382
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Application of methyl jasmonate to control chilling tolerance of postharvest fruit and vegetables: a meta-analysis and eliciting metabolism review

, , , ORCID Icon &

References

  • Aerts, N., M. P. Mendes, and S. C. M. Van Wees. 2021. Multiple levels of crosstalk in hormone networks regulating plant defense. The Plant Journal 105 (2):489–504. doi:10.1111/tpj.15124.
  • Aghdam, M. S., M. Asghari, O. Khorsandi, and M. Mohayeji. 2014. Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment. Journal of Food Science and Technology 51 (10):2815–20. doi:10.1007/s13197-012-0757-1.
  • Aghdam, M. S., and S. Bodbodak. 2013. Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. Scientia Horticulturae 156:73–85. doi:10.1016/j.scienta.2013.03.028.
  • Aghdam, M. S., and S. Bodbodak. 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology 7 (1):37–53. doi:10.1007/s11947-013-1207-4.
  • Aghdam, M. S., A. Jannatizadeh, Z. S. Luo, and G. Paliyath. 2018. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends in Food Science & Technology 76:67–81. doi:10.1016/j.tifs.2018.04.003.
  • Aghdam, M. S., L. Sevillano, F. B. Flores, and S. Bodbodak. 2013. Heat shock proteins as biochemical markers for postharvest chilling stress in fruits and vegetables. Scientia Horticulturae 160:54–64. doi:10.1016/j.scienta.2013.05.020.
  • Ba, L. J., J. F. Kuang, J. Y. Chen, and W. J. Lu. 2016. MaJAZ1 attenuates the MaLBD5-mediated transcriptional activation of jasmonate biosynthesis gene MaAOC2 in regulating cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry 64 (4):738–45. doi:10.1021/acs.jafc.5b05005.
  • Bagheri, M., and M. Esna-Ashari. 2022. Effects of postharvest methyl jasmonate treatment on persimmon quality during cold storage. Scientia Horticulturae 294:110756. doi:10.1016/j.scienta.2021.110756.
  • Cai, H. F., S. Han, M. L. Yu, R. J. Ma, and Z. F. Yu. 2020. The alleviation of methyl jasmonate on loss of aroma lactones correlated with ethylene biosynthesis in peaches. Journal of Food Science 85 (8):2389–97. doi:10.1111/1750-3841.15339.
  • Cai, Y. T., S. F. Cao, Z. F. Yang, and Y. H. Zheng. 2011. MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit. Postharvest Biology and Technology 59 (3):324–6. doi:10.1016/j.postharvbio.2010.08.020.
  • Cao, K. F., Y. Y. Wei, Y. Chen, S. Jiang, X. Y. Chen, X. X. Wang, and X. F. Shao. 2021. PpCBF6 is a low-temperature-sensitive transcription factor that binds the PpVIN2 promoter in peach fruit and regulates sucrose metabolism and chilling injury. Postharvest Biology and Technology 181:111681. doi:10.1016/j.postharvbio.2021.111681.
  • Cao, S. F., Y. H. Zheng, K. T. Wang, P. Jin, and H. J. Rui. 2009. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry 115 (4):1458–63. doi:10.1016/j.foodchem.2009.01.082.
  • Çavuşoğlu, S., M. Yilmaz, and F. Islek. 2021. Effect of methyl jasmonate treatments on fruit quality and antioxidant enzyme activities of sour cherry (Prunus cerasus L.) during cold storage. Journal of Agricultural Sciences 27 (4):460–8. doi:10.15832/ankutbd.702758.
  • Chen, C., H. Y. H. Chen, X. L. Chen, and Z. Q. Huang. 2019a. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications 10 (1):1332. doi:10.1038/s41467-019-09258-y.
  • Chen, J., J. F. Kuang, W. Shan, J. N. Wang, Y. Y. Xiao, J. Y. Chen, and W. J. Lu. 2014. Molecular characterization of a cold-responsive RING-H2 finger gene from banana fruit and its interaction with MaMYC2a. Postharvest Biology and Technology 98:48–55. doi:10.1016/j.postharvbio.2014.07.003.
