711
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Designing future foods: Harnessing 3D food printing technology to encapsulate bioactive compounds

ORCID Icon, , & ORCID Icon

References

  • Abasalizadeh, F., S. V. Moghaddam, E. Alizadeh, E. Akbari, E. Kashani, S. M. B. Fazljou, M. Torbati, and A. Akbarzadeh. 2020. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering 14 (1):8– doi: 10.1186/s13036-020-0227-7.
  • Abolhassani, H., M. S. Safavi, S. Handali, M. Nosrati, and S. A. Shojaosadati. 2020. Synergistic effect of self-assembled curcumin and piperine co-loaded human serum albumin nanoparticles on suppressing cancer cells. Drug Development and Industrial Pharmacy 46 (10):1647–55. doi: 10.1080/03639045.2020.1820032.
  • Adachi, K., K. Yoshida, M. Makino, M. Morita, Y. Watanabe, M. N. I. Shiblee, J. Ogawa, A. Khosla, M. Kawakami, and H. Furukawa. 2020. (Invited) Formation of liposomes containing pre-gel solution and 3D-printing applications by droplet-shooting method. ECS Transactions 98 (13):85–92. doi: 10.1149/09813.0085ecst.
  • Adelnia, H., R. Ensandoost, S. Shebbrin Moonshi, J. N. Gavgani, E. I. Vasafi, and H. T. Ta. 2022. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal 164:110974. doi: 10.1016/j.eurpolymj.2021.110974.
  • Ahmadzadeh, S., and A. Ubeyitogullari. 2023a. Enhancing the stability of lutein by loading into dual-layered starch-ethyl cellulose gels using 3D food printing. Additive Manufacturing 69:103549. doi: 10.1016/j.addma.2023.103549.
  • Ahmadzadeh, S., and A. Ubeyitogullari. 2023b. Generation of porous starch beads via a 3D food printer: The effects of amylose content and drying technique. Carbohydrate Polymers 301 (Pt A):120296– doi: 10.1016/j.carbpol.2022.120296.
  • Ahmadzadeh, S., and A. Ubeyitogullari. 2022. Fabrication of porous spherical beads from corn starch by using a 3D food printing system. Foods (Basel, Switzerland) 11 (7):913. doi: 10.3390/foods11070913.
  • Amiri-Rigi, A., S. Abbasi, and M. N. Emmambux. 2023. Background, limitations, and future perspectives in food grade microemulsions and nanoemulsions. Food Reviews International 39 (8):5048–86. doi: 10.1080/87559129.2022.2059808.
  • Anandharamakrishnan, C., J. A. Moses, and T. Anukiruthika. 2022. Integrating encapsulation technique with 3D food printing. In 3D Printing of Foods, eds C. Anandharamakrishnan, J.A. Moses and T. Anukiruthika, 384–434. UK: John Wiley & Sons Ltd.
  • Anandharamakrishnan, C. 2014. Liquid-based nanoencapsulation techniques. In Techniques for nanoencapsulation of food ingredients, 29–41. New York, NY: Springer New York
  • Anukiruthika, T., J. A. Moses, and C. Anandharamakrishnan. 2020. 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering 265:109691. doi: 10.1016/j.jfoodeng.2019.109691.
  • Anukiruthika, T., P. Sethupathy, A. Wilson, K. Kashampur, J. A. Moses, and C. Anandharamakrishnan. 2020. Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety 19 (3):1156–86. doi: 10.1111/1541-4337.12556.
  • Assadpour, E., and S. Mahdi Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Azam, R. S. M., M. Zhang, B. Bhandari, and C. Yang. 2018. Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophysics 13 (3):250–62. doi: 10.1007/s11483-018-9531-x.
  • Banwo, K., A. O. Olojede, A. T. Adesulu-Dahunsi, D. K. Verma, M. Thakur, S. Tripathy, S. Singh, A. R. Patel, A. K. Gupta, C. N. Aguilar, et al. 2021. Functional importance of bioactive compounds of foods with potential health benefits: A review on recent trends. Food Bioscience 43:101320. doi: 10.1016/j.fbio.2021.101320.
