1,888
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The beneficial potential of protein hydrolysates as prebiotic for probiotics and its biological activity: a review

, , ORCID Icon, , , , & show all

References

  • Arakawa, K., K. Matsunaga, S. Takihiro, A. Moritoki, S. Ryuto, Y. Kawai, T. Masuda, and T. Miyamoto. 2015. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk. Journal of Dairy Science 98 (3):1593–1603. doi:10.3168/jds.2014-8860.
  • Ascencio, C., N. Torres, F. Isoard-Acosta, F. J. Gómez-Pérez, R. Hernández-Pando, and A. R. Tovar. 2004. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. The Journal of Nutrition 134 (3):522–529. doi:10.1093/jn/134.3.522.
  • Bach, F., C. V. Helm, M. B. Bellettini, G. M. Maciel, and C. W. I. Haminiuk. 2017. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. International Journal of Food Science & Technology 52 (11):2382–2392. doi:10.1111/ijfs.13522.
  • Butteiger, D. N., A. A. Hibberd, N. J. McGraw, N. Napawan, J. M. Hall-Porter, and E. S. Krul. 2016. Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in golden Syrian hamsters. The Journal of Nutrition 146 (4):697–705. doi:10.3945/jn.115.224196.
  • Catiau, L., J. Traisnel, V. Delval-Dubois, N. E. Chihib, D. Guillochon, and N. Nedjar-Arroume. 2011. Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 32 (4):633–638. doi:10.1016/j.peptides.2010.12.016.
  • Chalamaiah, M., W. L. Yu, and J. P. Wu. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry 245:205–222. doi:10.1016/j.foodchem.2017.10.087.
  • Champagne, C. P., R. P. Ross, M. Saarela, K. F. Hansen, and D. Charalampopoulos. 2011. Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. International Journal of Food Microbiology 149 (3):185–193. doi:10.1016/j.ijfoodmicro.2011.07.005.
  • Chatterton, D. E. W., G. Smithers, P. Roupas, and A. Brodkorb. 2006. Bioactivity of β-lactoglobulin and α-lactalbumin – Technological implications for processing. International Dairy Journal 16 (11):1229–1240. doi:10.1016/j.idairyj.2006.06.001.
  • Chen, D. L., C. Q. Zheng, J. Yang, J. Li, J. Su, Y. Z. Xie, and G. X. Lai. 2017. Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota. Frontiers in Immunology 8:666. doi:10.3389/fimmu.2017.00666.
  • Chen, H., C. N. Li, G. W. Shu, and C. F. Wang. 2012. Screening of nitrogen sources in the medium for Streptococcus thermophilus using Plackett-Burman design. Advanced Materials Research 531:532–535. doi:10.4028/www.scientific.net/AMR.531.532.
  • Chen, J. S., J. Wang, P. X. Song, and X. Ma. 2014. Determination of glycinin in soybean and soybean products using a sandwich enzyme-linked immunosorbent assay. Food Chemistry 162:27–33. doi:10.1016/j.foodchem.2014.04.065.
  • Chi, C., F. Hu, B. Wang, T. Li, and G. Ding. 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods 15:301–313. doi:10.1016/j.jff.2015.03.045.
  • Christensen, J. E., E. G. Dudley, J. A. Pederson, and J. L. Steele. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76 (1/4):217–246. doi:10.1023/A:1002001919720.
  • Christensson, C., H. Bratt, L. J. Collins, T. Coolbear, R. Holland, M. W. Lubbers, P. W. O’Toole, and J. R. Reid. 2002. Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20). Applied and Environmental Microbiology 68 (1):254–262. doi:10.1128/AEM.68.1.254-262.2002.
  • Cicvárek, J., L. Čurda, O. Elich, E. Dvořáková, and M. Dvořák. 2010. Effect of caseinomacropeptide concentrate addition on the growth of Bifidobacteria. Czech Journal of Food Sciences 28 (6):485–494. doi:10.17221/269/2009-CJFS.
  • Damgaard, T., R. Lametsch, and J. Otte. 2015. Antioxidant capacity of hydrolyzed animal by-products and relation to amino acid composition and peptide size distribution. Journal of Food Science and Technology 52 (10):6511–6519. doi:10.1007/s13197-015-1745-z.