  • Chen, L., Y. F. Pan, H. D. Li, X. Y. Jia, Y. L. Guo, J. S. Luo, and X. H. Li. 2021. Methyl jasmonate alleviates chilling injury and keeps intact pericarp structure of pomegranate during low temperature storage. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 27 (1):22–31. doi:10.1177/1082013220921597.
  • Chen, M. S., H. M. Guo, S. Q. Chen, T. T. Li, M. Q. Li, A. Rashid, C. J. Xu, and K. Wang. 2019b. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit. Journal of Agricultural and Food Chemistry 67 (35):9958–66. doi:10.1021/acs.jafc.9b03853.
  • Chini, A., S. Fonseca, G. Fernandez, B. Adie, J. M. Chico, O. Lorenzo, G. Garcia-Casado, I. Lopez-Vidriero, F. M. Lozano, M. R. Ponce, et al. 2007. The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448 (7154):666–71. doi:10.1038/nature06006.
  • Deshi, V., F. Homa, A. Ghatak, M. A. Aftab, H. Mir, B. Ozturk, and M. W. Siddiqui. 2022. Exogenous methyl jasmonate modulates antioxidant activities and delays pericarp browning in litchi. Physiology and Molecular Biology of Plants 28 (8):1561–9. doi:10.1007/s12298-022-01230-3.
  • Deshi, V., F. Homa, V. Y. Tokala, H. Mir, M. A. Aftab, and M. W. Siddiqui. 2021. Regulation of pericarp browning in cold-stored litchi fruit using methyl jasmonate. Journal of King Saud University - Science 33 (5):101445. doi:10.1016/j.jksus.2021.101445.
  • Ding, C. K., C. Y. Wang, K. C. Gross, and D. L. Smith. 2001. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Science 161 (6):1153–9. doi:10.1016/S0168-9452(01)00521-0.
  • Ding, P. C., L. L. Fang, G. L. Wang, X. Li, S. Huang, Y. K. Gao, J. T. Zhu, L. T. Xiao, J. H. Tong, F. G. Chen, et al. 2019. Wheat methionine sulfoxide reductase A4.1 interacts with heme oxygenase 1 to enhance seedling tolerance to salinity or drought stress. Plant Molecular Biology 101 (1-2):203–20. doi:10.1007/s11103-019-00901-2.
  • Dong, C., Y. C. Ma, M. Wisniewski, and Z. M. Cheng. 2017. Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response. Environmental and Experimental Botany 142:1–14. doi:10.1016/j.envexpbot.2017.07.014.
  • Elbagoury, M. M., L. Turoop, S. Runo, and D. N. Sila. 2021. Regulatory influences of methyl jasmonate and calcium chloride on chilling injury of banana fruit during cold storage and ripening. Food Science & Nutrition 9 (2):929–42. doi:10.1002/fsn3.2058.
  • Ezzat, A., A. Hegedűs, S. Szabó, A. Ammar, Z. Szabo, J. Nyeki, B. Molnar, and I. J. Holb. 2020. Temporal changes and correlations between quality loss parameters, antioxidant properties and enzyme activities in apricot fruit treated with methyl jasmonate and salicylic acid during cold storage and shelf-life. Applied Sciences 10 (22):8071. doi:10.3390/app10228071.
  • Faizy, A. H., B. Ozturk, E. Aglar, and K. Yıldız. 2021. Role of methyl jasmonate application regime on fruit quality and bioactive compounds of sweet cherry at harvest and during cold storage. Journal of Food Processing and Preservation 45 (10):e15882. doi:10.1111/jfpp.15882.
  • Fan, L. L., Q. Wang, J. Y. Lv, L. P. Gao, J. H. Zuo, and J. Y. Shi. 2016. Amelioration of postharvest chilling injury in cowpea (Vigna sinensis) by methyl jasmonate (MeJA) treatments. Scientia Horticulturae 203:95–101. doi:10.1016/j.scienta.2016.03.010.
