656
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: a narrative review

, , , &

References

  • Aho, V. T. E., M. C. Houser, P. A. B. Pereira, J. Chang, K. Rudi, L. Paulin, V. Hertzberg, P. Auvinen, M. G. Tansey, and F. Scheperjans. 2021. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Molecular Neurodegeneration 16 (1):6. doi: 10.1186/s13024-021-00427-6.
  • Akbari, E., Z. Asemi, R. Daneshvar Kakhaki, F. Bahmani, E. Kouchaki, O. R. Tamtaji, G. A. Hamidi, and M. Salami. 2016. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience 8:256. doi: 10.3389/fnagi.2016.00256.
  • Alonso, A., d B. Li, I. Grundke-Iqbal, and K. Iqbal. 2006. Polymerization of hyperphosphorylated Tau into filaments eliminates its inhibitory activity. Proceedings of the National Academy of Sciences of the United States of America 103 (23):8864–9. doi: 10.1073/pnas.0603214103.
  • An, R., E. Wilms, A. A. Masclee, H. Smidt, E. G. Zoetendal, and D. Jonkers. 2018. Age-dependent changes in GI physiology and microbiota: Time to reconsider? Gut 67 (12):2213–22. doi: 10.1136/gutjnl-2017-315542.
  • Aoyama, M., J. Kotani, and M. Usami. 2010. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via hdac inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition (Burbank, Los Angeles County, Calif.) 26 (6):653–61. doi: 10.1016/j.nut.2009.07.006.
  • Arpaia, N., C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504 (7480):451–5. doi: 10.1038/nature12726.
  • Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451 (7174):86–9. doi: 10.1038/nature06450.
  • Bachmann, C., J.-P. Colombo, and J. Berüter. 1979. Short chain fatty acids in plasma and brain: Quantitative determination by gas chromatography. Clinica Chimica Acta; International Journal of Clinical Chemistry 92 (2):153–9. doi: 10.1016/0009-8981(79)90109-8.
  • Baranowska-Bik, A., W. Bik, M. Styczynska, M. Chodakowska-Zebrowska, M. Barcikowska, E. Wolinska-Witort, M. Kalisz, L. Martynska, and B. Baranowska. 2015. Plasma leptin levels and free leptin index in women with Alzheimer’s disease. Neuropeptides 52:73–8. doi: 10.1016/j.npep.2015.05.006.
  • Belkaid, Y., and T. W. Hand. 2014. Role of the microbiota in immunity and inflammation. Cell 157 (1):121–41. doi: 10.1016/j.cell.2014.03.011.
  • Bermudez-Martin, P., J. A. J. Becker, N. Caramello, S. P. Fernandez, R. Costa-Campos, J. Canaguier, S. Barbosa, L. Martinez-Gili, A. Myridakis, M.-E. Dumas, et al. 2021. The microbial metabolite p-cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome 9 (1):157. doi: 10.1186/s40168-021-01103-z.
  • Biagi, E., C. Franceschi, S. Rampelli, M. Severgnini, R. Ostan, S. Turroni, C. Consolandi, S. Quercia, M. Scurti, D. Monti, et al. 2016. Gut microbiota and extreme longevity. Current Biology : CB 26 (11):1480–5. doi: 10.1016/j.cub.2016.04.016.
  • Blau, C. W., T. R. Cowley, J. O’Sullivan, B. Grehan, T. C. Browne, L. Kelly, A. Birch, N. Murphy, A. M. Kelly, C. M. Kerskens, et al. 2012. The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiology of Aging 33 (5):1005e23–1005e35. doi: 10.1016/j.neurobiolaging.2011.09.035.
  • Bloemen, J. G., K. Venema, M. C. van de Poll, S. W. O. Damink, W. A. Buurman, and C. H. Dejong. 2009. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutrition (Edinburgh, Scotland) 28 (6):657–61. doi: 10.1016/j.clnu.2009.05.011.
  • Boets, E., L. Deroover, E. Houben, K. Vermeulen, S. V. Gomand, J. A. Delcour, and K. Verbeke. 2015. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7 (11):8916–29. doi: 10.3390/nu7115440.
  • Bolduc, J.-F., L. Hany, C. Barat, M. Ouellet, and M. J. Tremblay. 2017. Epigenetic metabolite acetate inhibits class I/II histone deacetylases, promotes histone acetylation, and increases HIV-1 integration in CD4+ T cells. Journal of Virology 91 (16):10–1128. doi: 10.1128/JVI.01943-16.
  • Bolognini, D., A. B. Tobin, G. Milligan, and C. E. Moss. 2016. The pharmacology and function of receptors for short-chain fatty acids. Molecular Pharmacology 89 (3):388–98. doi: 10.1124/mol.115.102301.
  • Bonfili, L., V. Cecarini, M. Cuccioloni, M. Angeletti, S. Berardi, S. Scarpona, G. Rossi, and A. M. Eleuteri. 2018. Slab51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Molecular Neurobiology 55 (10):7987–8000. doi: 10.1007/s12035-018-0973-4.
  • Borody, T. J., S. Paramsothy, and G. Agrawal. 2013. Fecal microbiota transplantation: Indications, methods, evidence, and future directions. Current Gastroenterology Reports 15 (8):337. doi: 10.1007/s11894-013-0337-1.
  • Bostanciklioğlu, M. 2019. The role of gut microbiota in pathogenesis of Alzheimer’s disease. Journal of Applied Microbiology 127 (4):954–67. doi: 10.1111/jam.14264.
  • Bradburn, S., C. Murgatroyd, and N. Ray. 2019. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Ageing Research Reviews 50:1–8. doi: 10.1016/j.arr.2019.01.002.
  • Braniste, V., M. Al-Asmakh, C. Kowal, F. Anuar, A. Abbaspour, M. Tóth, A. Korecka, N. Bakocevic, L. G. Ng, P. Kundu, et al. 2014. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine 6 (263):263ra158. doi: 10.1126/scitranslmed.3009759.
  • Calsolaro, V., and P. Edison. 2015. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for Alzheimer’s disease and other neurodegenerative diseases. CNS Drugs 29 (12):1023–39. doi: 10.1007/s40263-015-0301-8.
  • Calvani, R., A. Picca, M. R. Lo Monaco, F. Landi, R. Bernabei, and E. Marzetti. 2018. Of microbes and minds: A narrative review on the second brain aging. Frontiers in Medicine 5:53. doi: 10.3389/fmed.2018.00053.
  • Campbell, J. E., and D. J. Drucker. 2013. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism 17 (6):819–37. doi: 10.1016/j.cmet.2013.04.008.
  • Canani, R. B., M. Di Costanzo, L. Leone, M. Pedata, R. Meli, and A. Calignano. 2011. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology 17 (12):1519–28. doi: 10.3748/wjg.v17.i12.1519.
  • Canfora, E. E., J. W. Jocken, and E. E. Blaak. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology 11 (10):577–91. doi: 10.1038/nrendo.2015.128.
  • Cantu-Jungles, T. M., H. E. Rasmussen, and B. R. Hamaker. 2019. Potential of prebiotic butyrogenic fibers in Parkinson’s disease. Frontiers in Neurology 10:663. doi: 10.3389/fneur.2019.00663.
  • Caputi, V., and M. C. Giron. 2018. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. International Journal of Molecular Sciences 19 (6):1689. doi: 10.3390/ijms19061689.
  • Cersosimo, M. G., G. B. Raina, C. Pecci, A. Pellene, C. R. Calandra, C. Gutiérrez, F. E. Micheli, and E. E. Benarroch. 2013. Gastrointestinal manifestations in Parkinson’s disease: Prevalence and occurrence before motor symptoms. Journal of Neurology 260 (5):1332–8. doi: 10.1007/s00415-012-6801-2.
  • Chambers, E. S., A. Viardot, A. Psichas, D. J. Morrison, K. G. Murphy, S. E. K. Zac-Varghese, K. MacDougall, T. Preston, C. Tedford, G. S. Finlayson, et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64 (11):1744–54. doi: 10.1136/gutjnl-2014-307913.
  • Chen, H., X. Ma, Y. Liu, L. Ma, Z. Chen, X. Lin, L. Si, X. Ma, and X. Chen. 2019. Gut microbiota interventions with Clostridium butyricum and norfloxacin modulate immune response in experimental autoimmune encephalomyelitis mice. Frontiers in Immunology 10:1662. doi: 10.3389/fimmu.2019.01662.