  • Darmawan, R., N. A. Bringe, and E. G. de Mejia. 2010. Antioxidant capacity of alcalase hydrolysates and protein profiles of two conventional and seven low glycinin soybean cultivars. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 65 (3):233–240. doi:10.1007/s11130-010-0185-1.
  • Day, R. L., A. J. Harper, R. M. Woods, O. G. Davies, and L. M. Heaney. 2019. Probiotics: Current landscape and future horizons. Future Science OA 5 (4):FSO391. doi:10.4155/fsoa-2019-0004.
  • De Angelis, M., M. Calasso, N. Cavallo, R. Di Cagno, and M. Gobbetti. 2016. Functional proteomics within the genus Lactobacillus. Proteomics 16 (6):946–962. doi:10.1002/pmic.201500117.
  • de Giori, G. S., G. F. de Valdez, A. P. de Ruiz Holgado, and G. Oliver. 1985. Effect of pH and temperature on the proteolytic activity of lactic acid bacteria. Journal of Dairy Science 68 (9):2160–2164. doi:10.3168/jds.S0022-0302(85)81085-7.
  • Detmers, F. J. M., F. C. Lanfermeijer, R. Abele, R. W. Jack, R. Tampe, W. N. Konings, and B. Poolman. 2000. Combinatorial peptide libraries reveal the ligand binding mechanism of the oligopeptide binding protein OppA of Lactococcus lactis. Proceedings of the National Academy of Sciences of the United States of America 97 (23):12487–12492. doi:10.1073/pnas.220308797.
  • Detmers, F. J., E. R. Kunji, F. C. Lanfermeijer, B. Poolman, and W. N. Konings. 1998. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37 (47):16671–16679. doi:10.1021/bi981712t.
  • Ding, T., and Y. Li. 2021. Beneficial effect and mechanism of walnut oligopeptide on Lactobacillus plantarum Z7. Food Science & Nutrition 9 (2):672–681. doi:10.1002/fsn3.2029.
  • Doeven, M. K., J. Kok, and B. Poolman. 2005. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Molecular Microbiology 57 (3):640–649. doi:10.1111/j.1365-2958.2005.04698.x.
  • Dullius, A., M. I. Goettert, and C. F. V. de Souza. 2018. Whey protein hydrolysates as a source of bioactive peptides for functional foods-Biotechnological facilitation of industrial scale-up. Journal of Functional Foods 42:58–74. doi:10.1016/j.jff.2017.12.063.
  • Dysin, A. P., A. R. Egorov, A. A. Godzishevskaya, A. A. Kirichuk, A. G. Tskhovrebov, and A. S. Kritchenkov. 2023. Biologically active supplements affecting producer microorganisms in food biotechnology: A review. Molecules (Basel, Switzerland) 28 (3):1413. doi:10.3390/molecules28031413.
  • Eckert, E., L. Lu, L. D. Unsworth, L. Chen, J. Xie, and R. Xu. 2016. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. Journal of Functional Foods 25:291–301. doi:10.1016/j.jff.2016.06.011.
  • Ennaas, N., R. Hammami, A. Gomaa, F. Bédard, E. ́. Biron, M. Subirade, L. Beaulieu, and I. Fliss. 2016. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane. Biochemical and Biophysical Research Communications 473 (2):642–647. doi:10.1016/j.bbrc.2016.03.121.
  • Fadda, S., Y. Sanz, G. Vignolo, M. C. Aristoy, G. Oliver, and F. Toldrá. 1999. Characterization of muscle sarcoplasmic and myofibrillar protein hydrolysis caused by Lactobacillus plantarum. Applied and Environmental Microbiology 65 (8):3540–3546. doi:10.1089/oli.1.1999.9.359.
  • Fan, X., H. M. Guo, C. Teng, X. S. Yang, P. Y. Qin, A. Richel, L. Z. Zhang, C. Blecker, and G. X. Ren. 2023. Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice. Food Chemistry 408:135196. doi:10.1016/j.foodchem.2022.135196.
  • Farrell, H. M., R. Jimenez-Flores, G. T. Bleck, E. M. Brown, J. E. Butler, L. K. Creamer, C. L. Hicks, C. M. Hollar, K. F. Ng-Kwai-Hang, and H. E. Swaisgood. 2004. Nomenclature of the proteins of cows’ milk-sixth revision. Journal of Dairy Science 87 (6):1641–1674. doi:10.3168/jds.S0022-0302(04)73319-6.
