68 (1):9–18. doi:10.1016/j.jfoodeng.2004.05.019.
  • Ma, Y., J. C. Pacan, Q. Wang, P. M. Sabour, X. Huang, and Y. Xu. 2012. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloids. 26 (2):434–40. doi:10.1016/j.foodhyd.2010.11.017.
  • Ma, Y., J. C. Pacan, Q. Wang, Y. Xu, X. Huang, A. Korenevsky, and P. M. Sabour. 2008. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Applied and Environmental Microbiology 74 (15):4799–805. doi:10.1128/AEM.00246-08.
  • Ma, Y.-H., G. S. Islam, Y. Wu, P. M. Sabour, J. R. Chambers, Q. Wang, S. X. Y. Wu, and M. W. Griffiths. 2016. Temporal distribution of encapsulated bacteriophages during passage through the chick gastrointestinal tract. Poultry Science 95 (12):2911–20. doi:10.3382/ps/pew260.
  • Manohar, P., and N. Ramesh. 2019. Improved lyophilization conditions for long-term storage of bacteriophages. Scientific Reports 9 (1):15242. doi:10.1038/s41598-019-51742-4.
  • Masuma, R., S. Kashima, M. Kurasaki, and T. Okuno. 2013. Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells. Journal of Photochemistry and Photobiology. B, Biology 125:202–8. doi:10.1016/j.jphotobiol.2013.06.003.
  • Merabishvili, M., C. Vervaet, J.-P. Pirnay, D. De Vos, G. Verbeken, J. Mast, N. Chanishvili, and M. Vaneechoutte. 2013. Stability of Staphylococcus aureus phage ISP after freeze-Drying (Lyophilization). PLos One, 8 (7):e68797. doi:10.1371/journal.pone.0068797.
  • Miguéis, S., C. Saraiva, and A. Esteves. 2017. Efficacy of LISTEX P100 at different concentrations for reduction of Listeria monocytogenes inoculated in sashimi. Journal of Food Protection 80 (12):2094–8. doi:10.4315/0362-028x.jfp-17-098.
  • Moghtader, F., S. Eğri, and E. Piskin. 2017. Phages in modified alginate beads. Artificial Cells, Nanomedicine, and Biotechnology 45 (2):357–63. doi:10.3109/21691401.2016.1153485.
  • Moye, Z., J. Woolston, and A. Sulakvelidze. 2018. Bacteriophage applications for food production and processing. Viruses 10 (4):205. doi:10.3390/v10040205.
  • Nanduri, V., S. Balasubramanian, S. Sista, V. J. Vodyanoy, and A. L. Simonian. 2007. Highly sensitive phage-based biosensor for the detection of β-galactosidase. Analytica Chimica Acta 589 (2):166–72. doi:10.1016/j.aca.2007.02.071.
  • Niyomdecha, S., W. Limbut, A. Numnuam, P. Kanatharana, R. Charlermroj, N. Karoonuthaisiri, and P. Thavarungkul. 2018. Phage-based capacitive biosensor for Salmonella detection. Talanta 188:658–64. doi:10.1016/j.talanta.2018.06.033.
  • O’Connell, L., P. R. Marcoux, and Y. Roupioz. 2021. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomaterials Science & Engineering 7 (6):1987–2014. doi:10.1021/acsbiomaterials.1c00013.
  • Oliveira, M., I. Viñas, P. Colàs, M. Anguera, J. Usall, and M. Abadias. 2014. Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiology 38:137–42. doi:10.1016/j.fm.2013.08.018.
  • Orlova, E. V. 2012. Bacteriophages and their structural organisation. In Bacteriophages, ed. I. Kurtböke. InTech. doi:10.5772/34642.
  • Pacios-Michelena, S., R. Rodríguez-Herrera, G. Rincón-Enríquez, R. Ramos-González, A. C. Flores-Gallegos, M. L. Chávez-González, J. E. de la Peña González, and A. Ilina. 2023. Effect of encapsulation and natural polyphenolic compounds on bacteriophage stability and activity on Escherichia coli in Lactuca sativa L. var. longifolia. Journal of Food Safety, 43 (2):e13000. doi:10.1111/jfs.13000.