  • Chen, H., L. Meng, and L. Shen. 2022. Multiple roles of short-chain fatty acids in Alzheimer disease. Nutrition (Burbank, Los Angeles County, Calif.) 93:111499. doi: 10.1016/j.nut.2021.111499.
  • Chen, L., T. Wang, Y. Wang, Q. Yang, J. Xie, Y. Li, J. E. Lei, X. Wang, J. Xing, Y. Dong, et al. 2016. Optimization of voriconazole dosage regimen to improve the efficacy in patients with invasive fungal disease by pharmacokinetic/pharmacodynamic analysis. Fundamental & Clinical Pharmacology 30 (5):459–65. doi: 10.1111/fcp.12212.
  • Chen, O., S. Sudakaran, T. Blonquist, E. Mah, S. Durkee, and A. Bellamine. 2021. Effect of arabinogalactan on the gut microbiome: A randomized, double-blind, placebo-controlled, crossover trial in healthy adults. Nutrition (Burbank, Los Angeles County, Calif.) 90:111273. doi: 10.1016/j.nut.2021.111273.
  • Cheng, Y., J. Liu, and Z. Ling. 2022. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Critical Reviews in Food Science and Nutrition 62 (28):7929–59. doi: 10.1080/10408398.2021.1920884.
  • Christiansen, C. B., M. B. N. Gabe, B. Svendsen, L. O. Dragsted, M. M. Rosenkilde, and J. J. Holst. 2018. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 315 (1):G53–G65. doi: 10.1152/ajpgi.00346.2017.
  • Clark, J. T., P. S. Kalra, W. R. Crowley, and S. P. Kalra. 1984. Neuropeptide y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115 (1):427–9. doi: 10.1210/endo-115-1-427.
  • Collins, S. M., M. Surette, and P. Bercik. 2012. The interplay between the intestinal microbiota and the brain. Nature Reviews. Microbiology 10 (11):735–42. doi: 10.1038/nrmicro2876.
  • Colombo, A. V., R. K. Sadler, G. Llovera, V. Singh, S. Roth, S. Heindl, L. Sebastian Monasor, A. Verhoeven, F. Peters, S. Parhizkar, et al. 2021. Microbiota-derived short chain fatty acids modulate microglia and promote aβ plaque deposition. eLife 10: E 59826. doi: 10.7554/eLife.59826.
  • Cummings, J. H., E. Pomare, W. Branch, C. Naylor, and G. MacFarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28 (10):1221–7. doi: 10.1136/gut.28.10.1221.
  • Dalile, B., L. Van Oudenhove, B. Vervliet, and K. Verbeke. 2019. The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews. Gastroenterology & Hepatology 16 (8):461–78. doi: 10.1038/s41575-019-0157-3.
  • Damen, B., L. Cloetens, W. F. Broekaert, I. François, O. Lescroart, I. Trogh, F. Arnaut, G. W. Welling, J. Wijffels, J. A. Delcour, et al. 2012. Consumption of breads containing in situ–produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers. The Journal of Nutrition 142 (3):470–7. doi: 10.3945/jn.111.146464.
  • Dash, P. K., S. A. Orsi, and A. N. Moore. 2009. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience 163 (1):1–8. doi: 10.1016/j.neuroscience.2009.06.028.
  • Daviglus, M. L., C. C. Bell, W. Berrettini, P. E. Bowen, E. S. Connolly, N. J. Cox, J. M. Dunbar-Jacob, E. C. Granieri, G. Hunt, K. McGarry, et al. 2010. National institutes of health state-of-the-science conference statement: Preventing Alzheimer disease and cognitive decline. Annals of Internal Medicine 153 (3):176–81. doi: 10.7326/0003-4819-153-3-201008030-00260.
  • De Vadder, F., F. Plessier, A. Gautier‐Stein, and G. Mithieux. 2015. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis. Neurogastroenterology and Motility 27 (3):443–8. doi: 10.1111/nmo.12508.
  • Deehan, E. C., C. Yang, M. E. Perez-Muñoz, N. K. Nguyen, C. C. Cheng, L. Triador, Z. Zhang, J. A. Bakal, and J. Walter. 2020. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host & Microbe 27 (3):389–404. e6. doi: 10.1016/j.chom.2020.01.006.
  • Demuro, A., E. Mina, R. Kayed, S. C. Milton, I. Parker, and C. G. Glabe. 2005. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. *The Journal of Biological Chemistry 280 (17):17294–300. doi: 10.1074/jbc.M500997200.
  • den Besten, G., K. Lange, R. Havinga, T. H. van Dijk, A. Gerding, K. van Eunen, M. Müller, A. K. Groen, G. J. Hooiveld, B. M. Bakker, et al. 2013. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. American Journal of Physiology. Gastrointestinal and Liver Physiology 305 (12):G900–G910. doi: 10.1152/ajpgi.00265.2013.
  • Dinan, T. G., and J. F. Cryan. 2017a. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of Physiology 595 (2):489–503. doi: 10.1113/JP273106.
  • Dinan, T. G., and J. F. Cryan. 2017b. The microbiome-gut-brain axis in health and disease. Gastroenterology Clinics of North America 46 (1):77–89. doi: 10.1016/j.gtc.2016.09.007.
  • Distrutti, E., J.-A. O’Reilly, C. McDonald, S. Cipriani, B. Renga, M. A. Lynch, and S. Fiorucci. 2014. Modulation of intestinal microbiota by the probiotic VSL# 3 resets brain gene expression and ameliorates the age-related deficit in ltp. PloS One 9 (9):e106503. doi: 10.1371/journal.pone.0106503.
  • Doifode, T., V. V. Giridharan, J. S. Generoso, G. Bhatti, A. Collodel, P. E. Schulz, O. V. Forlenza, and T. Barichello. 2021. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacological Research 164:105314. doi: 10.1016/j.phrs.2020.105314.
  • Duca, F., and M. Covasa. 2012. Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. The British Journal of Nutrition 108 (5):778–93. doi: 10.1017/S0007114512000529.
  • Dugger, B. N., and D. W. Dickson. 2017. Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology 9 (7):a028035. doi: 10.1101/cshperspect.a028035.
  • Duncan, S. H., A. Barcenilla, C. S. Stewart, S. E. Pryde, and H. J. Flint. 2002. Acetate utilization and butyryl coenzyme a (COA): Acetate-coa transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology 68 (10):5186–90. doi: 10.1128/AEM.68.10.5186-5190.2002.
  • Duncan, S. H., P. Louis, and H. J. Flint. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70 (10):5810–7. doi: 10.1128/AEM.70.10.5810-5817.2004.
  • Duncan, S. H., K. P. Scott, A. G. Ramsay, H. J. Harmsen, G. W. Welling, C. S. Stewart, and H. J. Flint. 2003. Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Applied and Environmental Microbiology 69 (2):1136–42. doi: 10.1128/AEM.69.2.1136-1142.2003.
  • During, M. J., L. Cao, D. S. Zuzga, J. S. Francis, H. L. Fitzsimons, X. Jiao, R. J. Bland, M. Klugmann, W. A. Banks, D. J. Drucker, et al. 2003. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nature Medicine 9 (9):1173–9. doi: 10.1038/nm919.
  • Erny, D., A. L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 18 (7):965–77. doi: 10.1038/nn.4030.
  • Eshkoor, S. A., T. A. Hamid, C. Y. Mun, and C. K. Ng. 2015. Mild cognitive impairment and its management in older people. Clinical Interventions in Aging 10:687–93. doi: 10.2147/CIA.S73922.
  • Fachi, J. L., J. D. S. Felipe, L. P. Pral, B. K. da Silva, R. O. Corrêa, M. C. P. de Andrade, D. M. da Fonseca, P. J. Basso, N. O. S. Câmara, É. L. de Sales E Souza, et al. 2019. Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Reports 27 (3):750–61. e7. doi: 10.1016/j.celrep.2019.03.054.
  • Fachi, J. L., C. Sécca, P. B. Rodrigues, F. C. P. D. Mato, B. Di Luccia, J. D. S. Felipe, L. P. Pral, M. Rungue, V. D. M. Rocha, F. T. Sato, et al. 2020. Acetate coordinates neutrophil and ILC3 responses against c. Difficile through FFAR2. Journal of Experimental Medicine 217 (3):699–713. doi: 10.1084/jem.20190489.