  • Fenelon, M. A., R. M. Hickey, A. Buggy, N. McCarthy, and E. G. Murphy. 2019. Whey proteins in infant formula. Whey Proteins 439–494. doi:10.1016/B978-0-12-812124-5.00013-8.
  • Feng, C. S., L. Tian, H. Hong, Q. Y. Wang, X. Zhan, Y. K. Luo, and Y. Q. Tan. 2022. In vitro gut fermentation of whey protein hydrolysate: An evaluation of its potential modulation on infant gut microbiome. Nutrients 14 (7):1374. doi:10.3390/nu14071374.
  • Fernandez-Espla, M. D., and F. Rul. 1999. PepS from Streptococcus thermophilus - a new member of the aminopeptidase T family of thermophilic bacteria. European Journal of Biochemistry 263 (2):502–510. doi:10.1046/j.1432-1327.1999.00528.x.
  • Fukudome, H., T. Yamaguchi, J. Higuchi, A. Ogawa, Y. Taguchi, J. Li, T. Kabuki, K. Ito, and F. Sakai. 2021. Large-scale preparation and glycan characterization of sialylglycopeptide from bovine milk glycomacropeptide and its bifidogenic properties. Journal of Dairy Science 104 (2):1433–1444. doi:10.3168/jds.2019-17865.
  • Gandhi, A., and N. P. Shah. 2014. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions. International Journal of Food Sciences and Nutrition 65 (8):937–941. doi:10.3109/09637486.2014.945154.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi:10.1038/nrgastro.2017.75.
  • Gilbert, C., D. Atlan, B. Blanc, R. Portailer, J. E. Germond, L. Lapierre, and B. Mollet. 1996. A new cell surface proteinase: Sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. Journal of Bacteriology 178 (11):3059–3065. doi:10.1128/jb.178.11.3059-3065.1996.
  • Guédon, E., P. Renault, S. D. Ehrlich, and C. Delorme. 2001. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. Journal of Bacteriology 183 (12):3614–3622. doi:10.1128/JB.183.12.3614-3622.2001.
  • Guédon, E., P. Serror, S. D. Ehrlich, P. Renault, and C. Delorme. 2001. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Molecular Microbiology 40 (5):1227–1239. doi:10.1046/j.1365-2958.2001.02470.x.
  • Guo, L., P. A. Harnedy, B. Li, H. Hou, Z. Zhang, X. Zhao, and R. J. FitzGerald. 2014. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology 37 (2):92–105. doi: 10.1016/j.tifs.2014.02.007.
  • Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology 11 (8):506–514. doi:10.1038/nrgastro.2014.66.
  • Holck, A., and H. Naes. 1992. Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO151. Journal of General Microbiology 138 (7):1353–1364. doi:10.1099/00221287-138-7-1353.
  • Hou, H., Y. Fan, B. F. Li, C. H. Xue, G. L. Yu, Z. H. Zhang, and X. Zhao. 2012. Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chemistry 134 (2):821–828. doi:10.1016/j.foodchem.2012.02.186.
  • Hsieh, C. M., F. C. Yang, and E. L. Iannotti. 1999. The effect of soy protein hydrolyzates on fermentation by Lactobacillus amylovorus. Process Biochemistry 34 (2):173–179. doi:10.1016/S0032-9592(98)00081-8.
  • Hung, C. C., Y. H. Yang, P. F. Kuo, and K. C. Hsu. 2014. Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. Journal of Functional Foods 11:563–570. doi:10.1016/j.jff.2014.08.015.
  • Idrees, M., M. Imran, N. Atiq, R. Zahra, R. Abid, M. Alreshidi, T. Roberts, A. Abdelgadir, M. K. Tipu, A. Farid, et al. 2022. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Frontiers in Nutrition 9:959941. doi:10.3389/fnut.2022.959941.
  • Janer, C., C. Pelaez, and T. Requena. 2004. Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chemistry 86 (2):263–267. doi:10.1016/j.foodchem.2003.09.034.
  • Javier, R., F. Ayoa, A. R. Francisco, and S. Ana. 2014. Immunomodulatory activities of whey β-lactoglobulin tryptic-digested fractions. International Dairy Journal 34 (1):65–73. doi:10.1016/j.idairyj.2013.07.004.