  • Betts, J. A., and J. T. Gonzalez. 2016. Personalised nutrition: What makes you so special? Nutrition Bulletin 41 (4):353–9. doi: 10.1111/nbu.12238.
  • Bhushani, J. A., and C. Anandharamakrishnan. 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology 38 (1):21–33. doi: 10.1016/j.tifs.2014.03.004.
  • Chen, H., F. Xie, L. Chen, and B. Zheng. 2019. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering 244:150–8. doi: 10.1016/j.jfoodeng.2018.09.011.
  • Cotabarren, I. M., S. Cruces, and C. A. Palla. 2019. Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures. Food Research International (Ottawa, Ont.) 126:108676– doi: 10.1016/j.foodres.2019.108676.
  • Devraj, R., H. D. Williams, D. B. Warren, A. Mullertz, C. J. H. Porter, and C. W. Pouton. 2013. In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products. International Journal of Pharmaceutics 441 (1-2):323–33. doi: 10.1016/j.ijpharm.2012.11.024.
  • Derossi, A., R. Caporizzi, D. Azzollini, and C. Severini. 2018. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering 220:65–75. doi: 10.1016/j.jfoodeng.2017.05.015.
  • Dick, A., B. Bhandari, and S. Prakash. 2019. 3D printing of meat. Meat Science 153:35–44. doi: 10.1016/j.meatsci.2019.03.005.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety 19 (6):2862–84. doi: 10.1111/1541-4337.12623.
  • Dima, C., E. Assadpour, A. Nechifor, S. Dima, Y. Li, and S. M. Jafari. 2023. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Critical Reviews in Food Science and Nutrition. 1–39. doi: 10.1080/10408398.2023.2199861.
  • Đorđević, V., B. Balanč, A. Belščak-Cvitanović, S. Lević, K. Trifković, A. Kalušević, I. Kostić, D. Komes, B. Bugarski, and V. Nedović. 2015. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews 7 (4):452–90. doi: 10.1007/s12393-014-9106-7.
  • Eke, G., N. Mangır, N. Hasirci, S. MacNeil, and V. Hasirci. 2017. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–98. doi: 10.1016/j.biomaterials.2017.03.021.
  • Eswaran, H., R. D. Ponnuswamy, and R. P. Kannapan. 2023. Perspective approaches of 3D printed stuffs for personalized nutrition: A comprehensive review. Annals of 3D Printed Medicine 12:100125. doi: 10.1016/j.stlm.2023.100125.
  • Feng, C., M. Zhang, and B. Bhandari. 2019. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review. Critical Reviews in Food Science and Nutrition 59 (19):3074–81. doi: 10.1080/10408398.2018.1481823.
  • Feng, T., C. Fan, X. Wang, X. Wang, S. Xia, and Q. Huang. 2022. Food-grade pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocolloids. 124:107265. doi: 10.1016/j.foodhyd.2021.107265.
  • Gholamipour-Shirazi, A., I. T. Norton, and T. Mills. 2021. Dual stimuli-sensitive carrageenan-based formulation for additive manufacturing. International Journal of Biological Macromolecules 189:370–9. doi: 10.1016/j.ijbiomac.2021.08.127.
  • Gover Antoniraj, M., M. Maria Leena, J. A. Moses, and C. Anandharamakrishnan. 2020. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. International Journal of Biological Macromolecules 147:1268–77. doi: 10.1016/j.ijbiomac.2019.09.254.
  • Gupta, A., H. B. Eral, T. A. Hatton, and P. S. Doyle. 2016. Nanoemulsions: Formation, properties and applications. Soft Matter 12 (11):2826–41. doi: 10.1039/c5sm02958a.
  • Guo, C., M. Zhang, and S. Devahastin. 2021. Color/aroma changes of 3D-Printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocolloids. 112:106358. doi: 10.1016/j.foodhyd.2020.106358.
  • Guo, Z., M. Arslan, Z. Li, S. Cen, J. Shi, X. Huang, J. Xiao, and X. Zou. 2022. Application of protein in extrusion-based 3D food printing: Current status and prospectus. Foods (Basel, Switzerland) 11 (13):1902. doi: 10.3390/foods11131902.