  • Farr, O. M., R. L. Chiang-Shan, and C. S. Mantzoros. 2016. Central nervous system regulation of eating: Insights from human brain imaging. Metabolism: Clinical and Experimental 65 (5):699–713. doi: 10.1016/j.metabol.2016.02.002.
  • Feng, Y., Y. Wang, P. Wang, Y. Huang, and F. Wang. 2018. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 49 (1):190–205. doi: 10.1159/000492853.
  • Fernandes, J., J. Vogt, and T. M. Wolever. 2011. Inulin increases short-term markers for colonic fermentation similarly in healthy and hyperinsulinaemic humans. European Journal of Clinical Nutrition 65 (12):1279–86. doi: 10.1038/ejcn.2011.116.
  • Flint, H. J., K. P. Scott, S. H. Duncan, P. Louis, and E. Forano. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3 (4):289–306. doi: 10.4161/gmic.19897.
  • Foster, J., and K.-A. M. Neufeld. 2015. Gut-brain axis: How the microbiome influences anxiety and depression. European Neuropsycho pharmacology 25:S141. doi: 10.1016/S0924-977X(15)30098-5.
  • Frost, G., M. L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5 (1):3611. doi: 10.1038/ncomms4611.
  • Fung, T. C., C. A. Olson, and E. Y. Hsiao. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience 20 (2):145–55. doi: 10.1038/nn.4476.
  • Gill, P., M. Van Zelm, J. Muir, and P. Gibson. 2018. Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics 48 (1):15–34. doi: 10.1111/apt.14689.
  • Gill, R. K., S. Saksena, W. A. Alrefai, Z. Sarwar, J. L. Goldstein, R. E. Carroll, K. Ramaswamy, and P. K. Dudeja. 2005. Expression and membrane localization of mct isoforms along the length of the human intestine. American Journal of Physiology. Cell Physiology 289 (4):C846–C852. doi: 10.1152/ajpcell.00112.2005.
  • Golomb, S. M., I. H. Guldner, A. Zhao, Q. Wang, B. Palakurthi, E. A. Aleksandrovic, J. A. Lopez, S. W. Lee, K. Yang, and S. Zhang. 2020. Multi-modal single-cell analysis reveals brain immune landscape plasticity during aging and gut microbiota dysbiosis. Cell Reports 33 (9):108438. doi: 10.1016/j.celrep.2020.108438.
  • Gomes, S., I. Martins, A. C. R. G. Fonseca, C. R. Oliveira, R. Resende, and C. M. F. Pereira. 2014. Protective effect of leptin and ghrelin against toxicity induced by amyloid-β oligomers in a hypothalamic cell line. Journal of Neuroendocrinology 26 (3):176–85. doi: 10.1111/jne.12138.
  • Govindarajan, N., R. C. Agis-Balboa, J. Walter, F. Sananbenesi, and A. Fischer. 2011. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. Journal of Alzheimer’s Disease : JAD 26 (1):187–97. doi: 10.3233/JAD-2011-110080.
  • Greiner, T., and F. Bäckhed. 2011. Effects of the gut microbiota on obesity and glucose homeostasis. Trends in Endocrinology and Metabolism: TEM 22 (4):117–23. doi: 10.1016/j.tem.2011.01.002.
  • Grundy, M. M.-L., C. H. Edwards, A. R. Mackie, M. J. Gidley, P. J. Butterworth, and P. R. Ellis. 2016. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. The British Journal of Nutrition 116 (5):816–33. doi: 10.1017/S0007114516002610.
  • Guilloteau, P., L. Martin, V. Eeckhaut, R. Ducatelle, R. Zabielski, and F. Van Immerseel. 2010. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutrition Research Reviews 23 (2):366–84. doi: 10.1017/S0954422410000247.
  • Gupta, N., P. M. Martin, P. D. Prasad, and V. Ganapathy. 2006. Slc5a8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sciences 78 (21):2419–25. doi: 10.1016/j.lfs.2005.10.028.
  • Harig, J. M., E. K. Ng, P. K. Dudeja, T. A. Brasitus, and K. Ramaswamy. 1996. Transport of n-butyrate into human colonic luminal membrane vesicles. The American Journal of Physiology 271 (3 Pt 1):G415–G422. doi: 10.1152/ajpgi.1996.271.3.G415.
  • Harms, A. S., A. D. Thome, Z. Yan, A. M. Schonhoff, G. P. Williams, X. Li, Y. Liu, H. Qin, E. N. Benveniste, and D. G. Standaert. 2018. Peripheral monocyte entry is required for alpha-synuclein induced inflammation and neurodegeneration in a model of Parkinson disease. Experimental Neurology 300:179–87. doi: 10.1016/j.expneurol.2017.11.010.
  • Hernández, G., M. A. E. E. Canfora, J. W. Jocken, and E. E. Blaak. 2019. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11 (8):1943. doi: 10.3390/nu11081943.
  • Hirsch, E. C., P. Jenner, and S. Przedborski. 2013. Pathogenesis of Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society 28 (1):24–30. doi: 10.1002/mds.25032.
  • Ho, L., K. Ono, M. Tsuji, P. Mazzola, R. Singh, and G. M. Pasinetti. 2018. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Review of Neurotherapeutics 18 (1):83–90. doi: 10.1080/14737175.2018.1400909.
  • Honarpisheh, P., C. R. Reynolds, M. P. Blasco Conesa, J. F. Moruno Manchon, N. Putluri, M. B. Bhattacharjee, A. Urayama, L. D. McCullough, and B. P. Ganesh. 2020. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. International Journal of Molecular Sciences 21 (5):1711. doi: 10.3390/ijms21051711.
  • Hong, Y., L. Sheng, J. Zhong, X. Tao, W. Zhu, J. Ma, J. Yan, A. Zhao, X. Zheng, G. Wu, et al. 2021. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes 13 (1):1–20. doi: 10.1080/19490976.2021.1930874.
  • Hoyles, L., T. Snelling, U.-K. Umlai, J. K. Nicholson, S. R. Carding, R. C. Glen, and S. McArthur. 2018. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome 6 (1):55. doi: 10.1186/s40168-018-0439-y.
  • Huang, X.-Z., Z.-R. Li, L.-B. Zhu, H.-Y. Huang, L.-L. Hou, and J. Lin. 2014. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model. Journal of Pediatric Gastroenterology and Nutrition 59 (2):264–9. doi: 10.1097/MPG.0000000000000369.
  • Huart, J., J. Leenders, B. Taminiau, J. Descy, A. Saint-Remy, G. Daube, J.-M. Krzesinski, P. Melin, P. De Tullio, and F. Jouret. 2019. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension (Dallas, Tex.: 1979) 74 (4):1005–13. doi: 10.1161/HYPERTENSIONAHA.118.12588.
  • Hung, C. C., C. D. Garner, J. M. Slauch, Z. W. Dwyer, S. D. Lawhon, J. G. Frye, M. McClelland, B. M. Ahmer, and C. Altier. 2013. The intestinal fatty acid propionate inhibits s almonella invasion through the post‐translational control of hild. Molecular Microbiology 87 (5):1045–60. doi: 10.1111/mmi.12149.
  • Husted, A. S., M. Trauelsen, O. Rudenko, S. A. Hjorth, and T. W. Schwartz. 2017. GPCR-mediated signaling of metabolites. Cell Metabolism 25 (4):777–96. doi: 10.1016/j.cmet.2017.03.008.
  • Iwao, M., K. Gotoh, M. Arakawa, M. Endo, K. Honda, M. Seike, K. Murakami, and H. Shibata. 2020. Supplementation of branched-chain amino acids decreases fat accumulation in the liver through intestinal microbiota-mediated production of acetic acid. Scientific Reports 10 (1):18768. doi: 10.1038/s41598-020-75542-3.
  • Jain, S., T. Suzuki, A. Seth, G. Samak, and R. Rao. 2011. Protein kinase Cζ phosphorylates occludin and promotes assembly of epithelial tight junctions. The Biochemical Journal 437 (2):289–99. doi: 10.1042/BJ20110587.
  • Jašarević, E., C. L. Howerton, C. D. Howard, and T. L. Bale. 2015. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology 156 (9):3265–76. doi: 10.1210/en.2015-1177.