  • Jingjing, E., Z. Jingya, M. Rongze, C. Zichao, Y. Caiqing, W. Ruixue, Z. Qiaoling, Y. Ying, L. Jing, and W. Junguo. 2023. Study of the internal mechanism of L-glutamate for improving the survival rate of Lactiplantibacillus plantarum LIP-1 after freeze-drying. Innovative Food Science & Emerging Technologies 84:103253. doi:10.1016/j.ifset.2022.103253.
  • Juillard, V., D. Le Bars, E. R. Kunji, W. N. Konings, J. C. Gripon, and J. Richard. 1995. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Applied and Environmental Microbiology 61 (8):3024–3030. doi:10.1128/AEM.61.8.3024-3030.1995.
  • Kafley, S., W. S. Kim, H. Kumura, and K. Shimazaki. 2010. Growth performance of whey protein hydrolysates in the media on different strains of probiotic bacteria. Milchwissenschaft-Milk Science International 65 (3):245–248.
  • Kannan, A., N. S. Hettiarachchy, J. O. Lay, and R. Liyanage. 2010. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31 (9):1629–1634. doi:10.1016/j.peptides.2010.05.018.
  • Klein, J. R., A. Dick, J. Schick, H. T. Matern, B. Henrich, and R. Plapp. 1995. Molecular-cloning and DNA-sequence analysis of pepL, a leucyl aminopeptidase gene from Lactobacillus delbrueckii subsp. Lactis DSM7290. European Journal of Biochemistry 228 (3):570–578. doi:10.1111/j.1432-1033.1995.0570m.x.
  • Krunić, T. Ž., and M. B. Rakin. 2022. Enriching alginate matrix used for probiotic encapsulation with whey protein concentrate or its trypsin-derived hydrolysate: Impact on antioxidant capacity and stability of fermented whey-based beverages. Food Chemistry 370:130931. doi:10.1016/j.foodchem.2021.130931.
  • Kunji, E. R. S., I. Mierau, A. Hagting, B. Poolman, and W. N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70 (2-4):187–221. doi:10.1007/BF00395933.
  • Kunz, C., and B. Lönnerdal. 1990. Human-milk proteins: Analysis of casein and casein subunits by anion-exchange chromatography, gel electrophoresis, and specific staining methods. The American Journal of Clinical Nutrition 51 (1):37–46. doi:10.1093/ajcn/51.1.37.
  • Lamarque, M., P. Charbonnel, D. Aubel, J. C. Piard, D. Atlan, and V. Juillard. 2004. A multifunction ABC transporter (Opt) contributes to diversity of peptide uptake specificity within the genus Lactococcus. Journal of Bacteriology 186 (19):6492–6500. doi:10.1128/JB.186.19.6492-6500.2004.
  • Lau, C. C., N. Abdullah, A. S. Shuib, and N. Aminudin. 2014. Novel angiotensin-I converting enzyme inhibitory peptides derived from edible mushroom Agaricus bisporus (J. E. Lange) Imbach identified by LC-MS/MS. Food Chemistry 148:396–401. doi:10.1016/j.foodchem.2013.10.053.
  • Lazzi, C., F. Meli, F. Lambertini, C. Bottesini, I. Nikolaev, M. Gatti, S. Sforza, O. Koroleva, V. Popov, E. Neviani, et al. 2013. Growth promotion of Bifidobacterium and Lactobacillus species by proteinaceous hydrolysates derived from poultry processing leftovers. International Journal of Food Science & Technology 48 (2):341–349. doi:10.1111/j.1365-2621.2012.03192.x.
  • Li, B., H. He, W. Shi, and T. Hou. 2019. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization. Journal of the Science of Food and Agriculture 99 (4):1834–1841. doi:10.1002/jsfa.9377.
  • Li, W. H., H. Li, Y. X. Zhang, C. Zhang, J. Zhang, and X. Q. Liu. 2021. Differences in the gut microbiota composition of rats fed with soybean protein and their derived peptides. Journal of Food Science 86 (12):5452–5465. doi:10.1111/1750-3841.15948.
  • Li, W. H., H. Li, Y. X. Zhang, L. J. He, C. Zhang, and X. Q. Liu. 2021. Different effects of soybean protein and its derived peptides on the growth and metabolism of Bifidobacterium animalis subsp. animalis JCM 1190. Food & Function 12 (13):5731–5744. doi:10.1039/d1fo00480h.
  • Liu, M. M., B. Qi, J. S. Zhan, Y. Y. Chen, and G. Q. Zhao. 2018. Effects of low-abundant soybean protein extracts on the immune function and antioxidant capacity of mice. Journal of China Agricultural University 23 (02):57–63.