  • Fan, Z. Q., J. Y. Chen, J. F. Kuang, W. J. Lu, and W. Shan. 2017. The banana fruit SINA ubiquitin ligase MaSINA1 regulates the stability of MaICE1 to be negatively involved in cold stress response. Frontiers in Plant Science 8:995. doi:10.3389/fpls.2017.00995.
  • Fu, A. Z., Y. Y. Zheng, Y. H. Lv, C. B. Watkins, C. M. Bai, L. L. Ma, S. Z. Yuan, S. F. Zheng, L. E. Jia, L. P. Gao, et al. 2022. Multi-omics analysis reveals specific modifications associated with reduced chilling injury in bell pepper fruit by methyl jamonate. Postharvest Biology and Technology 185:111799. doi:10.1016/j.postharvbio.2021.111799.
  • Gao, H., Z. M. Lu, Y. Yang, D. N. Wang, T. Yang, M. M. Cao, and W. Cao. 2018. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry 245:659–66. doi:10.1016/j.foodchem.2017.10.008.
  • Glowacz, M., M. Bill, P. P. Tinyane, and D. Sivakumar. 2017. Maintaining postharvest quality of cold stored ‘Hass’ avocados by altering the fatty acids content and composition with the use of natural volatile compounds-methyl jasmonate and methyl salicylate. Journal of the Science of Food and Agriculture 97 (15):5186–93. doi:10.1002/jsfa.8400.
  • González-Aguilar, G. A., J. G. Buta, and C. Y. Wang. 2001. Methyl jasmonate reduces chilling injury symptoms and enhances colour development of ‘Kent’mangoes. Journal of the Science of Food and Agriculture 81 (13):1244–9. doi:10.1002/jsfa.933.
  • González-Aguilar, G. A., M. E. Tiznado-Hernández, R. Zavaleta-Gatica, and M. A. Martínez-Téllez. 2004. Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochemical and Biophysical Research Communications 313 (3):694–701. doi:10.1016/j.bbrc.2003.11.165.
  • González-Domínguez, E., G. Fedele, T. Caffi, L. Delière, P. Sauris, D. Gramaje, J. L. Ramos-Saez de Ojer, E. Díaz-Losada, A. M. Díez-Navajas, P. Bengoa, et al. 2019. A network meta‐analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. Pest Management Science 75 (2):324–32. doi:10.1002/ps.5116.
  • Habibi, F., A. Ramezanian, F. Guillen, M. Serrano, and D. Valero. 2020. Effect of various postharvest treatment on aroma volatile compounds of blood orange fruit exposed to chilling temperature after long-term storage. Food and Bioprocess Technology 13 (12):2054–64. doi:10.1007/s11947-020-02547-1.
  • Habibi, F., A. Ramezanian, M. Rahemi, S. Eshghi, F. Guillen, M. Serrano, and D. Valero. 2019. Postharvest treatments with γ‐aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the Science of Food and Agriculture 99 (14):6408–17. doi:10.1002/jsfa.9920.
  • Jiao, C. F., J. Dong, and Y. C. Wei. 2023. PpMYB105 inhibited chilling injury by regulating PpMsrA1 in peach fruit. Research Square (Preprint). doi:10.21203/rs.3.rs-2649478/v1.
  • Jin, P., K. T. Wang, H. T. Shang, J. M. Tong, and Y. H. Zheng. 2009a. Low‐temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food and Agriculture 89 (10):1690–6. doi:10.1002/jsfa.3642.
  • Jin, P., Y. H. Zheng, S. S. Tang, H. J. Rui, and C. Y. Wang. 2009b. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology 52 (1):24–9. doi:10.1016/j.postharvbio.2008.09.011.
  • Jin, P., H. Zhu, J. Wang, J. J. Chen, X. L. Wang, and Y. H. Zheng. 2013. Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Journal of the Science of Food and Agriculture 93 (8):1827–32. doi:10.1002/jsfa.5973.