  • Jiao, A., B. Yu, J. He, J. Yu, P. Zheng, Y. Luo, J. Luo, X. Mao, and D. Chen. 2020. Short chain fatty acids could prevent fat deposition in pigs via regulating related hormones and genes. Food & Function 11 (2):1845–55. doi: 10.1039/c9fo02585e.
  • Kaji, I., T. Iwanaga, M. Watanabe, P. H. Guth, E. Engel, J. D. Kaunitz, and Y. Akiba. 2015. Scfa transport in rat duodenum. American Journal of Physiology. Gastrointestinal and Liver Physiology 308 (3):G188–G197. doi: 10.1152/ajpgi.00298.2014.
  • Kaji, I., S-i Karaki, and A. Kuwahara. 2014. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 89 (1):31–6. doi: 10.1159/000356211.
  • Kaltschmidt, B., M. Uherek, B. Volk, P. A. Baeuerle, and C. Kaltschmidt. 1997. Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America 94 (6):2642–7. doi: 10.1073/pnas.94.6.2642.
  • Karnholz, A., K. Küsel, A. Gössner, A. Schramm, and H. L. Drake. 2002. Tolerance and metabolic response of acetogenic bacteria toward oxygen. Applied and Environmental Microbiology 68 (2):1005–9. doi: 10.1128/AEM.68.2.1005-1009.2002.
  • Kasubuchi, M., S. Hasegawa, T. Hiramatsu, A. Ichimura, and I. Kimura. 2015. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7 (4):2839–49. doi: 10.3390/nu7042839.
  • Kelly, C. J., L. Zheng, E. L. Campbell, B. Saeedi, C. C. Scholz, A. J. Bayless, K. E. Wilson, L. E. Glover, D. J. Kominsky, A. Magnuson, et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe 17 (5):662–71. doi: 10.1016/j.chom.2015.03.005.
  • Kelly, P., P. L. McClean, M. Ackermann, M. A. Konerding, C. Hölscher, and C. A. Mitchell. 2015. Restoration of cerebral and systemic microvascular architecture in app/ps 1 transgenic mice following treatment with Liraglutide™. Microcirculation (New York, N.Y.: 1994) 22 (2):133–45. doi: 10.1111/micc.12186.
  • Keshavarzian, A., S. J. Green, P. A. Engen, R. M. Voigt, A. Naqib, C. B. Forsyth, E. Mutlu, and K. M. Shannon. 2015. Colonic bacterial composition in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society 30 (10):1351–60. doi: 10.1002/mds.26307.
  • Kidd, S. K., and J. S. Schneider. 2010. Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research 1354:172–8. doi: 10.1016/j.brainres.2010.07.041.
  • Killingsworth, J., D. Sawmiller, and R. D. Shytle. 2021. Propionate and Alzheimer’s disease. Frontiers in Aging Neuroscience 12:580001. doi: 10.3389/fnagi.2020.580001.
  • Kim, H. J., P. Leeds, and D. M. Chuang. 2009. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. Journal of Neurochemistry 110 (4):1226–40. doi: 10.1111/j.1471-4159.2009.06212.x.
  • Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4 (1):1829. doi: 10.1038/ncomms2852.
  • Kobayashi, Y., H. Sugahara, K. Shimada, E. Mitsuyama, T. Kuhara, A. Yasuoka, T. Kondo, K. Abe, and J. Z. Xiao. 2017. Therapeutic potential of Bifidobacterium breve strain a1 for preventing cognitive impairment in Alzheimer’s disease. Scientific Reports 7 (1):13510. doi: 10.1038/s41598-017-13368-2.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Kong, F., Y. Hua, B. Zeng, R. Ning, Y. Li, and J. Zhao. 2016. Gut microbiota signatures of longevity. Current Biology: CB 26 (18):R832–R833. doi: 10.1016/j.cub.2016.08.015.
  • Kovacs, G. G. 2018. Concepts and classification of neurodegenerative diseases. In Handbook of clinical neurology. Amsterdam, Netherlands: Elsevier.
  • Lancaster, S. M., B. Lee-McMullen, C. W. Abbott, J. V. Quijada, D. Hornburg, H. Park, D. Perelman, D. J. Peterson, M. Tang, A. Robinson, et al. 2022. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host & Microbe 30 (6):848–62. e7. doi: 10.1016/j.chom.2022.03.036.
  • Latorre, R., C. Sternini, R. De Giorgio, and B. Greenwood‐Van Meerveld. 2016. Enteroendocrine cells: A review of their role in brain–gut communication. Neurogastroenterology and Motility 28 (5):620–30. doi: 10.1111/nmo.12754.
  • Lattimer, J. M., and M. D. Haub. 2010. Effects of dietary fiber and its components on metabolic health. Nutrients 2 (12):1266–89. doi: 10.3390/nu2121266.
  • LeBlanc, J. G., F. Chain, R. Martín, L. G. Bermúdez-Humarán, S. Courau, and P. Langella. 2017. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories 16 (1):79. doi: 10.1186/s12934-017-0691-z.
  • Lecerf, J.-M., F. Dépeint, E. Clerc, Y. Dugenet, C. N. Niamba, L. Rhazi, A. Cayzeele, G. Abdelnour, A. Jaruga, H. Younes, et al. 2012. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. The British Journal of Nutrition 108 (10):1847–58. doi: 10.1017/S0007114511007252.
  • Lee, P., J. Kim, R. Williams, R. Sandhir, E. Gregory, W. M. Brooks, and N. E. Berman. 2012. Effects of aging on blood brain barrier and matrix metalloproteases following controlled cortical impact in mice. Experimental Neurology 234 (1):50–61. doi: 10.1016/j.expneurol.2011.12.016.
  • Lengacher, S., T. Nehiri-Sitayeb, N. Steiner, L. Carneiro, C. Favrod, F. Preitner, B. Thorens, J.-C. Stehle, L. Dix, F. Pralong, et al. 2013. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PloS One 8 (12):e82505. doi: 10.1371/journal.pone.0082505.
  • Li, J.-M., R. Yu, L.-P. Zhang, S.-Y. Wen, S.-J. Wang, X.-Y. Zhang, Q. Xu, and L.-D. Kong. 2019. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: A benefit of short-chain fatty acids. Microbiome 7 (1):98. doi: 10.1186/s40168-019-0713-7.
  • Li, W., K. Wang, Y. Sun, H. Ye, B. Hu, and X. Zeng. 2015. Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. Journal of Functional Foods 13:158–68. doi: 10.1016/j.jff.2014.12.044.
  • Li, W., K. Zhang, and H. Yang. 2018. Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: Possible role of short-chain fatty acids and gut microbiota regulated by pectin. Journal of Agricultural and Food Chemistry 66 (30):8015–25. doi: 10.1021/acs.jafc.8b02979.
  • Li, Y., K.-J. Wu, S.-J. Yu, I. A. Tamargo, Y. Wang, and N. H. Greig. 2017. Neurotrophic and neuroprotective effects of oxyntomodulin in neuronal cells and a rat model of stroke. Experimental Neurology 288:104–13. doi: 10.1016/j.expneurol.2016.11.010.
  • Li, Z., X. Kuang, T. Chen, T. Shen, and J. Wu. 2022. Peptide yy 3–36 attenuates trinitrobenzene sulfonic acid-induced colitis in mice by modulating TH1/TH2 differentiation. Bioengineered 13 (4):10144–58. doi: 10.1080/21655979.2022.2064147.
  • Liu, J., H. Li, T. Gong, W. Chen, S. Mao, Y. Kong, J. Yu, and J. Sun. 2020. Anti-neuroinflammatory effect of short-chain fatty acid acetate against alzheimer’s disease via upregulating gpr41 and inhibiting ERK/JNK/NF-κB. Journal of Agricultural and Food Chemistry 68 (27):7152–61. doi: 10.1021/acs.jafc.0c02807.
  • Liu, J., F. Wang, S. Liu, J. Du, X. Hu, J. Xiong, R. Fang, W. Chen, and J. Sun. 2017. Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. Journal of the Neurological Sciences 381:176–81. doi: 10.1016/j.jns.2017.08.3235.
  • Louis, P., P. Young, G. Holtrop, and H. J. Flint. 2010. Diversity of human colonic butyrate‐producing bacteria revealed by analysis of the butyryl‐COA: Acetate coa‐transferase gene. Environmental Microbiology 12 (2):304–14. doi: 10.1111/j.1462-2920.2009.02066.x.