  • Liu, M., J. R. Bayjanov, B. Renckens, A. Nauta, and R. J. Siezen. 2010. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genomics 11 (1):36. doi:10.1186/1471-2164-11-36.
  • Liu, R. T., R. F. Walsh, and A. E. Sheehan. 2019. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience and Biobehavioral Reviews 102:13–23. doi:10.1016/j.neubiorev.2019.03.023.
  • Liu, X. R., N. Zhu, Y. T. Hao, X. C. Yu, Z. Li, R. X. Mao, R. Liu, J. W. Kang, J. N. Hu, and Y. Li. 2021. Radioprotective effect of whey hydrolysate peptides against γ-radiation-induced oxidative stress in BALB/c mice. Nutrients 13 (3):816. doi:10.3390/nu13030816.
  • Maseko, T., D. L. Callahan, F. R. Dunshea, A. Doronila, S. D. Kolev, and K. Ng. 2013. Chemical characterization and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chemistry 141 (4):3681–3687. doi:10.1016/j.foodchem.2013.06.027.
  • Masuda, T., R. Taguchi, T. Kabuki, H. Nakajima, and T. Itoh. 2003. Improvement of the growth of Lactobacillus acidophilus in milk by addition of enzymatically digested casein. Milchwissenschaft-Milk Science International 58:124–127.
  • Meli, F., C. Lazzi, E. Neviani, and M. Gatti. 2013. Effect of protein hydrolizates on growth kinetics and aminopeptidase activities of some Bifidobacterium species. Anaerobe 22:130–133. doi:10.1016/j.anaerobe.2013.05.003.
  • Meli, F., C. Lazzi, E. Neviani, and M. Gatti. 2014. Effect of protein hydrolysates on growth kinetics and aminopeptidase activities of Lactobacillus. Current Microbiology 68 (1):82–87. doi:10.1007/s00284-013-0445-z.
  • Miquel, E., A. Alegria, R. Barbera, and R. Farre. 2005. Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed phase high-performance liquid chromatography-mass spectrometry/flame atomic-absorption spectroscopy. Analytical and Bioanalytical Chemistry 381 (5):1082–1088. doi:10.1007/s00216-004-3002-6.
  • Miquel, E., A. Alegria, R. Barbera, and R. Farre. 2006. Casein phosphopeptides released by simulated gastrointestinal digestion of infant formulas and their potential role in mineral binding. International Dairy Journal 16 (9):992–1000. doi:10.1016/j.idairyj.2005.10.010.
  • Miquel, E., J. A. Gomez, A. Alegria, R. Barbera, R. Farre, and I. Recio. 2005. Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. Journal of Agricultural and Food Chemistry 53 (9):3426–3433. doi:10.1021/jf0482111.
  • Mitsuma, T., H. Odajima, Z. Momiyama, K. Watanabe, M. Masuguchi, T. Sekine, S. Shidara, and S. Hirano. 2008. Enhancement of gene expression by a peptide p(CHWPR) produced by Bifidobacterium lactis BB-12. Microbiology and Immunology 52 (3):144–155. doi:10.1111/j.1348-0421.2008.00022.x.
  • Nishinari, K., Y. Fang, S. Guo, and G. O. Phillips. 2014. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 39:301–318. doi:10.1016/j.foodhyd.2014.01.013.
  • Pan, D. D., Z. Wu, J. Liu, X. Y. Cao, and X. Q. Zeng. 2013. Immunomodulatory and hypoallergenic properties of milk protein hydrolysates in ICR mice. Journal of Dairy Science 96 (8):4958–4964. doi:10.3168/jds.2013-6758.
  • Pastar, I., I. Tonic, N. Golic, M. Kojic, R. van Kranenburg, M. Kleerebezem, L. Topisirovic, and G. Jovanovic. 2003. Identification and genetic characterization of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Applied and Environmental Microbiology 69 (10):5802–5811. doi:10.1128/AEM.69.10.5802-5811.2003.
  • Patel, S. 2015. Functional food relevance of whey protein: A review of recent findings and scopes ahead. Journal of Functional Foods 19:308–319. doi:10.1016/j.jff.2015.09.040.