  • Jin, P., H. Zhu, L. Wang, T. M. Shan, and Y. H. Zheng. 2014. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents. Food Chemistry 161:87–93. doi:10.1016/j.foodchem.2014.03.103.
  • Kazan, K., and J. M. Manners. 2013. MYC2: The master in action. Molecular Plant 6 (3):686–703. doi:10.1093/mp/sss128.
  • Kwon, S. J., S. I. Kwon, M. S. Bae, E. J. Cho, and O. K. Park. 2007. Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in Arabidopsis. Plant & Cell Physiology 48 (12):1713–23. doi:10.1093/pcp/pcm143.
  • Le, D. T., K.-L. Nguyen, H. D. Chu, N. T. Vu, T. T. L. Pham, and L.-S P. Tran. 2018. Function of the evolutionarily conserved plant methionine-S-sulfoxide reductase without the catalytic residue. Protoplasma 255 (6):1741–50. doi:10.1007/s00709-018-1266-5.
  • Li, Z. L., D. D. Min, X. D. Fu, X. M. Zhao, J. H. Wang, X. H. Zhang, F. J. Li, and X. A. Li. 2021. The roles of SlMYC2 in regulating ascorbate-glutathione cycle mediated by methyl jasmonate in postharvest tomato fruits under cold stress. Scientia Horticulturae 288:110406. doi:10.1016/j.scienta.2021.110406.
  • Liu, Y. F., X. X. Yang, S. J. Zhu, and Y. Q. Wang. 2016. Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation. Postharvest Biology and Technology 119:77–83. doi:10.1016/j.postharvbio.2016.04.003.
  • Ma, M. J., Z. Q. Zhu, S. C. Cheng, Q. Zhou, X. Zhou, X. M. Kong, M. S. Hu, X. C. Yin, B. D. Wei, and S. J. Ji. 2020. Methyl jasmonate alleviates chilling injury by regulating membrane lipid composition in green bell pepper. Scientia Horticulturae 266:109308. doi:10.1016/j.scienta.2020.109308.
  • Ma, Y. C., R. M. Auge, C. Dong, and Z. M. Cheng. 2017. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: A meta-analysis. Plant Biotechnology Journal 15 (2):162–73. doi:10.1111/pbi.12599.
  • Meng, D. M., H. D. Wang, Y. X. Zhang, Z. A. Xi, Y. Rui, J. P. Sheng, X. H. Zhang, Y. Ding, J. P. Wang, and Z. C. Fan. 2019. Ornithine decarboxylase is involved in methyl jasmonate‐regulated postharvest quality retention in button mushrooms (Agaricus bisporus). Journal of the Science of Food and Agriculture 99 (2):790–6. doi:10.1002/jsfa.9247.
  • Meng, D. M., Y. X. Zhang, R. Yang, J. Wang, X. H. Zhang, J. P. Sheng, J. P. Wang, and Z. C. Fan. 2017. Arginase participates in the methyl jasmonate-regulated quality maintenance of postharvest Agaricus bisporus fruit bodies. Postharvest Biology and Technology 132:7–14. doi:10.1016/j.postharvbio.2017.05.018.
  • Min, D. D., W. Ai, J. X. Zhou, J. Z. Li, X. H. Zhang, Z. L. Li, Z. D. Shi, F. J. Li, X. A. Li, and Y. Y. Guo. 2020. SlARG2 contributes to MeJA‐induced defense responses to Botrytis cinerea in tomato fruit. Pest Management Science 76 (9):3292–301. doi:10.1002/ps.5888.
  • Min, D. D., F. J. Li, M. Ali, J. Liu, X. D. Fu, Y. N. Song, J. Ding, X. A. Li, N. N. Ji, and X. H. Zhang. 2023. Interaction of methionine sulfoxide reductase B5 with SlMYC2 stimulates the transcription of MeJA-mediated autophagy-related genes in tomato fruit. Horticulture Research 10 (3):uhad012. doi:10.1093/hr/uhad012.
