1,975
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

S-methyl cysteine sulfoxide and its potential role in human health: a scoping review

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abbaoui, B., C. R. Lucas, K. M. Riedl, S. K. Clinton, and A. Mortazavi. 2018. Cruciferous vegetables, isothiocyanates, and bladder cancer prevention. Molecular Nutrition & Food Research 62 (18):e1800079. doi: 10.1002/mnfr.201800079.
  • Alam, A., A. A. Arif Jahan, M. S. Bari, L. Khandokar, M. H. Mahmud, M. Junaid, M. S. Chowdhury, M. F. Khan, V. Seidel, and M. A. Haque. 2023. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Critical Reviews in Food Science and Nutrition 63 (23):6580–614. doi: 10.1080/10408398.2022.2036094.
  • Aromataris, E., and Z. Munn. 2020. JBI Manual for Evidence Synthesis: JBI. https://synthesismanual.jbi.global.
  • Bagiu, R. V., B. Vlaicu, and M. Butnariu. 2012. Chemical composition and in vitro antifungal activity screening of the Allium ursinum L. (Liliaceae). International Journal of Molecular Sciences 13 (2):1426–36. doi: 10.3390/ijms13021426.
  • Blekkenhorst, L. C., C. P. Bondonno, J. R. Lewis, A. Devine, K. Zhu, W. H. Lim, R. J. Woodman, L. J. Beilin, R. L. Prince, and J. M. Hodgson. 2017. Cruciferous and allium vegetable intakes are inversely associated with 15-year atherosclerotic vascular disease deaths in older adult women. Journal of the American Heart Association 6 (10):1–15. doi: 10.1161/jaha.117.006558.
  • Blekkenhorst, L. C., C. P. Bondonno, J. R. Lewis, R. J. Woodman, A. Devine, N. P. Bondonno, W. H. Lim, K. Zhu, L. J. Beilin, P. L. Thompson, et al. 2018. Cruciferous and total vegetable intakes are inversely associated with subclinical atherosclerosis in older adult women. Journal of the American Heart Association 7 (8):e008391. doi: 10.1161/jaha.117.008391.
  • Blekkenhorst, L. C., M. Sim, C. P. Bondonno, N. P. Bondonno, N. C. Ward, R. L. Prince, A. Devine, J. R. Lewis, and J. M. Hodgson. 2018. Cardiovascular health benefits of specific vegetable types: A narrative review. Nutrients 10 (5):595. doi: 10.3390/nu10050595.
  • Bradshaw, J. E. 2021. Population improvement and synthetic cultivar production in forage kale (Brassica oleracea L.). Euphytica 217 (7):150. doi: 10.1007/s10681-021-02880-2.
  • Bradshaw, J. E., and R. N. Wilson. 2012. Kale population improvement and cultivar production. Euphytica 184 (2):275–88. doi: 10.1007/s10681-011-0612-x.
  • Chan, Q., G. M. Wren, C. E. Lau, T. M. D. Ebbels, R. Gibson, R. L. Loo, G. S. Aljuraiban, J. M. Posma, A. R. Dyer, L. M. Steffen, et al. 2022. Blood pressure interactions with the DASH dietary pattern, sodium, and potassium: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). The American Journal of Clinical Nutrition 116 (1):216–29. doi: 10.1093/ajcn/nqac067.
  • Chiang, J. Y. L., J. M. Ferrell, Y. Wu, and S. Boehme. 2020. Bile acid and cholesterol metabolism in atherosclerotic cardiovascular disease and therapy. Cardiology Plus 5 (4):159–70. doi: 10.4103/2470-7511.305419.
  • Coode-Bate, J., T. Sivapalan, A. Melchini, S. Saha, P. W. Needs, J. R. Dainty, J. B. Maicha, G. Beasy, M. H. Traka, R. D. Mills, et al. 2019. Accumulation of dietary S-methyl cysteine sulfoxide in human prostate tissue. Molecular Nutrition & Food Research 63 (20):e1900461. doi: 10.1002/mnfr.201900461.
  • Costa-Pérez, A., V. Núñez-Gómez, N. Baenas, G. Di Pede, M. Achour, C. Manach, P. Mena, D. Del Rio, C. García-Viguera, D. A. Moreno, et al. 2023. Systematic review on the metabolic interest of glucosinolates and their bioactive derivatives for human health. Nutrients 15 (6):1424. doi: 10.3390/nu15061424.