  • Pederson, J. A., G. J. Mileski, B. C. Weimer, and J. L. Steele. 1999. Genetic characterization of a cell envelope-associated proteinase from Lactobacillus helveticus CNRZ32. Journal of Bacteriology 181 (15):4592–4597. doi:10.1128/JB.181.15.4592-4597.1999.
  • Peled, S., and Y. D. Livney. 2021. The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocolloids 120:106911. doi:10.1016/j.foodhyd.2021.106911.
  • Peredo-Lovillo, A., H. E. Romero-Luna, and M. Jiménez-Fernández. 2020. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Research International (Ottawa, Ontario) 136:109473. doi:10.1016/j.foodres.2020.109473.
  • Picon, A., M. A. García-Casado, and M. Nuñez. 2010. Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. International Dairy Journal 20 (3):156–162. doi:10.1016/j.idairyj.2009.10.002.
  • Poch, M., and A. Bezkorovainy. 1991. Bovine milk-casein trypsin digest is a growth enhancer for the genus Bifidobacterium. Journal of Agricultural and Food Chemistry 39 (1):73–77. doi:10.1021/jf00001a013.
  • Proulx, M., P. Ward, S. F. Gauthier, and D. Roy. 1994. Comparison of bifidobacterial growth-promoting activity of ultrafiltered casein hydrolysate fractions. Le Lait 74 (2):139–152. doi:10.1051/lait:1994212.
  • Robitaille, G., and C. P. Champagne. 2014. Growth-promoting effects of pepsin- and trypsin-treated caseinomacropeptide from bovine milk on probiotics. The Journal of Dairy Research 81 (3):319–324. doi:10.1017/S0022029914000247.
  • Saiga, A. I., S. Tanabe, and T. Nishimura. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry 51 (12):3661–3667. doi:10.1021/jf021156g.
  • Saxena, S. N., B. K. Mital, and S. K. Garg. 1994. Effect of casitone and fructose on the growth of Lactobacillus acidophilus and its survival during storage. International Journal of Food Microbiology 21 (3):271–276. doi:10.1016/0168-1605(94)90034-5.
  • Sinezen, R. J. 1999. Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 76 (1-4):139–155. doi:10.1023/A:1002036906922.
  • Solval, K. M., A. Chouljenko, A. Chotiko, and S. Sathivel. 2019. Growth kinetics and lactic acid production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in media containing egg white hydrolysates. Lwt 105:393–399. doi:10.1016/j.lwt.2019.01.058.
  • Sousa, R., R. Portmann, S. Dubois, I. Recio, and L. Egger. 2020. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Research International (Ottawa, Ont.) 130:108996. doi:10.1016/j.foodres.2020.108996.
  • Sridhar, V. R., J. E. Hughes, D. L. Welker, J. R. Broadbent, and J. L. Steele. 2005. Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides. Applied and Environmental Microbiology 71 (6):3025–3032. doi:10.1128/AEM.71.6.3025-3032.2005.
  • Stephan, A., J. Ahlborn, M. Zajul, and H. Zorn. 2018. Edible mushroom mycelia of Pleurotus sapidus as novel protein sources in a vegan boiled sausage analog system: Functionality and sensory tests in comparison to commercial proteins and meat sausages. European Food Research and Technology 244 (5):913–924. doi:10.1007/s00217-017-3012-1.
  • St-Gelais, D., D. Roy, S. Haché, M. L. Desjardins, and S. F. Gauthier. 1993. Growth of nonproteolytic Lactococcus lactis in culture medium supplemented with different casein hydrolyzates. Journal of Dairy Science 76 (11):3327–3337. doi:10.3168/jds.S0022-0302(93)77670-5.
  • Stuart, M. R., L. S. Chou, and B. C. Weimer. 1999. Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology 65 (2):665–673. doi:10.1177/0146167206298564.
  • Sun, X. M., C. N. Wang, and M. R. Guo. 2018. Interactions between whey protein or polymerized whey protein and soybean lecithin in model system. Journal of Dairy Science 101 (11):9680–92. doi:10.3168/jds.2018-14998.
  • Sun, Z.-H., M.-J. Yao, X. Bian, Q.-Q. Guo, H.-N. Guan, Y. Yang, B. Wang, Y.-G. Shi, W. Piekoszewski, X.-W. Yang, et al. 2021. The influence of soy protein hydrolysate (SPH) addition to infant formula powder on Streptococcus thermophilus proliferation and metabolism. Food Research International (Ottawa, Ont.) 141:110103. doi:10.1016/j.foodres.2020.110103.
