471
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in iron encapsulation and its application in food fortification

, , , , , & show all

References

  • Abbaspour, N., R. Hurrell, and R. Kelishadi. 2014. Review on iron and its importance for human health. Journal of Research in Medical Sciences 19 (2):164–74.
  • Akhtar, S., F. M. Anjum, and M. A. Anjum. 2011. Micronutrient fortification of wheat flour: Recent development and strategies. Food Research International 44 (3):652–9. doi: 10.1016/j.foodres.2010.12.033.
  • Aleman, M., C. D. Nuchi, R. Bou, A. Tres, J. Polo, F. Guardiola, and R. Codony. 2010. Effectiveness of antioxidants in preventing oxidation of palm oil enriched with heme iron: A model for iron fortification in baked products. European Journal of Lipid Science and Technology 112 (7):761–9. doi: 10.1002/ejlt.200900220.
  • Alemán, M., R. Bou, J. Polo, C. Rodríguez, A. Tres, R. Codony, and F. Guardiola. 2016. Co-spray-drying of a heme iron ingredient to decrease its pro-oxidant effect in lipid-containing foods. European Journal of Lipid Science and Technology 118 (2):195–207. doi: 10.1002/ejlt.201400377.
  • Alemán, M., R. Bou, A. Tres, J. Polo, R. Codony, and F. Guardiola. 2014. The effect of citric acid and ascorbyl palmitate in palm oil enriched with heme iron: A model for iron fortification in bakery products. European Journal of Lipid Science and Technology 116 (3):300–10. doi: 10.1002/ejlt.201300007.
  • Alemán, M., R. Bou, A. Tres, J. Polo, R. Codony, and F. Guardiola. 2016. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate. Food Chemistry 196:567–76. doi: 10.1016/j.foodchem.2015.09.031.
  • Arce, A., and Z. Ustunol. 2018. Effect of microencapsulated ferrous sulfate particle size on Cheddar cheese composition and quality. Journal of Dairy Science 101 (8):6814–22. doi: 10.3168/jds.2017-13952.
  • Asghari-Varzaneh, E., M. Shahedi, and H. Shekarchizadeh. 2017. Iron microencapsulation in gum tragacanth using solvent evaporation method. International Journal of Biological Macromolecules 103:640–7. doi: 10.1016/j.ijbiomac.2017.05.047.
  • Aslam, S., R. S. Khan, S. Maqsood, and N. Khalid. 2021. Chapter 3 – Application of nano/microencapsulated ingredients in drinks and beverages. In Application of nano/microencapsulated ingredients in food products, ed. S. M. Jafari, vol. 6, 105–169. Cambridge, MA: Academic Press.
  • Baech, S. B., M. Hansen, K. Bukhave, M. Jensen, S. S. Sørensen, L. Kristensen, P. P. Purslow, L. H. Skibsted, and B. Sandström. 2003. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. The American Journal of Clinical Nutrition 77 (1):173–9. doi: 10.1093/ajcn/77.1.173.
  • Baldelli, A., D. Y. Liang, Y. Guo, and A. Pratap-Singh. 2023. Effect of the formulation on mucoadhesive spray-dried microparticles containing iron for food fortification. Food Hydrocolloids. 134:107906. doi: 10.1016/j.foodhyd.2022.107906.
  • Barbosa, B. S. T., and E. E. Garcia-Rojas. 2022. Double emulsions as delivery systems for iron: Stability kinetics and improved bioaccessibility in infants and adults. Current Research in Food Science 5:718–25. doi: 10.1016/j.crfs.2022.04.003.
  • Benson, C. S., A. Shah, S. J. Stanworth, C. J. Frise, H. Spiby, S. J. Lax, J. Murray, and A. A. Klein. 2021. The effect of iron deficiency and anaemia on women’s health. Anaesthesia 76 Suppl 4 (S4):84–95. doi: 10.1111/anae.15405.
  • Bittencourt, L. L., C. Pedrosa, V. P. Sousa, A. P. Pierucci, and M. Citelli. 2013. Pea protein provides a promising matrix for microencapsulating iron. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (4):333–9. doi: 10.1007/s11130-013-0383-8.
  • Bjørklund, G., M. Peana, L. Pivina, A. Dosa, J. Aaseth, Y. Semenova, S. Chirumbolo, S. Medici, M. Dadar, and D. O. Costea. 2021. Iron deficiency in obesity and after bariatric surgery. Biomolecules 11 (5):613. doi: 10.3390/biom11050613.