  • Park, J. H., K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, Y. Lee, and I. S. Choi. 2014. A cytoprotective and degradable metal–polyphenol nanoshell for single-cell encapsulation. Angewandte Chemie (International ed. in English) 53 (46):12420–5. doi:10.1002/anie.201405905.
  • Patel, D., Y. Zhou, and R. P. Ramasamy. 2021. A bacteriophage-based electrochemical biosensor for detection of methicillin-resistant Staphylococcus aureus. Journal of the Electrochemical Society 168 (5):057523. doi:10.1149/1945-7111/abef85.
  • Pereira, C. S., M. T. N. d Almeida, M. L. Festivo, R. G. Costa, E. M. F. d Reis, and D. d P. Rodrigues. 2007. Salmonella hadar phage types isolated from different sources of foodchain in Brazil. Brazilian Journal of Microbiology 38 (4):620–3. doi:10.1590/S1517-83822007000400008.
  • Pereira, C., C. Moreirinha, M. Lewicka, P. Almeida, C. Clemente, A. Cunha, I. Delgadillo, J. L. Romalde, M. L. Nunes, and A. Almeida. 2016. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Research 220:179–92. doi:10.1016/j.virusres.2016.04.020.
  • Petsong, K., S. Benjakul, and K. Vongkamjan. 2021. Optimization of wall material for phage encapsulation via freeze-drying and antimicrobial efficacy of microencapsulated phage against Salmonella. Journal of Food Science and Technology 58 (5):1937–46. doi:10.1007/s13197-020-04705-x.
  • PhageGuard. n.d. Approvals. Accessed August 24, 2023. https://phageguard.com/approvals.
  • PhageGuard. n.d. Home. Accessed March 16, 2023. https://phageguard.com/.
  • Price, R. E., M. Longtin, S. Conley-Payton, J. A. Osborne, S. D. Johanningsmeier, D. Bitzer, and F. Breidt. 2020. Modeling buffer capacity and pH in acid and acidified foods. Journal of Food Science 85 (4):918–25. doi:10.1111/1750-3841.15091.
  • Puapermpoonsiri, U., S. J. Ford, and C. F. Van Der Walle. 2010. Stabilization of bacteriophage during freeze drying. International Journal of Pharmaceutics 389 (1-2):168–75. doi:10.1016/j.ijpharm.2010.01.034.
  • Qiu, X. 2012. Heat induced capsid disassembly and DNA release of bacteriophage λ. Plos One, 7 (7):e39793. doi:10.1371/journal.pone.0039793.
  • Radford, D., B. Guild, P. Strange, R. Ahmed, L.-T. Lim, and S. Balamurugan. 2017. Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly(lactic acid) films. Food Microbiology 66:117–28. doi:10.1016/j.fm.2017.04.015.
  • Rakhuba, D. V., E. I. Kolomiets, E. S. Dey, and G. I. Novik. 2010. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish Journal of Microbiology 59 (3):145–55. doi:10.33073/pjm-2010-023.
  • Ramirez, K., C. Cazarez-Montoya, H. S. Lopez-Moreno, and N. Castro-Del Campo. 2018. Bacteriophage cocktail for biocontrol of Escherichia coli O157:H7: Stability and potential allergenicity study. PloS One 13 (5):e0195023. doi:10.1371/journal.pone.0195023.
  • Ravanat, J.-L., T. Douki, and J. Cadet. 2001. Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology. B, Biology 63 (1-3):88–102. doi:10.1016/s1011-1344(01)00206-8.
  • Richards, K., and D. J. Malik. 2021a. Bacteriophage encapsulation in pH-responsive core-shell capsules as an animal feed additive. Viruses 13 (6):1131. doi:10.3390/v13061131.
  • Richards, K., and D. J. Malik. 2021b. Microencapsulation of bacteriophages using membrane emulsification in different pH-triggered controlled release formulations for oral administration. Pharmaceuticals (Basel, Switzerland) 14 (5):424. doi:10.3390/ph14050424.
  • Robbins, R. J. 2003. Phenolic acids in foods: An overview of analytical methodology. Journal of Agricultural and Food Chemistry 51 (10):2866–87. doi:10.1021/jf026182t.