  • Suokko, A., M. Poutanen, K. Savijoki, N. Kalkkinen, and P. Varmanen. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8 (5):1029–1041. doi:10.1002/pmic.200700925.
  • Tang, T. T., N. Wu, S. S. Tang, N. H. Xiao, Y. Jiang, Y. G. Tu, and M. S. Xu. 2023. Industrial application of protein hydrolysates in food. Journal of Agricultural and Food Chemistry 71 (4):1788–1801. doi:10.1021/acs.jafc.2c06957.
  • Tian, Q., T. T. Wang, X. Tang, M. Z. Han, X. J. Leng, and X. Y. Mao. 2015. Developing a potential prebiotic of yogurt: Growth of Bifidobacterium and yogurt cultures with addition of glycomacropeptide hydrolysate. International Journal of Food Science & Technology 50 (1):120–127. doi:10.1111/ijfs.12611.
  • Tripathi, M. K., and S. K. Giri. 2014. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods 9:225–241. doi:10.1016/j.jff.2014.04.030.
  • Tynkkynen, S., G. Buist, E. Kunji, J. Kok, B. Poolman, G. Venema, and A. Haandrikman. 1993. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. Journal of Bacteriology 175 (23):7523–7532. doi:10.1128/JB.175.23.7523-7532.1993.
  • Ummadi, M., and M. Curic-Bawden. 2008. Use of protein hydrolysates in industrial starter culture fermentations. Springer: Dordrecht, The Netherlands.
  • Venardou, B., J. V. O’Doherty, M. J. McDonnell, A. Mukhopadhya, C. Kiely, M. T. Ryan, and T. Sweeney. 2021. Evaluation of the in vitro effects of the increasing inclusion levels of yeast beta-glucan, a casein hydrolysate and its 5 kDa retentate on selected bacterial populations and strains commonly found in the gastrointestinal tract of pigs. Food & Function 12 (5):2189–2200. doi:10.1039/d0fo02269a.
  • Vital, D. A. L., E. G. de Mejia, V. P. Dia, and G. Loarca-Pina. 2014. Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chemistry 157:347–355. doi:10.1016/j.foodchem.2014.02.050.
  • Wang, B., Y. Yang, X. Bian, H.-N. Guan, L.-L. Liu, X.-X. Li, Q.-Q. Guo, W. Piekoszewski, F.-L. Chen, N. Wu, et al. 2021. Proliferation of Bifidobacterium L80 under different proportions of milk protein hydrolysate. Microbial Cell Factories 20 (1):213. doi:10.1186/s12934-021-01702-3.
  • Wang, H. Q., T. Huang, K. L. Liu, J. Yu, G. Q. Yao, W. Y. Zhang, H. P. Zhang, and T. S. Sun. 2022. Protective effects of whey protein hydrolysate on Bifidobacterium animalis ssp. lactis Probio-M8 during freeze-drying and storage. Journal of Dairy Science 105 (9):7308–7321. doi:10.3168/jds.2021-21546.
  • Wang, J. R., D. Teng, Z. G. Tian, H. U. Jian-Cheng, and J. H. Wang. 2008. Preparation and mechanism of functional antioxidant peptides. Natural Product Research & Development 20:49. doi:10.16333/j.1001-6880.2008.02.010.
  • Wang, L. F., J. Zhang, Q. Yuan, H. H. Xie, J. Y. Shi, and X. R. Ju. 2016. Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food & Function 7 (5):2239–2248. doi:10.1039/c6fo00042h.
  • Wang, Z. J., and X. W. Zhang. 2017. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. Journal of the Science of Food and Agriculture 97 (3):918–922. doi:10.1002/jsfa.7815.
  • Wu, R. N., W. Y. Zhang, T. S. Sun, J. R. Wu, X. Q. Yue, H. Meng, and H. P. Zhang. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei to low acid stress. International Journal of Food Microbiology 147 (3):181–187. doi:10.1016/j.ijfoodmicro.2011.04.003.
  • Xie, H. X., Y. Liao, M. W. Woo, H. Xiong, and Q. Zhao. 2023. Whey protein hydrolysates as prebiotic and protective agent regulate growth and survival of Lactobacillus rhamnosus CICC22152 during spray/freeze-drying, storage and gastrointestinal digestion. Journal of the Science of Food and Agriculture 103 (3):1237–1246. doi:10.1002/jsfa.12218.