  • Blanco-Rojo, R., A. M. Pérez-Granados, L. Toxqui, C. González-Vizcayno, M. A. Delgado, and M. P. Vaquero. 2011. Efficacy of a microencapsulated iron pyrophosphate-fortified fruit juice: A randomised, double-blind, placebo-controlled study in Spanish iron-deficient women. The British Journal of Nutrition 105 (11):1652–9. doi: 10.1017/S0007114510005490.
  • Blanco-Rojo, R., and M. P. Vaquero. 2019. Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science & Emerging Technologies 51:126–38. doi: 10.1016/j.ifset.2018.04.015.
  • Bochicchio, S., A. Dalmoro, G. Lamberti, and A. A. Barba. 2020. Advances in nanoliposomes production for ferrous sulfate delivery. Pharmaceutics 12 (5):445. doi: 10.3390/pharmaceutics12050445.
  • Bryszewska, M. A., L. Tomás-Cobos, E. Gallego, M. Villalba, D. Rivera, D. L. Taneyo Saa, and A. Gianotti. 2019. In vitro bioaccessibility and bioavailability of iron from breads fortified with microencapsulated iron. LWT – Food Science and Technology 99:431–7. doi: 10.1016/j.lwt.2018.09.071.
  • Camaschella, C. 2015. Iron deficiency: New insights into diagnosis and treatment. Hematology. American Society of Hematology. Education Program 2015 (1):8–13. doi: 10.1182/asheducation-2015.1.8.
  • Carvalho, G. R., A. P. Massarioli, I. D. Alvim, and P. E. D. Augusto. 2021. Iron-fortified pineapple chips produced using microencapsulation, ethanol, ultrasound and convective drying. Food Engineering Reviews 13 (3):726–39. doi: 10.1007/s12393-020-09259-4.
  • Cengiz, A., T. Kahyaoglu, K. Schröen, and C. Berton-Carabin. 2019. Oxidative stability of emulsions fortified with iron: The role of liposomal phospholipids. Journal of the Science of Food and Agriculture 99 (6):2957–65. doi: 10.1002/jsfa.9509.
  • Cercamondi, C. I., G. S. Duchateau, R. K. Harika, R. van den Berg, P. Murray, W. P. Koppenol, C. Zeder, M. B. Zimmermann, and D. Moretti. 2016. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate. The British Journal of Nutrition 116 (3):496–503. doi: 10.1017/S0007114516002191.
  • Choi, S. J., E. A. Decker, and D. J. McClements. 2009. Impact of iron encapsulation within the interior aqueous phase of water-in-oil-in-water emulsions on lipid oxidation. Food Chemistry 116 (1):271–6. doi: 10.1016/j.foodchem.2009.02.045.
  • Churio, O., F. Pizarro, and C. Valenzuela. 2018. Preparation and characterization of iron-alginate beads with some types of iron used in supplementation and fortification strategies. Food Hydrocolloids 74:1–10. doi: 10.1016/j.foodhyd.2017.07.020.
  • Churio, O., and C. Valenzuela. 2018. Development and characterization of maltodextrin microparticles to encapsulate heme and non-heme iron. LWT – Food Science and Technology 96:568–75. doi: 10.1016/j.lwt.2018.05.072.
  • De Franceschi, L., A. Iolascon, A. Taher, and M. D. Cappellini. 2017. Clinical management of iron deficiency anemia in adults: Systemic review on advances in diagnosis and treatment. European Journal of Internal Medicine 42:16–23. doi: 10.1016/j.ejim.2017.04.018.
  • Ding, B., X. Zhang, K. Hayat, S. Xia, C. Jia, M. Xie, and C. Liu. 2011. Preparation, characterization and the stability of ferrous glycinate nanoliposomes. Journal of Food Engineering 102 (2):202–8. doi: 10.1016/j.jfoodeng.2010.08.022.
  • Diosady, L. L., J. O. Alberti, and M. G. Venkatesh Mannar. 2002. Microencapsulation for iodine stability in salt fortified with ferrous fumarate and potassium iodide. Food Research International 35 (7):635–42. doi: 10.1016/S0963-9969(01)00166-1.
  • Domı́nguez, R., T. Barreiro, E. Sousa, A. Bermejo, J. A. Cocho, J. M. Fraga, and P. Bermejo. 2004. Study of the effect of different iron salts used to fortify infant formulas on the bioavailability of trace elements using ICP-OES. International Dairy Journal 14 (12):1081–7. doi: 10.1016/j.idairyj.2004.03.011.
  • Dubey, B. N., and E. J. Windhab. 2013. Iron encapsulated microstructured emulsion-particle formation by prilling process and its release kinetics. Journal of Food Engineering 115 (2):198–206. doi: 10.1016/j.jfoodeng.2012.10.013.