  • de Castro, V. M., K. C. de Paula Medeiros, L. I. C. de Lemos, L. de Fátima Campos Pedrosa, F. V. L. Ladd, T. G. de Carvalho, R. F. de Araújo Júnior, B. J. Abreu, and N. B. da Silva Farias. 2021. S-methyl cysteine sulfoxide ameliorates duodenal morphological alterations in streptozotocin-induced diabetic rats. Tissue & Cell 69:101483. doi: 10.1016/j.tice.2020.101483.
  • de Lemos, L. I. C., M. A. Medeiros, J. Lima, T. O. Teixeira, C. A. Figueiredo, N. B. S. Farias, F. S. Silva, B. J. Abreu, K. C. P. Medeiros, and L. F. C. Pedrosa. 2021. S-methyl cysteine sulfoxide mitigates histopathological damage, alleviate oxidative stress and promotes immunomodulation in diabetic rats. Journal of Complementary & Integrative Medicine 18 (4):719–25. doi: 10.1515/jcim-2020-0220.
  • Edmands, W. M., O. P. Beckonert, C. Stella, A. Campbell, B. G. Lake, J. C. Lindon, E. Holmes, and N. J. Gooderham. 2011. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. Journal of Proteome Research 10 (10):4513–21. doi: 10.1021/pr200326k.
  • Edmands, W., M. B. Nigel, J. Gooderham, E. Holmes, and S. C. Mitchell. 2013. S-Methyl-l-cysteine sulphoxide: The Cinderella phytochemical? Toxicology Research 2 (1):11–22. doi: 10.1039/C2TX20030A.
  • Ferrucci, L., and E. Fabbri. 2018. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology 15 (9):505–22. doi: 10.1038/s41569-018-0064-2.
  • Friedrich, K., N. S. Wermter, L. Andernach, K. Witzel, and F. S. Hanschen. 2022. Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables. Food Chemistry 383:132544. doi: 10.1016/j.foodchem.2022.132544.
  • Fujiwara, M., Y. Itokawa, H. Uchino, and K. Inoue. 1972. Anti-hypercholesterolemic effect of a sulfur containing amino acid, S-methyl-L-cysteine sulfoxide, isolated from cabbage. Experientia 28 (3):254–5. doi: 10.1007/bf01928671.
  • Higuchi, O., K. Tateshita, and H. Nishimura. 2003. Antioxidative activity of sulfur-containing compounds in Allium species for human low-density lipoprotein (LDL) oxidation in vitro. Journal of Agricultural and Food Chemistry 51 (24):7208–14. doi: 10.1021/jf034294u.
  • Hill, C. R., A. Shafaei, L. Balmer, J. R. Lewis, J. M. Hodgson, A. H. Millar, and L. C. Blekkenhorst. 2022. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Critical Reviews in Food Science and Nutrition:1–23. doi: 10.1080/10408398.2022.2057915.
  • Horníčková, J., R. Kubec, K. Cejpek, J. Velíšek, J. Ovesná, and H. Stavělíková. 2010. Profiles of S-alk(en)ylcysteine sulfoxides in various garlic genotypes. Czech Journal of Food Sciences 28 (4):298–308. doi: 10.17221/135/2010-CJFS.
  • Itokawa, Y., K. Inoue, S. Sasagawa, and M. Fujiwara. 1973. Effect of S-methylcysteine sulfoxide, S-allylcysteine sulfoxide and related sulfur-containing amino acids on lipid metabolism of experimental hypercholesterolemic rats. The Journal of Nutrition 103 (1):88–92. doi: 10.1093/jn/103.1.88.
  • Jia, X., L. Zhong, Y. Song, Y. Hu, G. Wang, and S. Sun. 2016. Consumption of citrus and cruciferous vegetables with incident type 2 diabetes mellitus based on a meta-analysis of prospective study. Primary Care Diabetes 10 (4):272–80. doi: 10.1016/j.pcd.2015.12.004.
  • Kany, S., J. T. Vollrath, and B. Relja. 2019. Cytokines in inflammatory disease. International Journal of Molecular Sciences 20 (23):6008. doi: 10.3390/ijms20236008.
  • Kellingray, L., G. Le Gall, J. F. Doleman, A. Narbad, and R. F. Mithen. 2021. Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. European Journal of Nutrition 60 (4):2141–54. doi: 10.1007/s00394-020-02405-y.