  • Rodriguez, R. A., S. Bounty, S. Beck, C. Chan, C. Mcguire, and K. G. Linden. 2014. Photoreactivation of bacteriophages after UV disinfection: Role of genome structure and impacts of UV source. Water Research 55:143–9. doi:10.1016/j.watres.2014.01.065.
  • Rodriguez-Mozaz, S., S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sànchez-Melsió, C. M. Borrego, D. Barceló, and J. L. Balcázar. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research 69:234–42. doi:10.1016/j.watres.2014.11.021.
  • Rosner, D., and J. Clark. 2021. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals (Basel, Switzerland) 14 (4):359. doi:10.3390/ph14040359.
  • Saltmarsh, M. 2020. Food additives and why they are used. In Saltmarsh’s essential guide to food additives, 1–9. London, UK: The Royal Society of Chemistry. doi:10.1039/9781839161063-00001.
  • Samtlebe, M., F. Ergin, N. Wagner, H. Neve, A. Küçükçetin, C. M. A. P. Franz, K. J. Heller, J. Hinrichs, and Z. Atamer. 2016. Carrier systems for bacteriophages to supplement food systems: Encapsulation and controlled release to modulate the human gut microbiota. LWT - Food Science and Technology 68:334–40. doi:10.1016/j.lwt.2015.12.039.
  • Samtlebe, M., S. Denis, S. Chalancon, Z. Atamer, N. Wagner, H. Neve, C. Franz, H. Schmidt, S. Blanquet-Diot, and J. Hinrichs. 2018. Bacteriophages as modulator for the human gut microbiota: Release from dairy food systems and survival in a dynamic human gastrointestinal model. LWT 91:235–41. doi:10.1016/j.lwt.2018.01.033.
  • Sarhan, W. A., and H. M. Azzazy. 2017. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine (London, England) 12 (17):2055–67. doi:10.2217/nnm-2017-0151.
  • Schlesinger, M. 1932. Adsorption of bacteriophages to homologous bacteria. II. Quantitative investigation of adsorption velocity and saturation. Estimation of the particle size of the bacteriophage. Immunitaetsforschung 114:149–60.
  • Seeley, N. D., and S. B. Primrose. 1980. The effect of temperature on the ecology of aquatic bacteriophages. Journal of General Virology 46 (1):87–95. doi:10.1099/0022-1317-46-1-87.
  • Sezer, B., E. K. Tayyarcan, and I. H. Boyaci. 2022. The use of bacteriophage-based edible coatings for the biocontrol of Salmonella in strawberries. Food Control. 135:108812. doi:10.1016/j.foodcont.2022.108812.
  • Shabani, A., M. Zourob, B. Allain, C. A. Marquette, M. F. Lawrence, and R. Mandeville. 2008. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Analytical Chemistry 80 (24):9475–82. doi:10.1021/ac801607w.
  • Shahin, K., M. Barazandeh, L. Zhang, A. Hedayatkhah, T. He, H. Bao, M. Mansoorianfar, M. Pang, H. Wang, R. Wei, et al. 2021. Biodiversity of new lytic bacteriophages infecting Shigella spp. in freshwater environment [Original Research]. Frontiers in Microbiology 12:619323. doi:10.3389/fmicb.2021.619323.
  • Shannon, R., D. R. Radford, and S. Balamurugan. 2020. Impacts of food matrix on bacteriophage and endolysin antimicrobial efficacy and performance. Critical Reviews in Food Science and Nutrition 60 (10):1631–40. doi:10.1080/10408398.2019.1584874.
  • Shao, Y., and I.-N. Wang. 2008. Bacteriophage adsorption rate and optimal lysis time. Genetics 180 (1):471–82. doi:10.1534/genetics.108.090100.
  • Shapira, A., and A. Kohn. 1974. The effects of freeze-drying on bacteriophage T4. Cryobiology 11 (5):452–64. doi:10.1016/0011-2240(74)90113-8.
  • Sharp, D. G., A. E. Hook, A. R. Taylor, D. Beard, and J. W. Beard. 1946. Sedimentation characters and pH stability of the T2 bacteriophage of Escherichia coli. The Journal of Biological Chemistry 165 (1):259–70. doi:10.1016/s0021-9258(17)41228-2.