  • Luan, Z., G. Sun, Y. Huang, Y. Yang, R. Yang, C. Li, T. Wang, D. Tan, S. Qi, C. Jun, et al. 2020. Metagenomics study reveals changes in gut microbiota in centenarians: A cohort study of hainan centenarians. Frontiers in Microbiology 11:1474. doi: 10.3389/fmicb.2020.01474.
  • Macfarlane, G., G. Gibson, and J. Cummings. 1992. Comparison of fermentation reactions in different regions of the human colon. The Journal of Applied Bacteriology 72 (1):57–64. doi: 10.1111/j.1365-2672.1992.tb04882.x.
  • Macia, L., J. Tan, A. T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata, C. Wong, et al. 2015. Metabolite-sensing receptors GPR43 and GPR109a facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications 6 (1):6734. doi: 10.1038/ncomms7734.
  • Macy, J. M., L. G. Ljungdahl, and G. Gottschalk. 1978. Pathway of succinate and propionate formation in Bacteroides fragilis. Journal of Bacteriology 134 (1):84–91. doi: 10.1128/jb.134.1.84-91.1978.
  • Macy, J. M., and I. Probst. 1979. The biology of gastrointestinal bacteroides. Annual Review of Microbiology 33 (1):561–94. doi: 10.1146/annurev.mi.33.100179.003021.
  • Man, A. L., E. Bertelli, S. Rentini, M. Regoli, G. Briars, M. Marini, A. J. Watson, and C. Nicoletti. 2015. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clinical Science (London, England: 1979) 129 (7):515–27. doi: 10.1042/CS20150046.
  • Maphis, N., S. Jiang, G. Xu, O. N. Kokiko-Cochran, S. M. Roy, L. J. Van Eldik, D. M. Watterson, B. T. Lamb, and K. Bhaskar. 2016. Selective suppression of the α isoform of P38 MAPK rescues late-stage tau pathology. Alzheimer’s Research & Therapy 8 (1):54. doi: 10.1186/s13195-016-0221-y.
  • Marchandin, H., C. Teyssier, J. Campos, H. Jean-Pierre, F. Roger, B. Gay, J.-P. Carlier, and E. Jumas-Bilak. 2010. Negativicoccus succinicivorans gen. Nov., sp. Nov., isolated from human clinical samples, emended description of the family veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. Nov. and Acidaminococcaceae fam. Nov. In the bacterial phylum firmicutes. International Journal of Systematic and Evolutionary Microbiology 60 (Pt 6):1271–9. doi: 10.1099/ijs.0.013102-0.
  • Mardinoglu, A., H. Wu, E. Bjornson, C. Zhang, A. Hakkarainen, S. M. Räsänen, S. Lee, R. M. Mancina, M. Bergentall, K. H. Pietiläinen, et al. 2018. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metabolism 27 (3):559–71e5. doi: 10.1016/j.cmet.2018.01.005.
  • Marizzoni, M., A. Cattaneo, P. Mirabelli, C. Festari, N. Lopizzo, V. Nicolosi, E. Mombelli, M. Mazzelli, D. Luongo, D. Naviglio, et al. 2020. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 78 (2):683–97. doi: 10.3233/JAD-200306.
  • Maynard, C. L., C. O. Elson, R. D. Hatton, and C. T. Weaver. 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489 (7415):231–41. doi: 10.1038/nature11551.
  • McCombe, P. A., R. D. Henderson, A. Lee, J. D. Lee, T. M. Woodruff, R. Restuadi, A. McRae, N. R. Wray, S. Ngo, F. J. Steyn, et al. 2019. Gut microbiota in ALS: Possible role in pathogenesis? Expert Review of Neurotherapeutics 19 (9):785–805. doi: 10.1080/14737175.2019.1623026.
  • Meng, X., J. Zheng, F. Wang, J. Zheng, and D. Yang. 2022. Dietary fiber chemical structure determined gut microbiota dynamics iMeta 1 (4):e64. doi: 10.1002/imt2.64.
  • Wu K. Wang, W. Wang, Y. Wang, Z. Li, J. Liu, L. Li, and L. Peng. 2016. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2. International Journal of Molecular Sciences 17 (10):1696. doi: 10.3390/ijms17101696.
  • Michel, L., and A. Prat. 2016. One more role for the gut: Microbiota and blood brain barrier. Annals of Translational Medicine 4:15.
  • Miller, T. L., and M. J. Wolin. 1996. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology 62 (5):1589–92. doi: 10.1128/aem.62.5.1589-1592.1996.
  • Mills, S. W., S. H. Montgomery, and D. W. Morck. 2006. Evaluation of the effects of short-chain fatty acids and extracellular pH on bovine neutrophil function in vitro. American Journal of Veterinary Research 67 (11):1901–7. doi: 10.2460/ajvr.67.11.1901.
  • Miyamoto, J., K. Watanabe, S. Taira, M. Kasubuchi, X. Li, J. Irie, H. Itoh, and I. Kimura. 2018. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PloS One 13 (4):e0196579. doi: 10.1371/journal.pone.0196579.
  • Monti, B., V. Gatta, F. Piretti, S. S. Raffaelli, M. Virgili, and A. Contestabile. 2010. Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: Involvement of α-synuclein. Neurotoxicity Research 17 (2):130–41. doi: 10.1007/s12640-009-9090-5.
  • Murphy, K., and S. Bloom. 2004. Gut hormones in the control of appetite. Experimental Physiology 89 (5):507–16. doi: 10.1113/expphysiol.2004.027789.
  • Nakkarach, A., H. L. Foo, A. A.-L. Song, N. E. A. Mutalib, S. Nitisinprasert, and U. Withayagiat. 2021. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microbial Cell Factories 20 (1):36. doi: 10.1186/s12934-020-01477-z.
  • Niedowicz, D. M., C. M. Studzinski, A. M. Weidner, T. L. Platt, K. N. Kingry, T. L. Beckett, A. J. Bruce-Keller, J. N. Keller, and M. P. Murphy. 2013. Leptin regulates amyloid β production via the γ-secretase complex. Biochimica et Biophysica Acta 1832 (3):439–44. doi: 10.1016/j.bbadis.2012.12.009.
  • Nogal, A., A. M. Valdes, and C. Menni. 2021. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 13 (1):1–24. doi: 10.1080/19490976.2021.1897212.
  • Oakley, R., and B. Tharakan. 2014. Vascular hyperpermeability and aging. Aging and Disease 5 (2):114–25. doi: 10.14336/AD.2014.0500114.
  • Oldendorf, W. H. 1973. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. The American Journal of Physiology 224 (6):1450–3. doi: 10.1152/ajplegacy.1973.224.6.1450.
  • Ostendorf, F., J. Metzdorf, R. Gold, A. Haghikia, and L. Tönges. 2020. Propionic acid and fasudil as treatment against rotenone toxicity in an in vitro model of Parkinson’s disease. Molecules (Basel, Switzerland) 25 (11):2502. doi: 10.3390/molecules25112502.
  • Ötles, S., and S. Ozgoz. 2014. Health effects of dietary fiber. Acta Scientiarum Polonorum Technologia Alimentaria 13 (2):191–202. doi: 10.17306/J.AFS.2014.2.8.
  • Pang, S., X. Chen, Z. Lu, L. Meng, Y. Huang, X. Yu, L. Huang, P. Ye, X. Chen, J. Liang, et al. 2023. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nature Aging 3 (4):436–49. doi: 10.1038/s43587-023-00389-y.
  • Parada Venegas, D., M. K. De la Fuente, G. Landskron, M. J. González, R. Quera, G. Dijkstra, H. J. Harmsen, K. N. Faber, and M. A. Hermoso. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology 10:1486. doi: 10.3389/fimmu.2019.01486.
  • Peng, L., Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition 139 (9):1619–25. doi: 10.3945/jn.109.104638.
  • Perry, R. J., L. Peng, N. A. Barry, G. W. Cline, D. Zhang, R. L. Cardone, K. F. Petersen, R. G. Kibbey, A. L. Goodman, and G. I. Shulman. 2016. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534 (7606):213–7. doi: 10.1038/nature18309.
  • Peters, R. 2006. Ageing and the brain. Postgraduate Medical Journal 82 (964):84–8. doi: 10.1136/pgmj.2005.036665.