  • Ha, E. S., H. Park, S. K. Lee, W. Y. Sim, J. S. Jeong, I. H. Baek, and M. S. Kim. 2020. Pure trans -resveratrol nanoparticles prepared by a supercritical antisolvent process using alcohol and dichloromethane mixtures: Effect of particle size on dissolution and bioavailability in rats. Antioxidants 9 (4):342. doi: 10.3390/antiox9040342.
  • Hai Alami, A., A. Ghani Olabi, S. Khuri, H. Aljaghoub, S. Alasad, M. Ramadan, and M. Ali Abdelkareem. 2023. 3D printing in the food industry: Recent progress and role in achieving sustainable development goals. Ain Shams Engineering Journal :102386. doi: 10.1016/j.asej.2023.102386.
  • He, C., M. Zhang, and Z. Fang. 2020. 3D printing of food: Pretreatment and post-treatment of materials. Critical Reviews in Food Science and Nutrition 60 (14):2379–92. doi: 10.1080/10408398.2019.1641065.
  • Hu, G., M. Ma, Z. Batool, L. Sheng, Z. Cai, Y. Liu, and Y. Jin. 2022. Gel properties of heat-induced transparent hydrogels from ovalbumin by acylation modifications. Food Chemistry 369:130912– doi: 10.1016/j.foodchem.2021.130912.
  • Heshmati Aghda, N., Y. Zhang, J. Wang, A. Lu, A. R. Pillai, and M. Maniruzzaman. 2022. A novel 3D printing particulate manufacturing technology for encapsulation of protein therapeutics: Sprayed multi adsorbed-droplet reposing technology (SMART). Bioengineering (Basel, Switzerland) 9 (11):653. doi: 10.3390/bioengineering9110653.
  • Jeon, W. Y., J. Y. Yu, H. W. Kim, and H. J. Park. 2021. Production of customized food through the insertion of a formulated nanoemulsion using coaxial 3D food printing. Journal of Food Engineering 311:110689. doi: 10.1016/j.jfoodeng.2021.110689.
  • Jia, W., P. S. Gungor-Ozkerim, Y. S. Zhang, K. Yue, K. Zhu, W. Liu, Q. Pi, B. Byambaa, M. R. Dokmeci, S. R. Shin, et al. 2016. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68. doi: 10.1016/j.biomaterials.2016.07.038.
  • Jiang, Q., M. Zhang, and A. S. Mujumdar. 2022. Novel evaluation technology for the demand characteristics of 3D food printing materials: A review. Critical Reviews in Food Science and Nutrition 62 (17):4669–83. doi: 10.1080/10408398.2021.1878099.
  • Johannesson, J., J. Khan, M. Hubert, A. Teleki, and C. A. S. Bergström. 2021. 3D-printing of solid lipid tablets from emulsion gels. International Journal of Pharmaceutics 597:120304– doi: 10.1016/j.ijpharm.2021.120304.
  • Karavasili, C., A. Gkaragkounis, T. Moschakis, C. Ritzoulis, and D. G. Fatouros. 2020. Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 147:105291. doi: 10.1016/j.ejps.2020.105291.
  • Kashyap, P., S. Kumar, C. S. Riar, N. Jindal, P. Baniwal, R. P. F. Guiné, P. M. R. Correia, R. Mehra, and H. Kumar. 2022. Recent advances in Drumstick (Moringa oleifera) leaves bioactive compounds: Composition, health benefits, bioaccessibility, and dietary applications. Antioxidants 11 (2):402. doi: 10.3390/antiox11020402.
  • Kavimughil, M., M. M. Leena, J. A. Moses, and C. Anandharamakrishnan. 2022. 3D printed MCT oleogel as a co-delivery carrier for curcumin and resveratrol. Biomaterials 287:121616– doi: 10.1016/j.biomaterials.2022.121616.
  • Kempin, W., V. Domsta, I. Brecht, B. Semmling, S. Tillmann, W. Weitschies, and A. Seidlitz. 2018. Development of a dual extrusion printing technique for an acid- and thermo-labile drug. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 123:191–8. doi: 10.1016/j.ejps.2018.07.041.