  • Sheng, H., H. J. Knecht, I. T. Kudva, and C. J. Hovde. 2006. Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Applied and Environmental Microbiology 72 (8):5359–66. doi:10.1128/AEM.00099-06.
  • Shi, X., A. Namvar, M. Kostrzynska, R. Hora, and K. Warriner. 2007. Persistence and growth of different Salmonella Serovars on pre- and postharvest tomatoes. Journal of Food Protection 70 (12):2725–31. doi:10.4315/0362-028x-70.12.2725.
  • Sillankorva, S. M., H. Oliveira, and J. Azeredo. 2012. Bacteriophages and their role in food safety. International Journal of Microbiology 2012:863945. doi:10.1155/2012/863945.
  • Silva Batalha, L., M. T. Pardini Gontijo, A. Vianna Novaes De Carvalho Teixeira, D. Meireles Gouvêa Boggione, M. E. Soto Lopez, M. Renon Eller, and R. C. Santos Mendonça. 2021. Encapsulation in alginate-polymers improves stability and allows controlled release of the UFV-AREG1 bacteriophage. Food Research International (Ottawa, Ont.) 139:109947. doi:10.1016/j.foodres.2020.109947.
  • Slieman, T. A., and W. L. Nicholson. 2000. Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Applied and Environmental Microbiology 66 (1):199–205. doi:10.1128/AEM.66.1.199-205.2000.
  • Smith, G. P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science (New York, N.Y.) 228 (4705):1315–7. doi:10.1126/science.4001944.
  • Soffer, N., J. Woolston, M. Li, C. Das, and A. Sulakvelidze. 2017. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PloS One 12 (3):e0175256. doi:10.1371/journal.pone.0175256.
  • Soto, M. J., J. Retamales, H. Palza, and R. Bastías. 2018. Encapsulation of specific Salmonella Enteritidis phage f3αSE on alginate-spheres as a method for protection and dosification. Electronic Journal of Biotechnology 31:57–60. doi:10.1016/j.ejbt.2017.11.006.
  • Stanford, K., T. A. Mcallister, Y. D. Niu, T. P. Stephens, A. Mazzocco, T. E. Waddell, and R. P. Johnson. 2010. Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. Journal of Food Protection 73 (7):1304–12. doi:10.4315/0362-028x-73.7.1304.
  • Sun, W., J. Xu, B. Liu, Y.-D. Zhao, L. Yu, and W. Chen. 2022. Controlled release of metal phenolic network protected phage for treating bacterial infection. Nanotechnology 33 (16):165102. doi:10.1088/1361-6528/ac4aa7.
  • Sun, W., L. Brovko, and M. Griffiths. 2001. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. Journal of Industrial Microbiology & Biotechnology 27 (2):126–8. doi:10.1038/sj.jim.7000198.
  • Takahashi, R., S. Bowatte, K. Taki, Y. Ohashi, S. Asakawa, and M. Kimura. 2011. High frequency of phage-infected bacterial cells in a rice field soil in Japan. Soil Science and Plant Nutrition 57 (1):35–9. doi:10.1080/00380768.2010.550864.
  • Tanaka, C., K. Yamada, H. Takeuchi, Y. Inokuchi, A. Kashiwagi, T. Toba, and J. Björkroth. 2018. A lytic bacteriophage for controlling Pseudomonas lactis in raw cow’s milk. Applied and Environmental Microbiology 84 (18):e00111-00118. doi:10.1128/AEM.00111-18.
  • Tang, M., P. Dettmar, and H. Batchelor. 2005. Bioadhesive oesophageal bandages: Protection against acid and pepsin injury. International Journal of Pharmaceutics 292 (1-2):169–77. doi:10.1016/j.ijpharm.2004.11.039.
  • Tang, Z., X. Huang, P. M. Sabour, J. R. Chambers, and Q. Wang. 2015. Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. LWT - Food Science and Technology 60 (1):263–70. doi:10.1016/j.lwt.2014.08.012.
  • Tang, Z., X. Huang, S. Baxi, J. R. Chambers, P. M. Sabour, and Q. Wang. 2013. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Research International 52 (2):460–6. doi:10.1016/j.foodres.2012.12.037.
  • Tawil, N., E. Sacher, R. Mandeville, and M. Meunier. 2013. Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. The Journal of Physical Chemistry C 117 (13):6686–91. doi:10.1021/jp400565m.