  • Duffy, C., M. O’Sullivan, and J.-C. Jacquier. 2018. Preparation of novel chitosan iron microgel beads for fortification applications. Food Hydrocolloids. 84:608–15. doi: 10.1016/j.foodhyd.2018.06.045.
  • Duque-Estrada, P., E. School, A. J. van der Goot, and C. C. Berton-Carabin. 2019. Double emulsions for iron encapsulation: Is a high concentration of lipophilic emulsifier ideal for physical and chemical stability? Journal of the Science of Food and Agriculture 99 (10):4540–9. doi: 10.1002/jsfa.9691.
  • Durán, E., O. Churio, J. L. Arias, A. Neira-Carrillo, and C. Valenzuela. 2020. Preparation and characterization of novel edible matrices based on alginate and whey for oral delivery of iron. Food Hydrocolloids. 98:105277. doi: 10.1016/j.foodhyd.2019.105277.
  • Etcheverry, P., M. Grusak, and L. Fleige. 2012. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Frontiers in Physiology 3:317. doi: 10.3389/fphys.2012.00317.
  • Filiponi, M. P., B. Gaigher, M. E. Caetano-Silva, I. D. Alvim, and M. T. B. Pacheco. 2019. Microencapsulation performance of Fe-peptide complexes and stability monitoring. Food Research International (Ottawa, Ont.) 125:108505. doi: 10.1016/j.foodres.2019.108505.
  • Gafter-Gvili, A., A. Schechter, and B. Rozen-Zvi. 2019. Iron deficiency anemia in chronic kidney disease. Acta Haematologica 142 (1):44–50. doi: 10.1159/000496492.
  • Ganz, T. 2013. Systemic iron homeostasis. Physiological Reviews 93 (4):1721–41. doi: 10.1152/physrev.00008.2013.
  • Genevois, C., M. de Escalada Pla, and S. Flores. 2017. Novel strategies for fortifying vegetable matrices with iron and Lactobacillus casei simultaneously. LWT – Food Science and Technology 79:34–41. doi: 10.1016/j.lwt.2017.01.019.
  • Georgieff, M. K. 2020. Iron deficiency in pregnancy. American Journal of Obstetrics and Gynecology 223 (4):516–24. doi: 10.1016/j.ajog.2020.03.006.
  • Ghibaudo, F., E. Gerbino, V. Campo Dall’ Orto, and A. Gómez-Zavaglia. 2017. Pectin-iron capsules: Novel system to stabilise and deliver lactic acid bacteria. Journal of Functional Foods 39:299–305. doi: 10.1016/j.jff.2017.10.028.
  • Ginzburg, Y. Z. 2019. Chapter 2 – Hepcidin-ferroportin axis in health and disease. In Vitamins and hormones, ed. G. Litwack, vol. 110, 17–45. Cambridge, MA: Academic Press.
  • Gomez-Zavaglia, A., L. Cassani, E. M. Hebert, and E. Gerbino. 2022. Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Research International (Ottawa, Ont.) 155:111097. doi: 10.1016/j.foodres.2022.111097.
  • Gupta, C., P. Chawla, and S. Arora. 2015. Development and evaluation of iron microencapsules for milk fortification. CyTA – Journal of Food 13 (1):116–23. doi: 10.1080/19476337.2014.918179.
  • Gupta, C., P. Chawla, S. Arora, S. K. Tomar, and A. K. Singh. 2015. Iron microencapsulation with blend of gum Arabic, maltodextrin and modified starch using modified solvent evaporation method – Milk fortification. Food Hydrocolloids 43:622–8. doi: 10.1016/j.foodhyd.2014.07.021.
  • Habeych, E., V. van Kogelenberg, L. Sagalowicz, M. Michel, and N. Galaffu. 2016. Strategies to limit colour changes when fortifying food products with iron. Food Research International (Ottawa, Ont.) 88 (Pt A):122–8. doi: 10.1016/j.foodres.2016.05.017.
  • Handayani, N. A., K. Mulia, S. Kartohardjono, and E. A. Krisanti. 2023. Fortifying jelly foods with microencapsulated anti-anaemic compounds, ferrous gluconate, ascorbic acid and folic acid. Journal of Food Science and Technology 60 (1):147–59. doi: 10.1007/s13197-022-05599-7.
  • Haro-Vicente, J. F., C. Martínez-Graciá, and G. Ros. 2006. Optimisation of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chemistry 98 (4):639–48. doi: 10.1016/j.foodchem.2005.06.040.
  • Hatefi, L., and N. Farhadian. 2020. A safe and efficient method for encapsulation of ferrous sulfate in solid lipid nanoparticle for non-oxidation and sustained iron delivery. Colloid and Interface Science Communications 34:100227. doi: 10.1016/j.colcom.2019.100227.