  • Psichas, A., M. L. Sleeth, K. G. Murphy, L. Brooks, G. A. Bewick, A. C. Hanyaloglu, M. A. Ghatei, S. R. Bloom, and G. Frost. 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity (2005) 39 (3):424–9. doi: 10.1038/ijo.2014.153.
  • Qian, X.-H., R.-Y. Xie, X.-L. Liu, S-d Chen, and H.-D. Tang. 2022. Mechanisms of short-chain fatty acids derived from gut microbiota in Alzheimer’s disease. Aging and Disease 13 (4):1252–66. doi: 10.14336/AD.2021.1215.
  • Qiao, J., C. Wang, Y. Chen, S. Yu, Y. Liu, S. Yu, L. Jiang, C. Jin, X. Wang, P. Zhang, et al. 2023. Herbal/natural compounds resist hallmarks of brain aging: From molecular mechanisms to therapeutic strategies. Antioxidants 12 (4):920. doi: 10.3390/antiox12040920.
  • Querfurth, H. W., and F. LaFerla. 2010. Mechanisms of disease. The New England Journal of Medicine 362 (4):329–44. doi: 10.1056/NEJMra0909142.
  • Ragonnaud, E., and A. Biragyn. 2021. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immunity & Ageing: I & A 18 (1):2. doi: 10.1186/s12979-020-00213-w.
  • Ragsdale, S. W., and E. Pierce. 2008. Acetogenesis and the wood–ljungdahl pathway of CO2 fixation. Biochimica et biophysica acta 1784 (12):1873–98. doi: 10.1016/j.bbapap.2008.08.012.
  • Rampelli, S., M. Soverini, F. D’Amico, M. Barone, T. Tavella, D. Monti, M. Capri, A. Astolfi, P. Brigidi, E. Biagi, et al. 2020. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5 (2):e00124-20. doi: 10.1128/mSystems.00124-20.
  • Reichardt, N., S. H. Duncan, P. Young, A. Belenguer, C. McWilliam Leitch, K. P. Scott, H. J. Flint, and P. Louis. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal 8 (6):1323–35. doi: 10.1038/ismej.2014.14.
  • Rey, F. E., J. J. Faith, J. Bain, M. J. Muehlbauer, R. D. Stevens, C. B. Newgard, and J. I. Gordon. 2010. Dissecting the in vivo metabolic potential of two human gut acetogens. The Journal of Biological Chemistry 285 (29):22082–90. doi: 10.1074/jbc.M110.117713.
  • Romo-Araiza, A., G. Gutiérrez-Salmeán, E. J. Galván, M. Hernández-Frausto, G. Herrera-López, H. Romo-Parra, V. García-Contreras, A. M. Fernández-Presas, R. Jasso-Chávez, C. V. Borlongan, et al. 2018. Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Frontiers in Aging Neuroscience 10:416. doi: 10.3389/fnagi.2018.00416.
  • Saha, R. N., and K. Pahan. 2006. Hats and hdacs in neurodegeneration: A tale of disconcerted acetylation homeostasis. Cell Death and Differentiation 13 (4):539–50. doi: 10.1038/sj.cdd.4401769.
  • Salonen, A., L. Lahti, J. Salojärvi, G. Holtrop, K. Korpela, S. H. Duncan, P. Date, F. Farquharson, A. M. Johnstone, G. E. Lobley, et al. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. The ISME Journal 8 (11):2218–30. doi: 10.1038/ismej.2014.63.
  • Sarna, G., M. Bradbury, J. E. Cremer, J. Lai, and H. M. Teal. 1979. Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat. Brain Research 160 (1):69–83. doi: 10.1016/0006-8993(79)90601-2.
  • Sasaki, D., K. Sasaki, N. Ikuta, T. Yasuda, I. Fukuda, A. Kondo, and R. Osawa. 2018. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Scientific Reports 8 (1):435. doi: 10.1038/s41598-017-18877-8.
  • Scheltens, P., B. D. Strooper, M. Kivipelto, H. Holstege, G. Chetelat, C. E. Teunissen, J. Cummings, and W. M. van der Flier. 2021. Alzheimer’s disease. Lancet (London, England) 397 (10284):1577–90. doi: 10.1016/S0140-6736(20)32205-4.
  • Scott, K. P., S. H. Duncan, and H. J. Flint. 2008. Dietary fibre and the gut microbiota. Nutrition Bulletin 33 (3):201–11. doi: 10.1111/j.1467-3010.2008.00706.x.
  • Servet, C., N. Conde e Silva, and D. X. Zhou. 2010. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in arabidopsis. Molecular Plant 3 (4):670–7. doi: 10.1093/mp/ssq018.
  • Sharma, N., R. Soni, M. Sharma, S. Chatterjee, N. Parihar, M. Mukarram, R. Kale, A. A. Sayyed, S. K. Behera, and A. Khairnar. 2022. Chlorogenic acid: A polyphenol from coffee rendered neuroprotection against rotenone-induced Parkinson’s disease by glp-1 secretion. Molecular Neurobiology 59 (11):6834–56. doi: 10.1007/s12035-022-03005-z.
  • Sharma, S., R. Taliyan, and S. Singh. 2015. Beneficial effects of sodium butyrate in 6-ohda induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behavioural Brain Research 291:306–14. doi: 10.1016/j.bbr.2015.05.052.
  • Sharon, G., T. R. Sampson, D. H. Geschwind, and S. K. Mazmanian. 2016. The central nervous system and the gut microbiome. Cell 167 (4):915–32. doi: 10.1016/j.cell.2016.10.027.
  • Shi, L., and B. P. Tu. 2015. Acetyl-coa and the regulation of metabolism: Mechanisms and consequences. Current Opinion in Cell Biology 33:125–31. doi: 10.1016/j.ceb.2015.02.003.
  • Shi, X., T. Ma, H. A. Sakandar, B. Menghe, and Z. Sun. 2022. Gut microbiome and aging nexus and underlying mechanism. Applied Microbiology and Biotechnology 106 (17):5349–58. doi: 10.1007/s00253-022-12089-5.
  • Si, X., J. Bi, Q. Chen, H. Cui, Y. Bao, J. Tian, C. Shu, Y. Wang, H. Tan, W. Zhang, et al. 2021. Effect of blueberry anthocyanin-rich extracts on peripheral and hippocampal antioxidant defensiveness: The analysis of the serum fatty acid species and gut microbiota profile. Journal of Agricultural and Food Chemistry 69 (12):3658–66. doi: 10.1021/acs.jafc.0c07637.
  • Simpson, J. E., S. B. Wharton, J. Cooper, C. Gelsthorpe, L. Baxter, G. Forster, P. J. Shaw, G. Savva, F. E. Matthews, C. Brayne, et al. 2010. Alterations of the blood–brain barrier in cerebral white matter lesions in the ageing brain. Neuroscience Letters 486 (3):246–51. doi: 10.1016/j.neulet.2010.09.063.
  • Simsir, I. Y., U. E. Soyaltin, and S. Cetinkalp. 2018. Glucagon like peptide-1 (GLP-1) likes alzheimer’s disease. Diabetes & Metabolic Syndrome 12 (3):469–75. doi: 10.1016/j.dsx.2018.03.002.
  • Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, et al. 2014. Activation of GPR109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (1):128–39. doi: 10.1016/j.immuni.2013.12.007.
  • Sommer, A., F. Marxreiter, F. Krach, T. Fadler, J. Grosch, M. Maroni, D. Graef, E. Eberhardt, M. J. Riemenschneider, G. W. Yeo, et al. 2018. Th17 lymphocytes induce neuronal cell death in a human ipsc-based model of Parkinson’s disease. Cell Stem Cell 23 (1):123–31e6. doi: 10.1016/j.stem.2018.06.015.
  • Spielman, L. J., D. L. Gibson, and A. Klegeris. 2018. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International 120:149–63. doi: 10.1016/j.neuint.2018.08.005.
  • Spires-Jones, T. L., and B. T. Hyman. 2014. The intersection of amyloid beta and Tau at synapses in Alzheimer’s disease. Neuron 82 (4):756–71. doi: 10.1016/j.neuron.2014.05.004.