  • Thakral, S., N. K. Thakral, and D. K. Majumdar. 2013. Eudragit®: A technology evaluation. Expert Opinion on Drug Delivery 10 (1):131–49. doi:10.1517/17425247.2013.736962.
  • Thu, B., P. Bruheim, T. Espevik, O. Smidsrød, P. Soon-Shiong, and G. Skjåk-Braek. 1996. Alginate polycation microcapsules: I. Interaction between alginate and polycation. Biomaterials 17 (10):1031–40. doi:10.1016/0142-9612(96)84680-1.
  • Thung, T. Y., J. M. Krishanthi Jayarukshi Kumari Premarathne, W. San Chang, Y. Y. Loo, Y. Z. Chin, C. H. Kuan, C. W. Tan, D. F. Basri, C. W. Jasimah Wan Mohamed Radzi, and S. Radu. 2017. Use of a lytic bacteriophage to control Salmonella Enteritidis in retail food. LWT 78:222–5. doi:10.1016/j.lwt.2016.12.044.
  • Tokman, J. I., D. J. Kent, M. Wiedmann, and T. Denes. 2016. Temperature significantly affects the plaquing and adsorption efficiencies of Listeria phages [Original Research]. Frontiers in Microbiology 7:631. doi:10.3389/fmicb.2016.00631.
  • Tolba, M., O. Minikh, L. Y. Brovko, S. Evoy, and M. W. Griffiths. 2010. Oriented immobilization of bacteriophages for biosensor applications. Applied and Environmental Microbiology 76 (2):528–35. doi:10.1128/AEM.02294-09.
  • Torres-Acosta, M. A., V. Clavijo, C. Vaglio, A. F. González-Barrios, M. J. Vives-Flórez, and M. Rito-Palomares. 2019. Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry. Biotechnology Progress 35 (5):e2852. doi:10.1002/btpr.2852.
  • Tóth, K., J. Bolard, G. Rontó, and D. Aslanian. 1984. UV-Induced small structural changes in the T7 bacteriophage studied by melting methods. Biophysics of Structure and Mechanism 10 (4):229–39. doi:10.1007/bf00535551.
  • Towse, A., C. K. Hoyle, J. Goodall, M. Hirsch, J. Mestre-Ferrandiz, and J. H. Rex. 2017. Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. Health Policy (Amsterdam, Netherlands) 121 (10):1025–30. doi:10.1016/j.healthpol.2017.07.011.
  • Tucker, G. A. 1993. Introduction. In Biochemistry of fruit ripening, eds. G. B. Seymour, J. E. Taylor, & G. A. Tucker, 1–51. Dordrecht, NL: Springer Netherlands. doi:10.1007/978-94-011-1584-1_1.
  • Vandenheuvel, D., A. Singh, K. Vandersteegen, J. Klumpp, R. Lavigne, and G. Van den Mooter. 2013. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. European Journal of Pharmaceutics and Biopharmaceutics : official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 84 (3):578–82. doi:10.1016/j.ejpb.2012.12.022.
  • Vandenheuvel, D., J. Meeus, R. Lavigne, and G. Van den Mooter. 2014. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix. International Journal of Pharmaceutics 472 (1-2):202–5. doi:10.1016/j.ijpharm.2014.06.026.
  • Vinner, G. K., G. T. Vladisavljevic, M. R. J. Clokie, and D. J. Malik. 2017. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PloS One 12 (10):e0186239. doi:10.1371/journal.pone.0186239.
  • Vinner, G. K., K. Richards, M. Leppanen, A. P. Sagona, and D. J. Malik. 2019. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 11 (9):475. doi:10.3390/pharmaceutics11090475.
  • Vinner, G. K., Z. Rezaie-Yazdi, M. Leppanen, A. G. F. Stapley, M. C. Leaper, and D. J. Malik. 2019. Microencapsulation of Salmonella-specific bacteriophage Felix O1 using spray-drying in a pH-responsive formulation and direct compression tableting of powders into a solid oral dosage form. Pharmaceuticals (Basel, Switzerland) 12 (1):43. doi:10.3390/ph12010043.