  • Komatsu, W., Y. Miura, and K. Yagasaki. 1998. Suppression of hypercholesterolemia in hepatoma-bearing rats by cabbage extract and its component, S-methyl-L-cysteine sulfoxide. Lipids 33 (5):499–503. doi: 10.1007/s11745-998-0233-7.
  • Kook, S., G. Kim, and K. Choi. 2009. The antidiabetic effect of onion and garlic in experimental diabetic rats: meta-analysis. Journal of Medicinal Food 12 (3):552–60. doi: 10.1089/jmf.2008.1071.
  • Kubec, R., and E. Dadáková. 2008. Quantitative determination of S-alk(en)ylcysteine-S-oxides by micellar electrokinetic capillary chromatography. Journal of Chromatography. A 1212 (1–2):154–7. doi: 10.1016/j.chroma.2008.10.024.
  • Kubodera, A., M. Shikita, S. Akaboshi, and S. Turufuji. 1973. Effects of potato kallikrein inhibitor and S-methyl-L-cysteine sulfoxide on plasma and liver kininogen levels of x-irradiated rats and effectiveness of these materials as radioprotectors. Journal of Radiation Research 14 (2):126–35. doi: 10.1269/jrr.14.126.
  • Kumari, K., and K. T. Augusti. 1995. Antidiabetic effects of S-methylcysteine sulphoxide on alloxan diabetes. Planta Medica 61 (1):72–4. doi: 10.1055/s-2006-958004.
  • Kumari, K., and K. T. Augusti. 2002. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian Journal of Experimental Biology 40 (9):1005–9. https://pubmed.ncbi.nlm.nih.gov/12587728/.
  • Kumari, K., and K. T. Augusti. 2007. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. Journal of Ethnopharmacology 109 (3):367–71. doi: 10.1016/j.jep.2006.07.045.
  • Kumari, K., B. C. Mathew, and K. T. Augusti. 1995. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian Journal of Biochemistry & Biophysics 32 (1):49–54. https://pubmed.ncbi.nlm.nih.gov/7665195/.
  • Li, K. J., E. C. Borresen, N. Jenkins-Puccetti, G. Luckasen, and E. P. Ryan. 2017. Navy bean and rice bran intake alters the plasma metabolome of children at risk for Cardiovascular Disease. Frontiers in Nutrition 4:71. doi: 10.3389/fnut.2017.00071.
  • Mae, T., K. Ohira, and A. Fujiwara. 1971. Fate of (+) S-methyl-l-cysteine sulfoxide in Chinese cabbage, Brassica pekinensis RUPR. Plant and Cell Physiology 12 (1):1–11. doi: 10.1093/oxfordjournals.pcp.a074591.
  • Marks, H. S., J. A. Anderson, and G. S. Stoewsand. 1993. Effect of S-methyl cysteine sulphoxide and its metabolite methyl methane thiosulphinate, both occurring naturally in Brassica vegetables, on mouse genotoxicity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 31 (7):491–5. doi: 10.1016/0278-6915(93)90108-b.
  • Marks, H. S., J. A. Hilson, H. C. Leichtweis, and G. S. Stoewsand. 1992. S-Methylcysteine sulfoxide in Brassica vegetables and formation of methyl methanethiosulfinate from Brussels sprouts. Journal of Agricultural and Food Chemistry 40 (11):2098–101. doi: 10.1021/jf00023a012.
  • Mohammed, S. G., and M. W. Qoronfleh. 2020. Vegetables. Advances in Neurobiology 24:225–77. doi: 10.1007/978-3-030-30402-7_9.
  • Morris, C. J., and J. F. Thompson. 1956. The identification of (+) S-methyl-l-cysteine sulfoxide in plants. Journal of the American Chemical Society 78 (8):1605–8. doi: 10.1021/ja01589a028.
  • Nakayama, Y., H. J. Ho, M. Yamagishi, H. Ikemoto, M. Komai, and H. Shirakawa. 2020. Cysteine sulfoxides enhance steroid hormone production via activation of the protein kinase A pathway in ttestis-derived I-10 tumor cells. Molecules (Basel, Switzerland) 25 (20):4694. doi: 10.3390/molecules25204694.