  • Stanojević, S., V. Vujić, V. Kovačević-Jovanović, K. Mitić, D. Kosec, S. Hörsten, and M. Dimitrijević. 2006. Age-related effect of peptide yy (PYY) on paw edema in the rat: The function of Y1 receptors on inflammatory cells. Experimental Gerontology 41 (8):793–9. doi: 10.1016/j.exger.2006.05.012.
  • Sturgeon, C., and A. Fasano. 2016. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4 (4):e1251384. doi: 10.1080/21688370.2016.1251384.
  • Sun, J., J. Xu, B. Yang, K. Chen, Y. Kong, N. Fang, T. Gong, F. Wang, Z. Ling, and J. Liu. 2020. Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Molecular Nutrition & Food Research 64 (2):e1900636. doi: 10.1002/mnfr.201900636.
  • Sun, M.-F., Y.-L. Zhu, Z.-L. Zhou, X.-B. Jia, Y.-D. Xu, Q. Yang, C. Cui, and Y.-Q. Shen. 2018. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction andTLR4/TNF-α signaling pathway. Brain, Behavior, and Immunity 70:48–60. doi: 10.1016/j.bbi.2018.02.005.
  • Sun, M., K. Ma, J. Wen, G. Wang, C. Zhang, Q. Li, X. Bao, and H. Wang. 2020. A review of the brain-gut-microbiome axis and the potential role of microbiota in Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 73 (3):849–65. doi: 10.3233/JAD-190872.
  • Sun, Q., L. Cheng, X. Zeng, X. Zhang, Z. Wu, and P. Weng. 2020. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. International Journal of Biological Macromolecules 164:1484–92. doi: 10.1016/j.ijbiomac.2020.07.208.
  • Sun, Y., B. J. Wilkinson, T. J. Standiford, H. T. Akinbi, and M. X. O’Riordan. 2012. Fatty acids regulate stress resistance and virulence factor production for listeria monocytogenes. Journal of Bacteriology 194 (19):5274–84. doi: 10.1128/JB.00045-12.
  • Sweeney, M. D., Z. Zhao, A. Montagne, A. R. Nelson, and B. V. Zlokovic. 2019. Blood-brain barrier: From physiology to disease and back. Physiological Reviews 99 (1):21–78. doi: 10.1152/physrev.00050.2017.
  • Takeuchi, T., E. Miyauchi, T. Kanaya, T. Kato, Y. Nakanishi, T. Watanabe, T. Kitami, T. Taida, T. Sasaki, H. Negishi, et al. 2021. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 595 (7868):560–4. doi: 10.1038/s41586-021-03727-5.
  • Tan, J., C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, and L. Macia. 2014. The role of short-chain fatty acids in health and disease. Advances in Immunology 121:91–119.
  • Thomas, F., J.-H. Hehemann, E. Rebuffet, M. Czjzek, and G. Michel. 2011. Environmental and gut bacteroidetes: The food connection. Frontiers in Microbiology 2:93. doi: 10.3389/fmicb.2011.00093.
  • Tran, N. T., Y. Tang, Z. Li, M. Zhang, X. Wen, H. Ma, and S. Li. 2020. Galactooligosaccharides and resistant starch altered microbiota and short-chain fatty acids in an in vitro fermentation study using gut contents of mud crab (Scylla paramamosain). Frontiers in Microbiology 11:1352. doi: 10.3389/fmicb.2020.01352.
  • Tremlett, H., K. C. Bauer, S. Appel-Cresswell, B. B. Finlay, and E. Waubant. 2017. The gut microbiome in human neurological disease: A review. Annals of Neurology 81 (3) :369–82. doi: 10.1002/ana.24901.
  • Tsigos, C., and G. P. Chrousos. 2002. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research 53 (4):865–71. doi: 10.1016/s0022-3999(02)00429-4.
  • Tuncil, Y. E., C. H. Nakatsu, A. E. Kazem, S. Arioglu-Tuncil, B. Reuhs, E. C. Martens, and B. R. Hamaker. 2017. Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. Journal of Functional Foods 32:347–57. doi: 10.1016/j.jff.2017.03.001.
  • Unger, M. M., J. Spiegel, K.-U. Dillmann, D. Grundmann, H. Philippeit, J. Bürmann, K. Faßbender, A. Schwiertz, and K.-H. Schäfer. 2016. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism & Related Disorders 32:66–72. doi: 10.1016/j.parkreldis.2016.08.019.
  • Valenzano, M. C., K. DiGuilio, J. Mercado, M. Teter, J. To, B. Ferraro, B. Mixson, I. Manley, V. Baker, B. A. Moore, et al. 2015. Remodeling of tight junctions and enhancement of barrier integrity of the Caco-2 intestinal epithelial cell layer by micronutrients. PloS One 10 (7):e0133926. doi: 10.1371/journal.pone.0133926.
  • van der Hee, B., and J. M. Wells. 2021. Microbial regulation of host physiology by short-chain fatty acids. Trends in Microbiology 29 (8):700–12. doi: 10.1016/j.tim.2021.02.001.
  • Van der Sluis, M., B. A. E. De Koning, A. C. J. M. De Bruijn, A. Velcich, J. P. P. Meijerink, J. B. Van Goudoever, H. A. Büller, J. Dekker, I. Van Seuningen, I. B. Renes, et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology 131 (1):117–29. doi: 10.1053/j.gastro.2006.04.020.
  • Vancamelbeke, M., and S. Vermeire. 2017. The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology 11 (9):821–34. doi: 10.1080/17474124.2017.1343143.
  • Vecsey, C. G., J. D. Hawk, K. M. Lattal, J. M. Stein, S. A. Fabian, M. A. Attner, S. M. Cabrera, C. B. McDonough, P. K. Brindle, T. Abel, et al. 2007. Histone deacetylase inhibitors enhance memory and synaptic plasticity via creb: Cbp-dependent transcriptional activation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27 (23):6128–40. doi: 10.1523/JNEUROSCI.0296-07.2007.
  • Verheggen, I. C., J. J. de Jong, M. P. van Boxtel, E. H. Gronenschild, W. M. Palm, A. A. Postma, J. F. Jansen, F. R. Verhey, and W. H. Backes. 2020. Increase in blood–brain barrier leakage in healthy, older adults. GeroScience 42 (4):1183–93. doi: 10.1007/s11357-020-00211-2.
  • Vidyasagar, S., C. Barmeyer, J. Geibel, H. J. Binder, and V. M. Rajendran. 2005. Role of short-chain fatty acids in colonic HCO3 secretion. American Journal of Physiology. Gastrointestinal and Liver Physiology 288 (6):G1217–G1226. doi: 10.1152/ajpgi.00415.2004.
  • Viggars, A. P., S. B. Wharton, J. E. Simpson, F. E. Matthews, C. Brayne, G. M. Savva, C. Garwood, D. Drew, P. J. Shaw, and P. G. Ince. 2011. Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: A study in the mrc-cfas population neuropathology cohort. Neuroscience Letters 505 (1):25–30. doi: 10.1016/j.neulet.2011.09.049.
  • Vona-Davis, L., and D. W. McFadden. 2007. Pyy and the pancreas: Inhibition of tumor growth and inflammation. Peptides 28 (2):334–8. doi: 10.1016/j.peptides.2006.07.033.
  • Wang, D., Q. Fu, Y. Zhou, B. Xu, Q. Shi, B. Igwe, L. Matt, J. W. Hell, E. V. Wisely, S. Oddo, et al. 2013. B2 adrenergic receptor, protein kinase a (PKA) and c-jun n-terminal kinase (JNK) signaling pathways mediate Tau pathology in Alzheimer disease models. The Journal of Biological Chemistry 288 (15):10298–307. doi: 10.1074/jbc.M112.415141.
  • Wang, P., Y. Zhang, Y. Gong, R. Yang, Z. Chen, W. Hu, Y. Wu, M. Gao, X. Xu, Y. Qin, et al. 2018. Sodium butyrate triggers a functional elongation of microglial process via AKT-small rhogtpase activation and HDACs inhibition. Neurobiology of Disease 111:12–25. doi: 10.1016/j.nbd.2017.12.006.
  • Wang, S., H. Yang, L. Yu, J. Jin, L. Qian, H. Zhao, Y. Xu, and X. Zhu. 2014. Oridonin attenuates aβ1–42-induced neuroinflammation and inhibits NF-κB pathway. PloS One 9 (8):e104745. doi: 10.1371/journal.pone.0104745.