  • Vonasek, E. L., A. H. Choi, J. Sanchez, and N. Nitin. 2018. Incorporating phage therapy into WPI dip coatings for applications on fresh whole and cut fruit and vegetable surfaces. Journal of Food Science 83 (7):1871–9. doi:10.1111/1750-3841.14188.
  • Vonasek, E., P. Le, and N. Nitin. 2014. Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocolloids. 37:7–13. doi:10.1016/j.foodhyd.2013.09.017.
  • Vonasek, E., P. Lu, Y.-L. Hsieh, and N. Nitin. 2017. Bacteriophages immobilized on electrospun cellulose microfibers by non-specific adsorption, protein–ligand binding, and electrostatic interactions. Cellulose 24 (10):4581–9. doi:10.1007/s10570-017-1442-3.
  • Wagenaar, J. A., M. A. P. V. Bergen, M. A. Mueller, T. M. Wassenaar, and R. M. Carlton. 2005. Phage therapy reduces Campylobacter jejuni colonization in broilers. Veterinary Microbiology 109 (3-4):275–83. doi:10.1016/j.vetmic.2005.06.002.
  • Wall, S. K., J. Zhang, M. H. Rostagno, and P. D. Ebner. 2010. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Applied and Environmental Microbiology 76 (1):48–53. doi:10.1128/AEM.00785-09.
  • Weng, S., A. López, S. Sáez-Orviz, I. Marcet, P. García, M. Rendueles, and M. Díaz. 2021. Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control. 121:107666. doi:10.1016/j.foodcont.2020.107666.
  • Wiggins, B. A., and M. Alexander. 1985. Minimum bacterial density for bacteriophage replication: Implications for significance of bacteriophages in natural ecosystems. Applied and Environmental Microbiology 49 (1):19–23. doi:10.1128/aem.49.1.19-23.1985.
  • Xu, J., C. Zhao, Y. Chau, and Y.-K. Lee. 2020. The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Biosensors & Bioelectronics 151:111914. doi:10.1016/j.bios.2019.111914.
  • Yan, G., H. Wang, J. Lv, C. Li, and B. Zhang. 2022. Surface modification of nucleopolyhedrovirus with polydopamine to improve its properties. Pest Management Science 78 (2):456–66. doi:10.1002/ps.6640.
  • Yanagida, M., Y. Suzuki, and T. Toda. 1984. Molecular organization of the head of bacteriophage Teven: Underlying design principles. Advances in Biophysics 17:97–146. doi:10.1016/0065-227x(84)90026-1.
  • Ye, J., M. Kostrzynska, K. Dunfield, and K. Warriner. 2009. Evaluation of a biocontrol preparation consisting of Enterobacter asburiae JX1 and a lytic bacteriophage cocktail to suppress the growth of Salmonella Javiana associated with tomatoes. Journal of Food Protection 72 (11):2284–92. doi:10.4315/0362-028x-72.11.2284.
  • Yin, H., J. Li, H. Huang, Y. Wang, X. Qian, J. Ren, F. Xue, J. Dai, and F. Tang. 2021. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Veterinary Research 52 (1):118. doi:10.1186/s13567-021-00991-1.
  • Yin, Y., P. E. Ni, D. Liu, S. Yang, A. Almeida, Q. Guo, Z. Zhang, L. Deng, and D. Wang. 2019. Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control. 98:156–63. doi:10.1016/j.foodcont.2018.11.034.
  • Yuan, Y. Y., L. L. Wang, X. Y. Li, D. M. Tan, C. Cong, and Y. P. Xu. 2019. Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii. Virus Research 272:8, Article 197734. doi:10.1016/j.virusres.2019.197734.
  • Zaburlin, D., A. Quiberoni, and D. Mercanti. 2017. Changes in environmental conditions modify infection kinetics of dairy phages. Food and Environmental Virology 9 (3):270–6. doi:10.1007/s12560-017-9296-2.
  • Zhang, H., Z. Yang, Y. Zhou, H. Bao, R. Wang, T. Li, M. Pang, L. Sun, and X. Zhou. 2018. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology 275:24–31. doi:10.1016/j.ijfoodmicro.2018.03.027.
  • Zhou, H.-X., and X. Pang. 2018. Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical Reviews 118 (4):1691–741. doi:10.1021/acs.chemrev.7b00305.