  • Min, D. D., F. J. Li, X. H. Zhang, X. X. Cui, P. Shu, L. L. Dong, and C. T. Ren. 2018. SlMYC2 involved in methyl jasmonate-induced tomato fruit chilling tolerance. Journal of Agricultural and Food Chemistry 66 (12):3110–7. doi:10.1021/acs.jafc.8b00299.
  • Min, D. D., J. Zhou, J. Li, W. Ai, Z. Li, X. Zhang, X. Fu, X. Zhao, F. Li, X. Li, et al. 2021. SlMYC2 targeted regulation of polyamines biosynthesis contributes to methyl jasmonate-induced chilling tolerance in tomato fruit. Postharvest Biology and Technology 174:111443. doi:10.1016/j.postharvbio.2020.111443.
  • Mizoi, J., K. Shinozaki, and K. Yamaguchi-Shinozaki. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819 (2):86–96. doi:10.1016/j.bbagrm.2011.08.004.
  • Mustafa, M. A., A. Ali, G. Seymour, and G. Tucker. 2016. Enhancing the antioxidant content of carambola (Averrhoa carambola) during cold storage and methyl jasmonate treatments. Postharvest Biology and Technology 118:79–86. doi:10.1016/j.postharvbio.2016.03.021.
  • Ozturk, B., K. Yıldız, and E. Kucuker. 2015a. Effect of pre‐harvest methyl jasmonate treatments on ethylene production, water‐soluble phenolic compounds and fruit quality of Japanese plums. Journal of the Science of Food and Agriculture 95 (3):583–91. doi:10.1002/jsfa.6787.
  • Ozturk, B., K. Yıldız, and Y. Ozkan. 2015b. Effects of pre-harvest methyl jasmonate treatments on bioactive compounds and peel color development of “Fuji” apples. International Journal of Food Properties 18 (5):954–62. doi:10.1080/10942912.2014.911312.
  • Öztürk, B., and F. Yücedağ. 2021. Effects of methyl jasmonate on quality properties and phytochemical compounds of kiwifruit (Actinidia deliciosa cv.Hayward’) during cold storage and shelf life. Turkish Journal of Agriculture and Forestry 45 (2):154–64. doi:10.3906/tar-2004-69.
  • Qi, X. N., Y. Y. Xiao, Z. Q. Fan, J. Y. Chen, W. J. Lu, and J. F. Kuang. 2016. A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance. Postharvest Biology and Technology 120:222–31. doi:10.1016/j.postharvbio.2016.07.001.
  • Rajestary, R., L. Landi, and G. Romanazzi. 2021. Chitosan and postharvest decay of fresh fruit: Meta‐analysis of disease control and antimicrobial and eliciting activities. Comprehensive Reviews in Food Science and Food Safety 20 (1):563–82. doi:10.1111/1541-4337.12672.
  • Sadanandom, A., Z. Poghosyan, D. J. Fairbairn, and D. J. Murphy. 2000. Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiology 123 (1):255–64. doi:10.1104/pp.123.1.255.
  • Sangprayoon, P., S. Supapvanich, P. Youryon, C. Wongs-Aree, and P. Boonyaritthongchai. 2019. Efficiency of salicylic acid or methyl jasmonate immersions on internal browning alleviation and physicochemical quality of Queen pineapple cv.“Sawi” fruit during cold storage. Journal of Food Biochemistry 43 (12):e13059. doi:10.1111/jfbc.13059.
  • Sayyari, M., F. Salehi, and D. Valero. 2017. New approaches to modeling methyl jasmonate effects on pomegranate quality during postharvest storage. International Journal of Fruit Science 17 (4):374–90. doi:10.1080/15538362.2017.1329051.
  • Seo, J., G. Yi, J. G. Lee, J. H. Choi, and E. J. Lee. 2020. Seed browning in pepper (Capsicum annuum L.) fruit during cold storage is inhibited by methyl jasmonate or induced by methyl salicylate. Postharvest Biology and Technology 166:111210. doi:10.1016/j.postharvbio.2020.111210.