  • Kuo, C. C., S. Clark, H. Qin, and X. Shi. 2022. Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. Lwt 157:113075. doi: 10.1016/j.lwt.2022.113075.
  • Kuo, C. C., H. Qin, Y. Cheng, X. Jiang, and X. Shi. 2021. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocolloids. 111:106262. doi: 10.1016/j.foodhyd.2020.106262.
  • Leena, M. M., T. Anukiruthika, J. A. Moses, and C. Anandharamakrishnan. 2022. Co-delivery of curcumin and resveratrol through electrosprayed core-shell nanoparticles in 3D printed hydrogel. Food Hydrocolloids. 124:107200. doi: 10.1016/j.foodhyd.2021.107200.
  • Li, X., L. Fan, Y. Liu, and J. Li. 2023. New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing. Critical Reviews in Food Science and Nutrition 63 (11):1564–86. doi: 10.1080/10408398.2021.1965953.
  • Li, J., C. Wu, P. K. Chu, and M. Gelinsky. 2020. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports 140:100543. doi: 10.1016/j.mser.2020.100543.
  • Liu, Z., M. Zhang, and Y. Chao-Hui. 2018. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. Lwt 96:589–96. doi: 10.1016/j.lwt.2018.06.014.
  • Liu, Z., M. Zhang, B. Bhandari, and C. Yang. 2018. Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering 220:76–82. doi: 10.1016/j.jfoodeng.2017.04.017.
  • Liu, K., Y. Y. Chen, X. Q. Zha, Q. M. Li, L. H. Pan, and J. P. Luo. 2021. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Research International (Ottawa, Ont.) 147:110542– doi: 10.1016/j.foodres.2021.110542.
  • Lu, Y., L. Mao, Z. Hou, S. Miao, and Y. Gao. 2019. Development of emulsion gels for the delivery of functional food ingredients: From structure to functionality. Food Engineering Reviews 11 (4):245–58. doi: 10.1007/s12393-019-09194-z.
  • Mallakpour, S., E. Azadi, and C. M. Hussain. 2021. State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications. Advances in Colloid and Interface Science 293:102436. doi: 10.1016/j.cis.2021.102436.
  • Mandalari, G., M. Vardakou, R. Faulks, C. Bisignano, M. Martorana, A. Smeriglio, and D. Trombetta. 2016. Food matrix effects of polyphenol bioaccessibility from almond skin during simulated human digestion. Nutrients 8 (9):568. doi: 10.3390/nu8090568.
  • Matas, A., M. Igual, P. García-Segovia, and J. Martínez-Monzó. 2022. Application of 3D printing in the design of functional gluten-free dough. Foods (Basel, Switzerland) 11 (11):1555. doi: 10.3390/foods11111555.
  • McClements, D. J., L. Zou, R. Zhang, L. Salvia-Trujillo, T. Kumosani, and H. Xiao. 2015. Enhancing nutraceutical performance using excipient foods: Designing food structures and compositions to increase bioavailability: Enhancing nutraceutical performance. Comprehensive Reviews in Food Science and Food Safety 14 (6):824–47. doi: 10.1111/1541-4337.12170.
  • Milde, J., E. F. Elstner, and J. Grassmann. 2007. Synergistic effects of phenolics and carotenoids on human low-density lipoprotein oxidation. Molecular Nutrition & Food Research 51 (8):956–61. doi: 10.1002/mnfr.200600271.
  • Montes, C., M. J. Villaseñor, and Á. Ríos. 2019. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends in Food Science & Technology 90:47–62. doi: 10.1016/j.tifs.2019.06.001.
  • Nachal, N., J. A. Moses, P. Karthik, and C. Anandharamakrishnan. 2019. Applications of 3D printing in food processing. Food Engineering Reviews 11 (3):123–41. doi: 10.1007/s12393-019-09199-8.
  • Nedovic, V., A. Kalusevic, V. Manojlovic, S. Levic, and B. Bugarski. 2011. An overview of encapsulation technologies for food applications. Procedia Food Science 1:1806–15. doi: 10.1016/j.profoo.2011.09.265.