  • Hoppe, M., G. Önning, A. Berggren, and L. Hulthén. 2015. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: A double-isotope cross-over single-blind study in women of reproductive age. The British Journal of Nutrition 114 (8):1195–202. doi: 10.1017/S000711451500241X.
  • Hosseini, S. M. H., H. Hashemi Gahruie, M. Razmjooie, M. Sepeidnameh, M. Rastehmanfard, M. Tatar, F. Naghibalhossaini, and P. Van der Meeren. 2019. Effects of novel and conventional thermal treatments on the physicochemical properties of iron-loaded double emulsions. Food Chemistry 270:70–7. doi: 10.1016/j.foodchem.2018.07.044.
  • Hurrell, R. F. 2018. Chapter 20 – Efficacy and safety of iron fortification. In Food fortification in a globalized world, ed. M. G. V. Mannar and R. F. Hurrell, 195–212. Cambridge, MA: Academic Press.
  • Hurrell, R., and I. Egli. 2010. Iron bioavailability and dietary reference values. The American Journal of Clinical Nutrition 91 (5):1461s–7s. doi: 10.3945/ajcn.2010.28674F.
  • Ilyasoglu Buyukkestelli, H., and S. N. El. 2019. Development and characterization of double emulsion to encapsulate iron. Journal of Food Engineering 263:446–53. doi: 10.1016/j.jfoodeng.2019.07.026.
  • Jiménez-Alvarado, R., C. I. Beristain, L. Medina-Torres, A. Román-Guerrero, and E. J. Vernon-Carter. 2009. Ferrous bisglycinate content and release in W1/O/W2 multiple emulsions stabilized by protein–polysaccharide complexes. Food Hydrocolloids. 23 (8):2425–33. doi: 10.1016/j.foodhyd.2009.06.022.
  • Juul, S. E., R. J. Derman, and M. Auerbach. 2019. Perinatal iron deficiency: Implications for mothers and infants. Neonatology 115 (3):269–74. doi: 10.1159/000495978.
  • Kamali Rousta, L., S. Bodbodak, M. Nejatian, A. P. Ghandehari Yazdi, Z. Rafiee, J. Xiao, and S. M. Jafari. 2021. Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science & Technology 118:688–710. doi: 10.1016/j.tifs.2021.10.029.
  • Katuwavila, N. P., A. D. L. C. Perera, D. Dahanayake, V. Karunaratne, G. A. J. Amaratunga, and D. N. Karunaratne. 2016. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system. International Journal of Pharmaceutics 513 (1–2):404–9. doi: 10.1016/j.ijpharm.2016.09.053.
  • Kaul, S., K. Kaur, N. Mehta, S. S. Dhaliwal, and J. F. Kennedy. 2022. Characterization and optimization of spray dried iron and zinc nanoencapsules based on potato starch and maltodextrin. Carbohydrate Polymers 282:119107. doi: 10.1016/j.carbpol.2022.119107.
  • Kazemi-Taskooh, Z., and M. Varidi. 2021a. Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids. 111:106205. doi: 10.1016/j.foodhyd.2020.106205.
  • Kazemi-Taskooh, Z., and M. Varidi. 2021b. Food-based iron delivery systems: A review. Trends in Food Science & Technology 116:75–89. doi: 10.1016/j.tifs.2021.07.005.
  • Kharel, S., A. Gautam, M. Mahotra, N. M. Theniko, and S. C. J. Loo. 2021. Valorizing okara waste into nutritionally rich polysaccharide/protein-extracts for co-encapsulation of β-carotene and ferrous sulphate as a potential approach to tackle micronutrient malnutrition. Journal of Functional Foods 87:104749. doi: 10.1016/j.jff.2021.104749.
  • Khosroyar, S. 2012. Ferric – Saccharate capsulation with alginate coating using the emulsification method. African Journal of Microbiology Research 6 (10):2455–61.
  • Kiskini, A., K. Argiri, M. Kalogeropoulos, M. Komaitis, A. Kostaropoulos, I. Mandala, and M. Kapsokefalou. 2007. Sensory characteristics and iron dialyzability of gluten-free bread fortified with iron. Food Chemistry 102 (1):309–16. doi: 10.1016/j.foodchem.2006.05.022.
  • Kiskini, A., M. Kapsokefalou, S. Yanniotis, and I. Mandala. 2010. Effect of different iron compounds on wheat and gluten-free breads. Journal of the Science of Food and Agriculture 90 (7):1136–45. doi: 10.1002/jsfa.3927.