  • Narbad, A., and J. T. Rossiter. 2018. Gut glucosinolate metabolism and isothiocyanate production. Molecular Nutrition & Food Research 62 (18):e1700991. doi: 10.1002/mnfr.201700991.
  • Peters, M. D. J., C. M. Godfrey, P. McInerney, Z. Munn, A. C. Tricco, and H. Khali. 2020. Chapter 11: Scoping reviews (2020 version). In JBI manual for evidence synthesis, eds. E. Aromataris and Z. Munn. JBI. https://synthesismanual.jbi.global. doi: 10.46658/JBIMES-20-12.
  • Peters, M. D. J., C. Marnie, A. C. Tricco, D. Pollock, Z. Munn, L. Alexander, P. McInerney, C. M. Godfrey, and H. Khalil. 2020. Updated methodological guidance for the conduct of scoping reviews. JBI Evidence Synthesis 18 (10):2119–26. doi: 10.11124/jbies-20-00167.
  • Petropoulos, S., F. Di Gioia, and G. Ntatsi. 2017. Vegetable organosulfur compounds and their health promoting effects. Current Pharmaceutical Design 23 (19):2850–75. doi: 10.2174/1381612823666170111100531.
  • Plecitá-Hlavatá, L., M. Jabůrek, B. Holendová, J. Tauber, V. Pavluch, Z. Berková, M. Cahová, K. Schröder, R. P. Brandes, D. Siemen, et al. 2020. Glucose-stimulated insulin secretion fundamentally requires H(2)O(2) signaling by NADPH oxidase 4. Diabetes 69 (7):1341–54. doi: 10.2337/db19-1130.
  • Quirante-Moya, S., P. García-Ibañez, F. Quirante-Moya, D. Villaño, and D. A. Moreno. 2020. The role of Brassica bioactives on human health: Are we studying it the right way? Molecules (Basel, Switzerland) 25 (7):1591. doi: 10.3390/molecules25071591.
  • Rafiq, T., S. M. Azab, K. K. Teo, L. Thabane, S. S. Anand, K. M. Morrison, R. J. de Souza, and P. Britz-McKibbin. 2021. Nutritional metabolomics and the classification of dietary biomarker candidates: A critical review. Advances in Nutrition (Bethesda, MD) 12 (6):2333–57. doi: 10.1093/advances/nmab054.
  • Reagan-Shaw, S., M. Nihal, and N. Ahmad. 2008. Dose translation from animal to human studies revisited. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 22 (3):659–61. doi: 10.1096/fj.07-9574LSF.
  • Ruhee, R. T., L. Arwyn Roberts, S. Ma, and K. Suzuki. 2020. Organosulfur compounds: A review of their anti-inflammatory effects in human health. Frontiers in Nutrition 7:64. doi: 10.3389/fnut.2020.00064.
  • Sendl, A., M. Schliack, R. Löser, F. Stanislaus, and H. Wagner. 1992. Inhibition of cholesterol synthesis in vitro by extracts and isolated compounds prepared from garlic and wild garlic. Atherosclerosis 94 (1):79–85. doi: 10.1016/0021-9150(92)90190-R.
  • Sheela, C. G., K. Kumud, and K. T. Augusti. 1995. Anti-diabetic effects of onion and garlic sulfoxide amino acids in rats. Planta Medica 61 (4):356–7. doi: 10.1055/s-2006-958099.
  • Simmen, F. A., I. Alhallak, and R. C. M. Simmen. 2020. Malic enzyme 1 (ME1) in the biology of cancer: It is not just intermediary metabolism. Journal of Molecular Endocrinology 65 (4):R77–R90. doi: 10.1530/JME-20-0176.
  • Sivapalan, T., A. Melchini, J. Coode-Bate, P. W. Needs, R. F. Mithen, and S. Saha. 2019. An LC-MS/MS method to measure S-methyl-l-cysteine and S-methyl-l-cysteine sulfoxide in human specimens using isotope labelled internal standards. Molecules (Basel, Switzerland) 24 (13):2427. doi: 10.3390/molecules24132427.
  • Smith, R. H. 1978. S-methylcysteine sulphoxide, the brassica anaemia factor (a valuable dietary factor for man?). Veterinary Science Communications 2 (1):47–61. doi: 10.1007/BF02291432.