  • Shi, J. Y., J. H. Zuo, D. Y. Xu, L. P. Gao, and Q. Wang. 2019. Effect of low-temperature conditioning combined with methyl jasmonate treatment on the chilling resistance of eggplant (Solanum melongena L.) fruit. Journal of Food Science and Technology 56 (10):4658–66. doi:10.1007/s13197-019-03917-0.
  • Siboza, X. I., I. Bertling, and A. O. Odindo. 2017. Enzymatic antioxidants in response to methyl jasmonate and salicylic acid and their effect on chilling tolerance in lemon fruit [Citrus limon (L.) Burm. F.]. Scientia Horticulturae 225:659–67. doi:10.1016/j.scienta.2017.07.023.
  • Sivankalyani, V., O. Feygenberg, D. Maorer, M. Zaaroor, E. Fallik, and N. Alkan. 2015. Combined treatments reduce chilling injury and maintain fruit quality in avocado fruit during cold quarantine. PLoS One 10 (10):e0140522. doi:10.1371/journal.pone.0140522.
  • Venkatachalam, K., and M. Meenune. 2015. Effect of methyl jasmonate on physiological and biochemical quality changes of longkong fruit under low temperature storage. Fruits 70 (2):69–75. doi:10.1051/fruits/2014046.
  • Wang, L., R. Liu, Y. Yue, M. Yu, Y. Zheng, and H. Zhang. 2022. Preservation treatment with methyl jasmonate alleviates chilling injury disorder in pear fruit by regulating antioxidant system and energy status. Journal of Food Processing and Preservation 46 (1): e16152. doi:10.1111/jfpp.16152.
  • Wang, L., Z. S. Luo, Z. J. Ban, N. Jiang, M. Y. Yang, and L. Li. 2021. Role of exogenous melatonin involved in phenolic metabolism of Zizyphus jujuba fruit. Food Chemistry 341 (Pt 2):128268. doi:10.1016/j.foodchem.2020.128268.
  • Wang, S., X. Lv, J. Zhang, D. Chen, S. Chen, G. Fan, C. Ma, and Y. Wang. 2022. Roles of E3 ubiquitin ligases in plant responses to abiotic stresses. International Journal of Molecular Sciences 23 (4):2308. doi:10.3390/ijms23042308.
  • Wang, S. Y., X. C. Shi, F. Q. Liu, and P. Laborda. 2021. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chemistry 353:129482. doi:10.1016/j.foodchem.2021.129482.
  • Wang, Y. X., L. P. Gao, Q. Wang, and J. H. Zuo. 2019. Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Scientia Horticulturae 243:434–9. doi:10.1016/j.scienta.2018.08.031.
  • Wang, Z., J. K. Cao, and W. B. Jiang. 2016. Changes in sugar metabolism caused by exogenous oxalic acid related to chilling tolerance of apricot fruit. Postharvest Biology and Technology 114:10–6. doi:10.1016/j.postharvbio.2015.11.015.
  • Xie, Y. P., P. X. Chen, Y. Yan, C. N. Bao, X. W. Li, L. P. Wang, X. X. Shen, H. Y. Li, X. F. Liu, C. D. Niu, et al. 2018. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF‐dependent and CBF‐independent pathways in apple. The New Phytologist 218 (1):201–18. doi:10.1111/nph.14952.
  • Ye, Y. J., Y. Y. Xiao, Y. C. Han, W. Shan, Z. Q. Fan, Q. G. Xu, J. F. Kuang, W. J. Lu, P. Lakshmanan, and J. Y. Chen. 2016. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Scientific Reports 6 (1):23632. doi:10.1038/srep23632.
  • Yin, X. C., S. J. Ji, S. C. Cheng, Q. Zhou, X. Zhou, M. L. Luo, M. J. Ma, M. S. Hu, and B. D. Wei. 2021. Methyl jasmonate alleviates the reduced release of aroma‐related esters in ‘Nanguo’ pears by regulating ethylene biosynthesis and signal transduction. International Journal of Food Science & Technology 56 (2):814–24. doi:10.1111/ijfs.14725.