  • Klip, I. T., E. A. Jankowska, C. Enjuanes, A. A. Voors, W. Banasiak, J. Bruguera, P. Rozentryt, L. Polonski, D. J. van Veldhuisen, P. Ponikowski, et al. 2014. The additive burden of iron deficiency in the cardiorenal-anaemia axis: Scope of a problem and its consequences. European Journal of Heart Failure 16 (6):655–62. doi: 10.1002/ejhf.84.
  • Koohenjani, D. K., and H. Lashkari. 2022. Effects of double emulsion encapsulated iron on the properties of fortified cream. LWT – Food Science and Technology 161:113296. doi: 10.1016/j.lwt.2022.113296.
  • Kumari, A., and A. K. Chauhan. 2022. Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology 59 (9):3319–35. doi: 10.1007/s13197-021-05184-4.
  • Li, Y., L. L. Diosady, and S. Jankowski. 2008. Effect of iron compounds on the storage stability of multiple-fortified Ultra Rice®. International Journal of Food Science & Technology 43 (3):423–9. doi: 10.1111/j.1365-2621.2006.01457.x.
  • Li, N., X. Li, P. Yang, H. Liu, L. Kong, and X. Yu. 2021. Microencapsulation of Fe2+ in spray-dried lactose for improved bioavailability. Bioinorganic Chemistry and Applications 2021:5840852–8. doi: 10.1155/2021/5840852.
  • Martin, A. H., and G. A. H. de Jong. 2012a. Enhancing the in vitro Fe(2+) bio-accessibility using ascorbate and cold-set whey protein gel particles. Dairy Science & Technology 92 (2):133–49. doi: 10.1007/s13594-011-0055-0.
  • Martin, A. H., and G. A. H. de Jong. 2012b. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles. European Food Research and Technology 234 (6):995–1003. doi: 10.1007/s00217-012-1717-8.
  • Martins, J. T., S. F. Santos, A. I. Bourbon, A. C. Pinheiro, Á. González-Fernández, L. M. Pastrana, M. A. Cerqueira, and A. A. Vicente. 2016. Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International (Ottawa, Ont.) 90:16–24. doi: 10.1016/j.foodres.2016.10.027.
  • McKie, A. T., D. Barrow, G. O. Latunde-Dada, A. Rolfs, G. Sager, E. Mudaly, M. Mudaly, C. Richardson, D. Barlow, A. Bomford, et al. 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science (New York, N.Y.) 291 (5509):1755–9. doi: 10.1126/science.1057206.
  • Moslemi, M., H. Hosseini, T. R. Neyestani, N. Akramzadeh, and R. Mazaheri Nezhad Fard. 2018. Effects of non-digestive polymers used in iron encapsulation on calcium and iron apparent absorption in rats fed by infant formula. Journal of Trace Elements in Medicine and Biology 50:393–8. doi: 10.1016/j.jtemb.2018.08.004.
  • Muir, A., and U. Hopfer. 1985. Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. The American Journal of Physiology 248 (3 Pt 1):G376–379. doi: 10.1152/ajpgi.1985.248.3.G376.
  • Naktinienė, M., V. Eisinaitė, M. Keršienė, I. Jasutienė, and D. Leskauskaitė. 2021. Emulsification and gelation as a tool for iron encapsulation in food-grade systems. LWT – Food Science and Technology 149:111895. doi: 10.1016/j.lwt.2021.111895.
  • Navas-Carretero, S., A. M. Pérez-Granados, B. Sarriá, A. Carbajal, M. M. Pedrosa, M. A. Roe, S. J. Fairweather-Tait, and M. P. Vaquero. 2008. Oily fish increases iron bioavailability of a phytate rich meal in young iron deficient women. Journal of the American College of Nutrition 27 (1):96–101. doi: 10.1080/07315724.2008.10719680.
  • Navas-Carretero, S., A. M. Pérez-Granados, B. Sarriá, and M. P. Vaquero. 2009. Iron absorption from meat pate fortified with ferric pyrophosphate in iron-deficient women. Nutrition (Burbank, Los Angeles County, Calif.) 25 (1):20–4. doi: 10.1016/j.nut.2008.07.002.
  • Navas-Carretero, S., B. Sarriá, A. M. Pérez-Granados, S. Schoppen, M. Izquierdo-Pulido, and M. P. Vaquero. 2007. A comparative study of iron bioavailability from cocoa supplemented with ferric pyrophosphate or ferrous fumarate in rats. Annals of Nutrition & Metabolism 51 (3):204–7. doi: 10.1159/000104138.
  • Nielsen, A. V., I. Tetens, and A. S. Meyer. 2013. Potential of phytase-mediated iron release from cereal-based foods: A quantitative view. Nutrients 5 (8):3074–98. doi: 10.3390/nu5083074.