  • Wen, J., Y. Ding, L. Wang, and Y. Xiao. 2020. Gut microbiome improves postoperative cognitive function by decreasing permeability of the blood-brain barrier in aged mice. Brain Research Bulletin 164:249–56. doi: 10.1016/j.brainresbull.2020.08.017.
  • Wenzel, T. J., E. J. Gates, A. L. Ranger, and A. Klegeris. 2020. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Molecular and Cellular Neurosciences 105:103493. doi: 10.1016/j.mcn.2020.103493.
  • Windey, K., I. François, W. Broekaert, V. De Preter, J. A. Delcour, T. Louat, J. Herman, and K. Verbeke. 2014. High dose of prebiotics reduces fecal water cytotoxicity in healthy subjects. Molecular Nutrition & Food Research 58 (11):2206–18. doi: 10.1002/mnfr.201400298.
  • Wren, A., and S. Bloom. 2007. Gut hormones and appetite control. Gastroenterology 132 (6):2116–30. doi: 10.1053/j.gastro.2007.03.048.
  • Wu, S., J. Yi, Y. G. Zhang, J. Zhou, and J. Sun. 2015. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiolological Reports 3:e12356.
  • Wu, X., P. S. Chen, S. Dallas, B. Wilson, M. L. Block, C.-C. Wang, H. Kinyamu, N. Lu, X. Gao, Y. Leng, et al. 2008. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. The International Journal of Neuropsychopharmacology 11 (8):1123–34. doi: 10.1017/S1461145708009024.
  • Xiong, Y., N. Miyamoto, K. Shibata, M. A. Valasek, T. Motoike, R. M. Kedzierski, and M. Yanagisawa. 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the g protein-coupled receptor GPR41. Proceedings of the National Academy of Sciences of the United States of America 101 (4):1045–50. doi: 10.1073/pnas.2637002100.
  • Xu, M., H. Huang, X. Mo, Y. Zhu, X. Chen, X. Li, X. Peng, Z. Xu, L. Chen, S. Rong, et al. 2021. Quercetin‐3‐o‐glucuronide alleviates cognitive deficit and toxicity in Aβ1‐42‐induced ad‐like mice and SH‐SY5Y cells. Molecular Nutrition & Food Research 65 (6):e2000660. doi: 10.1002/mnfr.202000660.
  • Xu, Y., Y. Zhu, X. Li, and B. Sun. 2020. Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism. Trends in Food Science & Technology 100:118–30. doi: 10.1016/j.tifs.2020.02.026.
  • Yadav, S., A. Dwivedi, A. Tripathi, and A. K. Tripathi. 2022. Therapeutic potential of short chain fatty acid production by gut microbiota in neurodegenerative disorders. Nutrition Research (New York, N.Y.) 106:72–84. doi: 10.1016/j.nutres.2022.07.007.
  • Yajima, T., R. Inoue, M. Matsumoto, and M. Yajima. 2011. Non‐neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. The Journal of Physiology 589 (Pt 4):953–62. doi: 10.1113/jphysiol.2010.199976.
  • Yan, H., and K. M. Ajuwon. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the akt signaling pathway. PloS One 12 (6):e0179586. doi: 10.1371/journal.pone.0179586.
  • Yang, J., I. Martínez, J. Walter, A. Keshavarzian, and D. J. Rose. 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23:74–81. doi: 10.1016/j.anaerobe.2013.06.012.
  • Yao, Z., W. Yang, Z. Gao, and P. Jia. 2017. Nicotinamide mononucleotide inhibits JNKactivation to reverse alzheimer disease. Neuroscience Letters 647:133–40. doi: 10.1016/j.neulet.2017.03.027.
  • Yatsunenko, T., F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contreras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486 (7402):222–7. doi: 10.1038/nature11053.
  • Yin, Z., D. Raj, N. Saiepour, D. Van Dam, N. Brouwer, I. R. Holtman, B. J. L. Eggen, T. Möller, J. A. Tamm, A. Abdourahman, et al. 2017. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiology of Aging 55:115–22. doi: 10.1016/j.neurobiolaging.2017.03.021.
  • Yoo, D. Y., W. Kim, S. M. Nam, D. W. Kim, J. Y. Chung, S. Y. Choi, Y. S. Yoon, M.-H. Won, and I. K. Hwang. 2011. Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus. Neurochemical Research 36 (10):1850–7. doi: 10.1007/s11064-011-0503-5.
  • Yoshikawa, S., R. Araoka, Y. Kajihara, T. Ito, H. Miyamoto, and H. Kodama. 2018. Valerate production by megasphaera elsdenii isolated from pig feces. Journal of Bioscience and Bioengineering 125 (5):519–24. doi: 10.1016/j.jbiosc.2017.12.016.
  • Yu, C., S. Liu, L. Chen, J. Shen, Y. Niu, T. Wang, W. Zhang, and L. Fu. 2019. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. The Journal of Endocrinology 243 (2):125–35. doi: 10.1530/JOE-19-0122.
  • Yu, I. T., J.-Y. Park, S. H. Kim, J-s Lee, Y.-S. Kim, and H. Son. 2009. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56 (2):473–80. doi: 10.1016/j.neuropharm.2008.09.019.
  • Zenaro, E., E. Pietronigro, V. Della Bianca, G. Piacentino, L. Marongiu, S. Budui, E. Turano, B. Rossi, S. Angiari, S. Dusi, et al. 2015. Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nature Medicine 21 (8):880–6. doi: 10.1038/nm.3913.
  • Zeng, H., C. Huang, S. Lin, M. Zheng, C. Chen, B. Zheng, and Y. Zhang. 2017. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice. Journal of Agricultural and Food Chemistry 65 (42):9217–25. doi: 10.1021/acs.jafc.7b02860.
  • Zhang, S., J. Zhao, F. Xie, H. He, L. J. Johnston, X. Dai, C. Wu, and X. Ma. 2021. Dietary fiber‐derived short‐chain fatty acids: A potential therapeutic target to alleviate obesity‐related nonalcoholic fatty liver disease. Obesity Reviews : An Official Journal of the International Association for the Study of Obesity 22 (11):e13316. doi: 10.1111/obr.13316.
  • Zhao, J., P. Liu, Y. Wu, P. Guo, L. Liu, N. Ma, C. Levesque, Y. Chen, J. Zhao, J. Zhang, et al. 2018. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. Journal of Agricultural and Food Chemistry 66 (30):7995–8004. doi: 10.1021/acs.jafc.8b02545.
  • Zhu, F., R. Guo, W. Wang, Y. Ju, Q. Wang, Q. Ma, Q. Sun, Y. Fan, Y. Xie, Z. Yang, et al. 2020. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry 25 (11):2905–18. doi: 10.1038/s41380-019-0475-4.
  • Zhu, X., B. Li, P. Lou, T. Dai, Y. Chen, A. Zhuge, Y. Yuan, and L. Lan. 2021. The relationship between the gut microbiome and neurodegenerative disease. Neuroscience Bulletin 37 (10):1510–22. doi: 10.1007/s12264-021-00730-8.
  • Zhu, Y., Q. Cai, X. Zheng, L. Liu, Y. Hua, B. Du, G. Zhao, J. Yu, Z. Zhuo, Z. Xie, et al. 2021. Aspirin positively contributes to drosophila intestinal homeostasis and delays aging through targeting imd. Aging and Disease 12 (7):1821–34. doi: 10.14336/AD.2020.1008.
  • Zhuang, Z.-Q., L.-L. Shen, W.-W. Li, X. Fu, F. Zeng, L. Gui, Y. Lü, M. Cai, C. Zhu, Y.-L. Tan, et al. 2018. Gut microbiota is altered in patients with Alzheimer’s disease. Journal of Alzheimer’s Disease : JAD 63 (4):1337–46. doi: 10.3233/JAD-180176.
  • Zielinski, G., J. W. DeVries, S. A. Craig, and A. R. Bridges. 2013. Dietary fiber methods in codex alimentarius: Current status and ongoing discussions. Cereal Foods World 58 (3):148–52. doi: 10.1094/CFW-58-3-0401.
  • Zou, X., L. Zhong, C. Zhu, H. Zhao, F. Zhao, R. Cui, S. Gao, and B. Li. 2019. Role of leptin in mood disorder and neurodegenerative disease. Frontiers in Neuroscience 13:378. doi: 10.3389/fnins.2019.00378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.