  • Oliveira, S. M., A. Gruppi, M. V. Vieira, G. S. Matos, A. A. Vicente, J. A. C. Teixeira, P. Fucinos, G. Spigno, and L. M. Pastrana. 2021. How additive manufacturing can boost the bioactivity of baked functional foods. Journal of Food Engineering 294:110394. doi: 10.1016/j.jfoodeng.2020.110394.
  • Ozturk, B., S. Argin, M. Ozilgen, and D. J. McClements. 2015. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry 187:499–506. doi: 10.1016/j.foodchem.2015.04.065.
  • Puertas-Bartolomé, M., M. K. Włodarczyk-Biegun, A. del Campo, B. Vázquez-Lasa, and J. San Román. 2021. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. Materials Science & Engineering. C, Materials for Biological Applications 131:112515– doi: 10.1016/j.msec.2021.112515.
  • Reboul, E., S. Thap, E. Perrot, M. J. Amiot, D. Lairon, and P. Borel. 2007. Effect of the main dietary antioxidants (carotenoids, γ-tocopherol, polyphenols, and vitamin C) on α-tocopherol absorption. European Journal of Clinical Nutrition 61 (10):1167–73. doi: 10.1038/sj.ejcn.1602635.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2019. Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release: Official Journal of the Controlled Release Society 298:38–67. doi: 10.1016/j.jconrel.2019.02.005.
  • Ross, M. M., A. L. Kelly, and S. V. Crowley. 2019. Chapter 7 - Potential applications of dairy products, ingredients and formulations in 3D printing. In Fundamentals of 3D food printing and applications, eds. F. C. Godoi, B. R. Bhandari, S. Prakash & M. Zhang, 175–206. London, UK: Academic Press.
  • Rysenaer, V. B. J., S. Ahmadzadeh, F. Van Bockstaele, and A. Ubeyitogullari. 2023. An extrusion-based 3D food printing approach for generating alginate-pectin particles. Current Research in Food Science 6:100404– doi: 10.1016/j.crfs.2022.11.023.
  • Samtiya, M., R. E. Aluko, T. Dhewa, and J. M. Moreno-Rojas. 2021. Potential health benefits of plant food-derived bioactive components: An overview. Foods (Basel, Switzerland) 10 (4):839. doi: 10.3390/foods10040839.
  • Sanchez-Rexach, E., T. G. Johnston, C. Jehanno, H. Sardon, and A. Nelson. 2020. Sustainable materials and chemical processes for additive manufacturing. Chemistry of Materials 32 (17):7105–19. doi: 10.1021/acs.chemmater.0c02008.
  • Santiago, L. G., and G. R. Castro. 2016. Novel technologies for the encapsulation of bioactive food compounds. Current Opinion in Food Science 7:78–85. doi: 10.1016/j.cofs.2016.01.006.
  • Sarkar, N., and S. Bose. 2019. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Applied Materials & Interfaces 11 (19):17184–92. doi: 10.1021/acsami.9b01218.
  • Shahbazi, M., and H. Jäger. 2021. Current status in the utilization of biobased polymers for 3D printing process: A systematic review of the materials, processes, and challenges. ACS Applied Bio Materials 4 (1):325–69. doi: 10.1021/acsabm.0c01379.
  • Shin, J. Y., Y. H. Yeo, J. E. Jeong, S. A. Park, and W. H. Park. 2020. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydrate Polymers 238:116192– doi: 10.1016/j.carbpol.2020.116192.
  • Singhal, S., P. Rasane, S. Kaur, U. Garba, A. Bankar, J. Singh, and N. Gupta. 2020. 3D food printing: Paving way towards novel foods. Anais da Academia Brasileira de Ciencias 92 (3):e20180737-e20180737. doi: 10.1590/0001-3765202020180737.
  • Soni, R and., K. Ponappa, and P. Tandon. 2022. A review on customized food fabrication process using Food Layered Manufacturing. Lwt 161:113411. doi: 10.1016/j.lwt.2022.113411.
  • Soukoulis, C., and T. Bohn. 2018. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition 58 (1):1–36. doi: 10.1080/10408398.2014.971353.