  • Onsekizoglu Bagci, P., and S. Gunasekaran. 2016. Iron-encapsulated cold-set whey protein isolate gel powder – Part 2: Effect of iron fortification on sensory and storage qualities of Yoghurt. International Journal of Dairy Technology 69 (4):601–8. doi: 10.1111/1471-0307.12316.
  • Onsekizoglu Bagci, P., and S. Gunasekaran. 2017. Iron-encapsulated cold-set whey protein isolate gel powder – Part 1: Optimisation of preparation conditions and in vitro evaluation. International Journal of Dairy Technology 70 (1):127–36. doi: 10.1111/1471-0307.12317.
  • Palika, R., P. C. Mashurabad, M. K. Nair, G. B. Reddy, and R. Pullakhandam. 2015. Characterization of iron-binding phosphopeptide released by gastrointestinal digestion of egg white. Food Research International 67:308–14. doi: 10.1016/j.foodres.2014.11.049.
  • Pasricha, S. R., and H. Drakesmith. 2016. Iron deficiency anemia: Problems in diagnosis and prevention at the population level. Hematology/Oncology Clinics of North America 30 (2):309–25. doi: 10.1016/j.hoc.2015.11.003.
  • Pathania, S., C. Bhatia, and B. Tiwari. 2021. Food formulation and product development, 1–4.
  • Pereira, R. N., R. M. Rodrigues, E. Altinok, Ó. L. Ramos, F. Xavier Malcata, P. Maresca, G. Ferrari, J. A. Teixeira, and A. A. Vicente. 2017. Development of iron-rich whey protein hydrogels following application of ohmic heating – Effects of moderate electric fields. Food Research International (Ottawa, Ont.) 99 (Pt 1):435–43. doi: 10.1016/j.foodres.2017.05.023.
  • Perez-Moral, N., M. C. Gonzalez, and R. Parker. 2013. Preparation of iron-loaded alginate gel beads and their release characteristics under simulated gastrointestinal conditions. Food Hydrocolloids. 31 (1):114–20. doi: 10.1016/j.foodhyd.2012.09.015.
  • Petry, N., E. Boy, J. P. Wirth, and R. F. Hurrell. 2015. The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7 (2):1144–73. doi: 10.3390/nu7021144.
  • Phipps, O., M. J. Brookes, and H. O. Al-Hassi. 2021. Iron deficiency, immunology, and colorectal cancer. Nutrition Reviews 79 (1):88–97. doi: 10.1093/nutrit/nuaa040.
  • Pratap Singh, A., J. Siddiqui, and L. L. Diosady. 2018. Characterizing the pH-dependent release kinetics of food-grade spray drying encapsulated iron microcapsules for food fortification. Food and Bioprocess Technology 11 (2):435–46. doi: 10.1007/s11947-017-2022-0.
  • Pratap-Singh, A., and A. Leiva. 2021. Double fortified (iron and zinc) spray-dried microencapsulated premix for food fortification. LWT – Food Science and Technology 151:112189. doi: 10.1016/j.lwt.2021.112189.
  • Prichapan, N., D. J. McClements, and U. Klinkesorn. 2018. Iron encapsulation in water-in-oil emulsions: Effect of ferrous sulfate concentration and fat crystal formation on oxidative stability. Journal of Food Science 83 (2):309–17. doi: 10.1111/1750-3841.14034.
  • Prichapan, N., D. J. McClements, and U. Klinkesorn. 2020. Encapsulation of iron within W1/O/W2 emulsions formulated using a natural hydrophilic surfactant (saponin): Impact of surfactant level and oil phase crystallization. Food Biophysics 15 (3):346–54. doi: 10.1007/s11483-020-09628-w.
  • Prichapan, N., D. J. McClements, and U. Klinkesorn. 2021. Utilization of multilayer-technology to enhance encapsulation efficiency and osmotic gradient tolerance of iron-loaded W1/O/W2 emulsions: Saponin-chitosan coatings. Food Hydrocolloids 112:106334. doi: 10.1016/j.foodhyd.2020.106334.
  • Rebellato, A. P., J. Bussi, J. G. Silva, R. Greiner, C. J. Steel, and J. A. Pallone. 2017. Effect of different iron compounds on rheological and technological parameters as well as bioaccessibility of minerals in whole wheat bread. Food Research International (Ottawa, Ont.) 94:65–71. doi: 10.1016/j.foodres.2017.01.016.
  • Rebellato, A. P., J. Castro Lima, J. G. S. Silva, C. J. Steel, and J. A. Lima Pallone. 2017. Mineral bioaccessibility in French breads fortified with different forms iron and its effects on rheological and technological parameters. Journal of Cereal Science 74:56–63. doi: 10.1016/j.jcs.2017.01.020.