  • Yu, L. N., H. X. Liu, X. F. Shao, F. Yu, Y. Z. Wei, Z. M. Ni, F. Xu, and H. F. Wang. 2016. Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage. Postharvest Biology and Technology 113:8–16. doi:10.1016/j.postharvbio.2015.10.013.
  • Zhang, J., Y. C. Ma, C. Dong, L. A. Terry, C. B. Watkins, Z. F. Yu, and Z. M. Cheng. 2020a. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Horticulture Research 7 (1):208. doi:10.1038/s41438-020-00405-x.
  • Zhang, W. L., J. K. Cao, X. G. Fan, and W. B. Jiang. 2020b. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends in Food Science & Technology 99:531–41. doi:10.1016/j.tifs.2020.03.024.
  • Zhang, W. L., and W. B. Jiang. 2019. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology 92:71–80. doi:10.1016/j.tifs.2019.08.012.
  • Zhang, W. L., H. T. Jiang, J. K. Cao, and W. B. Jiang. 2021. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends in Food Science & Technology 113:355–65. doi:10.1016/j.tifs.2021.05.009.
  • Zhang, X., F. Li, N. Ji, S. Shao, D. Wang, L. Li, and F. Cheng. 2016. Involvement of arginase in methyl jasmonate–induced tomato fruit chilling tolerance. Journal of the American Society for Horticultural Science 141 (2):139–45. doi:10.21273/JASHS.141.2.139.
  • Zhang, X.,L. Shen,F. Li,Y. Zhang,D. Meng, andJ. Sheng. 2010. Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. Journal of the Science of Food and Agriculture 90 (13):2195–202. doi:10.1002/jsfa.4070. 20628998
  • Zhang, X. H., J. P. Sheng, F. J. Li, D. M. Meng, and L. Shen. 2012. Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biology and Technology 64 (1):160–7. doi:10.1016/j.postharvbio.2011.07.006.
  • Zhang, Z. K., M. J. Hu, Z. Yun, J. B. Wang, G. Feng, Z. Y. Gao, X. Q. Shi, and Y. M. Jiang. 2017. Effect of tea seed oil treatment on browning of litchi fruit in relation to energy status and metabolism. Postharvest Biology and Technology 132:97–104. doi:10.1016/j.postharvbio.2017.05.010.
  • Zhao, M. L., J. N. Wang, W. Shan, J. G. Fan, J. Kuang, F. Wu, K. Q. Ping, X. Chen, W. X. He, F. Y. Chen, et al. 2013. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate‐induced chilling tolerance in banana fruit. Plant, Cell & Environment 36 (1):30–51. doi:10.1111/j.1365-3040.2012.02551.x.
  • Zhao, Y. Y., C. C. Song, D. A. Brummell, S. N. Qi, Q. Lin, and Y. Q. Duan. 2021. Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism. Food Chemistry 338:128005. doi:10.1016/j.foodchem.2020.128005.
  • Zhou, J. X., D. D. Min, Z. L. Li, X. D. Fu, X. M. Zhao, J. H. Wang, X. H. Zhang, F. J. Li, and X. A. Li. 2021. Effects of chilling acclimation and methyl jasmonate on sugar metabolism in tomato fruits during cold storage. Scientia Horticulturae 289:110495. doi:10.1016/j.scienta.2021.110495.
  • Zhou, M. Q., C. Shen, L. H. Wu, K. X. Tang, and J. Lin. 2011. CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology 31 (2):186–92. doi:10.3109/07388551.2010.505910.
  • Zhu, J., P. Ding, Q. Li, Y. Gao, F. Chen, and G. Xia. 2015. Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize (Zea mays) under abiotic stresses. Gene 562 (2):159–68. doi:10.1016/j.gene.2015.02.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.