  • Xue, H., J. Han, J. Ma, H. Song, B. He, X. Liu, M. Yi, and L. Zhang. 2023. Identification of immune-active peptides in casein hydrolysates and its transport mechanism on a Caco-2 monolayer. Foods (Basel, Switzerland) 12 (2):373. doi:10.3390/foods12020373.
  • Yadav, M. K., I. Kumari, B. Singh, K. K. Sharma, and S. K. Tiwari. 2022. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Applied Microbiology and Biotechnology 106 (2):505–521. doi:10.1007/s00253-021-11646-8.
  • Yang, T. T., L. M. Yu, E. Q. Liu, X. J. Chen, M. X. Zhu, and X. Q. Wang. 2014. Effects of cecropin a-magainin hybrid peptide on small intestinal mucosal structure, mucosal immune function and intestinal microflora in mice. Chinese Journal of Animal Nutrition 26:3387–3395.
  • You, S., Y. Ma, B. Yan, W. Pei, Q. Wu, C. Ding, and C. Huang. 2022. The promotion mechanism of prebiotics for probiotics: A review. Frontiers in Nutrition 9:1000517. doi:10.3389/fnut.2022.1000517.
  • Yu, Y. J., M. Amorim, C. Marques, C. Calhau, and M. Pintado. 2016. Effects of whey peptide extract on the growth of probiotics and gut microbiota. Journal of Functional Foods 21:507–516. doi:10.1016/j.jff.2015.10.035.
  • Zhang, C., S. Xia, Y. Zhang, S. Zhu, H. Li, and X. Liu. 2022. Identification of soybean peptides and their effect on the growth and metabolism of Limosilactobacillus reuteri LR08. Food Chemistry 369:130923. doi:10.1016/j.foodchem.2021.130923.
  • Zhang, C., Y. X. Zhang, G. R. Liu, W. H. Li, S. Q. Xia, H. Li, and X. Q. Liu. 2021. Effects of soybean protein isolates and peptides on the growth and metabolism of Lactobacillus rhamnosus. Journal of Functional Foods 77:104335. doi:10.1016/j.jff.2020.104335.
  • Zhang, C., Y. X. Zhang, H. Li, and X. Q. Liu. 2020. The potential of proteins, hydrolysates and peptides as growth factors for Lactobacillus and Bifidobacterium: Current research and future perspectives. Food & Function 11 (3):1946–1957. doi:10.1039/c9fo02961c.
  • Zhang, C., Y. X. Zhang, S. Q. Xia, S. Y. Zhu, W. H. Li, S. M. Aboelenin, M. M. Soliman, X. Li, and X. Liu. 2021. iTRAQ-based proteomic analysis of the differential effects of digested soy peptides and digested soy protein isolates on Lacticaseibacillus rhamnosus. Food Bioscience 43:101296. doi:10.1016/j.fbio.2021.101296.
  • Zhang, P., S. Roytrakul, and M. Sutheerawattananonda. 2017. Production and purification glucosamine and angiotensin-I converting enzyme (ACE) inhibitory peptides from mushroom hydrolysates. Journal of Functional Foods 36:72–83. doi:10.1016/j.jff.2017.06.049.
  • Zhang, Q. L., J. Y. Ren, H. F. Zhao, M. M. Zhao, J. Y. Xu, and Q. Z. Zhao. 2011. Influence of casein hydrolysates on the growth and lactic acid production of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. International Journal of Food Science & Technology 46 (5):1014–1020. doi:10.1111/j.1365-2621.2011.02578.x.
  • Zhao, F. F., and R. J. Zhang. 2004. Effect of soybean peptide on intestinal flora of laying hens. Feed China 9:17–18.
  • Zhao, H. F., F. L. Bai, F. Zhou, P. Walczak, X. N. Jiang, and B. L. Zhang. 2013. Characterization of soybean protein hydrolysates able to promote the proliferation of Streptococcus Thermophilus ST. Journal of Food Science 78 (4):M575–M581. doi:10.1111/1750-3841.12075.
  • Zhao, Q., Y. Shi, X. Wang, and A. Huang. 2020. Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption. Journal of Dairy Science 103 (12):11116–11128. doi:10.3168/jds.2020-18577.
  • Zisu, B., and N. P. Shah. 2003. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. Journal of Dairy Science 86 (11):3405–3415. doi:10.3168/jds.S0022-0302(03)73944-7.