  • Rebellato, A. P., B. Klein, R. Wagner, and J. Azevedo Lima Pallone. 2018. Fortification of whole wheat flour with different iron compounds: Effect on quality parameters and stability. Journal of Food Science and Technology 55 (9):3575–83. doi: 10.1007/s13197-018-3283-y.
  • Rice, W. H., and D. J. McMahon. 1998. Chemical, physical, and sensory characteristics of mozzarella cheese fortified using protein-chelated iron or ferric chloride1. Journal of Dairy Science 81 (2):318–26. doi: 10.3168/jds.S0022-0302(98)75580-8.
  • Rodriguez-Ramiro, I., C. A. Brearley, S. F. Bruggraber, A. Perfecto, P. Shewry, and S. Fairweather-Tait. 2017. Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model. Food Chemistry 228:91–8. doi: 10.1016/j.foodchem.2017.01.130.
  • Rouault, T. A. 2005. The intestinal heme transporter revealed. Cell 122 (5):649–51. doi: 10.1016/j.cell.2005.08.027.
  • Saffarionpour, S., and L. L. Diosady. 2021. Multiple emulsions for enhanced delivery of vitamins and iron micronutrients and their application for food fortification. Food and Bioprocess Technology 14 (4):587–625. doi: 10.1007/s11947-021-02586-2.
  • Saffarionpour, S., and L. L. Diosady. 2022. Delivery of ferric sodium EDTA by water-in-oil-in-water (W1/O/W2) double emulsions: Influence of carrier oil on its in vitro boaccessibility. Food and Bioprocess Technology 15 (2):421–39. doi: 10.1007/s11947-021-02756-2.
  • Santillán-Urquiza, E., M. Á. Méndez-Rojas, and J. F. Vélez-Ruiz. 2017. Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT – Food Science and Technology 80:462–9. doi: 10.1016/j.lwt.2017.03.025.
  • Shilpashree, B. G., S. Arora, S. Kapila, and V. Sharma. 2020. Whey protein-iron or zinc complexation decreases pro-oxidant activity of iron and increases iron and zinc bioavailability. LWT – Food Science and Technology 126:109287. doi: 10.1016/j.lwt.2020.109287.
  • Shilpashree, B., S. Arora, V. Sharma, and A. Singh. 2015. Preparation of succinylated sodium caseinate–iron complex by adopting ultrafiltration technology: A novel food fortificant. Innovative Food Science & Emerging Technologies 32:165–71. doi: 10.1016/j.ifset.2015.09.020.
  • Siddique, A., and Y. W. Park. 2019. Effect of iron fortification on microstructural, textural, and sensory characteristics of caprine milk Cheddar cheeses under different storage treatments. Journal of Dairy Science 102 (4):2890–902. doi: 10.3168/jds.2018-15427.
  • Subramani, T., and H. Ganapathyswamy. 2020. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. Journal of Food Science and Technology 57 (10):3545–55. doi: 10.1007/s13197-020-04360-2.
  • Sugiarto, M., A. Ye, and H. Singh. 2009. Characterisation of binding of iron to sodium caseinate and whey protein isolate. Food Chemistry 114 (3):1007–13. doi: 10.1016/j.foodchem.2008.10.062.
  • Sundararajan, S., and H. Rabe. 2021. Prevention of iron deficiency anemia in infants and toddlers. Pediatric Research 89 (1):63–73. doi: 10.1038/s41390-020-0907-5.
  • Toxqui, L., A. M. Pérez-Granados, R. Blanco-Rojo, I. Wright, C. González-Vizcayno, and M. P. Vaquero. 2013. Effects of an iron or iron and vitamin D–fortified flavored skim milk on iron metabolism: A randomized controlled double-blind trial in iron-deficient women. Journal of the American College of Nutrition 32 (5):312–20. doi: 10.1080/07315724.2013.826116.
  • van Wonderen, D., A. Melse-Boonstra, and J. C. Gerdessen. 2023. Iron bioavailability should be considered when modeling omnivorous, vegetarian, and vegan diets. The Journal of Nutrition 153 (7):2125–32. doi: 10.1016/j.tjnut.2023.05.011.
  • Vaquero, M. P., Á. García-Quismondo, F. J. Del Cañizo, and F. J. Sánchez-Muniz. 2017. Iron status biomarkers and cardiovascular risk. Recent Trends in Cardiovascular Risks 6:97–117.
  • Vatandoust, A., and L. Diosady. 2022. Iron compounds and their organoleptic properties in salt fortification with iron and iodine: An overview. Current Opinion in Food Science 43:232–6. doi: 10.1016/j.cofs.2021.12.007.