  • Smith, R. H., C. R. Earl, and N. A. Matheson. 1974. The probable role of S-methylcysteine sulphoxide in kale, poisoning in ruminants. Biochemical Society Transactions 2 (1):101–4. doi: 10.1042/bst0020101.
  • Soysal, P., F. Arik, L. Smith, S. E. Jackson, and A. T. Isik. 2020. Inflammation, frailty and cardiovascular disease. Advances in Experimental Medicine and Biology 1216:55–64. doi: 10.1007/978-3-030-33330-0_7.
  • Synge, R. L. M., and J. C. Wood. 1956. (+)-(S-methyl- L-cysteine S-oxide) in cabbage. The Biochemical Journal 64 (2):252–9. doi: 10.1042/bj0640252.
  • Tanaka, Y., M. Shimada, and S. Nagaoka. 2014. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway. Biochemical and Biophysical Research Communications 444 (3):401–5. doi: 10.1016/j.bbrc.2014.01.095.
  • Traka, M. H., A. Melchini, J. Coode-Bate, O. Al Kadhi, S. Saha, M. Defernez, P. Troncoso-Rey, H. Kibblewhite, C. M. O'Neill, F. Bernuzzi, et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. The American Journal of Clinical Nutrition 109 (4):1133–44. doi: 10.1093/ajcn/nqz012.
  • Trauner, M., T. Claudel, P. Fickert, T. Moustafa, and M. Wagner. 2010. Bile acids as regulators of hepatic lipid and glucose metabolism. Digestive Diseases (Basel, Switzerland) 28 (1):220–4. doi: 10.1159/000282091.
  • Tricco, A. C., E. Lillie, W. Zarin, K. K. O'Brien, H. Colquhoun, D. Levac, D. Moher, M. D. J. Peters, T. Horsley, L. Weeks, et al. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine 169 (7):467–73. doi: 10.7326/m18-0850.
  • Veritas Health Innovation. 2023. Covidence Systematic Review Software, Covidence 2.0 edition. Accessed January 3, 2023. https://www.covidence.org/.
  • Waring, R. H., R. M. Harris, G. B. Steventon, and S. C. Mitchell. 2003. Degradation to sulphate of S-methyl-L-cysteine sulphoxide and S-carboxymethyl-L-cysteine sulphoxide in man. Drug Metabolism and Drug Interactions 19 (4):241–55. doi: 10.1515/dmdi.2003.19.4.241.
  • Whittle, P. J., R. H. Smith, and A. McIntosh. 1976. Estimation of S-methylcysteine sulphoxide (kale anaemia factor) and its distribution among Brassica forage and root crops. Journal of the Science of Food and Agriculture 27 (7):633–42. doi: 10.1002/jsfa.2740270708.
  • Yabuki, Y., Y. Mukaida, Y. Saito, K. Oshima, T. Takahashi, E. Muroi, K. Hashimoto, and Y. Uda. 2010. Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler). Food Chemistry 120 (2):343–8. doi: 10.1016/j.foodchem.2009.11.028.
  • Yamazaki, Y., K. Iwasaki, M. Mikami, and A. Yagihashi. 2010. Distribution of eleven flavor precursors, S-alk(en)yl-l-cysteine derivatives, in seven Allium vegetables. Food Science and Technology Research 17 (1):55–62. doi: 10.3136/fstr.17.55.
  • Yoshinari, O., Y. Shiojima, and K. Igarashi. 2012. Anti-obesity effects of onion extract in Zucker diabetic fatty rats. Nutrients 4 (10):1518–26. doi: 10.3390/nu4101518.
  • Yuguri, S. 1954. Studies on vitamin B1 related compounds. LIX reaction between thiamine and ingredients of Allium genus plants. (V). On sulfur-containing ingredients of Allium genus plants. The Pharmaceutical Society of Japan 74:519–24. https://www.jstage.jst.go.jp/article/yakushi1947/74/5/74_5_519/_pdf.
  • Zurbau, A., F. Au-Yeung, S. Blanco Mejia, T. A. Khan, V. Vuksan, E. Jovanovski, L. A. Leiter, C. W. C. Kendall, D. J. A. Jenkins, and J. L. Sievenpiper. 2020. Relation of different fruit and vegetable sources with incident cardiovascular outcomes: A systematic review and meta-analysis of prospective cohort studies. Journal of the American Heart Association 9 (19):e017728. doi: 10.1161/jaha.120.017728.