  • Wahengbam, E. D., A. J. Das, B. D. Green, J. Shooter, and M. K. Hazarika. 2019. Effect of iron and folic acid fortification on in vitro bioavailability and starch hydrolysis in ready-to-eat parboiled rice. Food Chemistry 292:39–46. doi: 10.1016/j.foodchem.2019.04.044.
  • Walczyk, T., P. Kastenmayer, S. Storcksdieck Genannt Bonsmann, C. Zeder, D. Grathwohl, and R. F. Hurrell. 2013. Ferrous ammonium phosphate (FeNH4PO4) as a new food fortificant: Iron bioavailability compared to ferrous sulfate and ferric pyrophosphate from an instant milk drink. European Journal of Nutrition 52 (4):1361–8. doi: 10.1007/s00394-012-0445-y.
  • Wang, S., W. Li, K. Sun, R. Zhang, S. Wang, and L. Geng. 2019. Study of release kinetics and degradation thermodynamics of ferric citrate liposomes. Chemistry and Physics of Lipids 225:104811. doi: 10.1016/j.chemphyslip.2019.104811.
  • Wardhani, D. H., N. Aryanti, A. Aziz, R. A. Firdhaus, and H. N. Ulya. 2021. Ultrasonic degradation of alginate: A matrix for iron encapsulation using gelation. Food Bioscience 41:100803. doi: 10.1016/j.fbio.2020.100803.
  • Wardhani, D. H., H. N. Ulya, A. Rahmawati, T. V. K. Sugiarto, A. C. Kumoro, and N. Aryanti. 2021. Preparation of degraded alginate as a pH-dependent release matrix for spray-dried iron and its encapsulation performances. Food Bioscience 41:101002. doi: 10.1016/j.fbio.2021.101002.
  • Wardhani, D. H., I. N. Wardana, H. N. Ulya, H. Cahyono, A. C. Kumoro, and N. Aryanti. 2020. The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing 123:72–9. doi: 10.1016/j.fbp.2020.05.013.
  • Wegmüller, R., M. B. Zimmermann, and R. F. Hurrell. 2003. Dual fortification of salt with iodine and encapsulated iron compounds: stability and acceptability testing in morocco and Côte d‘Ivoire. Journal of Food Science 68 (6):2129–35. doi: 10.1111/j.1365-2621.2003.tb07031.x.
  • Wei, Y., M. J. I. Shohag, F. Ying, X. Yang, C. Wu, and Y. Wang. 2013. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability. Food Chemistry 138 (2–3):1952–8. doi: 10.1016/j.foodchem.2012.09.134.
  • Welk, A. K., C. Mehlhose, D. Daum, and U. Enneking. 2023. Vegetables with enhanced iron bioavailability-German consumers’ perceptions of a new approach to improve dietary iron supply. Nutrients 15 (10):2291. doi: 10.3390/nu15102291.
  • WHO. 2006. Guidelines on food fortification with micronutrients. Geneva, Switzerland: WHO and FAO.
  • WHO. 2015. The global prevalence of anaemia in 2011. Geneva.
  • Wu, W., Y. Yang, N. Sun, Z. Bao, and S. Lin. 2020. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Research International (Ottawa, Ont.) 131:108976. doi: 10.1016/j.foodres.2020.108976.
  • Yang, R., Z. Zhou, G. Sun, Y. Gao, and J. Xu. 2015. Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation. Trends in Food Science & Technology 44 (2):189–200. doi: 10.1016/j.tifs.2015.04.005.
  • Yue, J., M. Shu, X. Yao, X. Chen, D. Li, D. Yang, N. Liu, K. Nishinari, and F. Jiang. 2022. Fibrillar assembly of whey protein isolate and gum Arabic as iron carrier for food fortification. Food Hydrocolloids. 128:107608. doi: 10.1016/j.foodhyd.2022.107608.
  • Zariwala, M. G., N. Elsaid, T. L. Jackson, F. Corral López, S. Farnaud, S. Somavarapu, and D. Renshaw. 2013. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. International Journal of Pharmaceutics 456 (2):400–7. doi: 10.1016/j.ijpharm.2013.08.070.
  • Zhu, K., D. Yu, X. Chen, and G. Song. 2019. Preparation, characterization and controlled-release property of Fe3+ cross-linked hydrogels based on peach gum polysaccharide. Food Hydrocolloids. 87:260–9. doi: 10.1016/j.foodhyd.2018.08.019.
  • Zuidam, N. J. 2012. 17 – An industry perspective on the advantages and disadvantages of iron micronutrient delivery systems. In Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, eds. N. Garti and D. J. McClements, 505–40. Sawston: Woodhead Publishing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.