  • Sun, J., Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu. 2015. A review on 3D printing for customized food fabrication. Procedia Manufacturing 1:308–19. doi: 10.1016/j.promfg.2015.09.057.
  • Tang, T., M. Zhang, A. S. Mujumdar, and X. Teng. 2022. 3D printed white radish/potato gel with microcapsules: Color/flavor change induced by microwave-infrared heating. Food Research International (Ottawa, Ont.) 158:111496– doi: 10.1016/j.foodres.2022.111496.
  • Tavares, L., L. Santos, and C. P. Zapata Noreña. 2021. Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends in Food Science & Technology 114:232–44. doi: 10.1016/j.tifs.2021.05.019.
  • Ubeyitogullari, A., S. Ahmadzadeh, G. Kandhola, and J. W. Kim. 2022. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Comprehensive Reviews in Food Science and Food Safety 21 (6):4610–39. doi: 10.1111/1541-4337.13049.
  • Ubeyitogullari, A., and O. N. Ciftci. 2019. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility. Scientific Reports 9 (1):19112. doi: 10.1038/s41598-019-55619-4.
  • Ubeyitogullari, A., and O. N. Ciftci. 2016. Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Advances 6 (110):108319–27. doi: 10.1039/C6RA20675A.
  • Vancauwenberghe, V., V. Baiye Mfortaw Mbong, E. Vanstreels, P. Verboven, J. Lammertyn, and B. Nicolai. 2019. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. Journal of Food Engineering 263:454–64. doi: 10.1016/j.jfoodeng.2017.12.003.
  • Varan, C., H. Wickström, N. Sandler, Y. Aktaş, and E. Bilensoy. 2017. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. International Journal of Pharmaceutics 531 (2):701–13. doi: 10.1016/j.ijpharm.2017.04.036.
  • Vieira, M. V., S. M. Oliveira, I. R. Amado, L. H. Fasolin, A. A. Vicente, L. M. Pastrana, and P. Fuciños. 2020. 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids. 107:105893. doi: 10.1016/j.foodhyd.2020.105893.
  • Vimala Bharathi, S. K., J. A. Moses, and C. Anandharamakrishnan. 2018. Nano and Microencapsulation Using Food Grade Polymers. In Polymers for food applications, ed. T. J. Gutiérrez, 357–400. Cham: Springer International Publishing
  • Vishali, D. A., J. Monisha, S. K. Sivakamasundari, J. A. Moses, and C. Anandharamakrishnan. 2019. Spray freeze drying: Emerging applications in drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society 300:93–101. doi: 10.1016/j.jconrel.2019.02.044.
  • Vithani, K., A. Goyanes, V. Jannin, A. W. Basit, S. Gaisford, and B. J. Boyd. 2019. A proof of concept for 3D printing of solid lipid-based formulations of poorly water-soluble drugs to control formulation dispersion kinetics. Pharmaceutical Research 36 (7):102–13. doi: 10.1007/s11095-019-2639-y.
  • Wanczinski Ferrari, B. J., B. L. Pelegrini, J. Bassi da Silva, O. C. Neves Pereira, M. Miriam de Souza Lima, M. L. Bruschi, and R. B. Bazotte. 2021. Formulation and in vivo study of the solid effervescent system as a new strategy for oral glutamine delivery. Journal of Drug Delivery Science and Technology 63:102516. doi: 10.1016/j.jddst.2021.102516.
  • Wang, L., M. Zhang, B. Bhandari, and C. Yang. 2018. Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering 220:101–8. doi: 10.1016/j.jfoodeng.2017.02.029.
  • Wang, J., R. Huang, H. Chen, X. Qiao, X. Shi, X. Wang, Y. Cheng, W. Tan, and Z. Tan. 2019. Personalized single-cell encapsulation using E-jet 3D printing with AC-pulsed modulation. Macromolecular Materials and Engineering 304 (4):1800776. doi: 10.1002/mame.201800776.
  • Wang, H., L. Hu, L. Peng, J. Du, M. Lan, Y. Cheng, L. Ma, and Y. Zhang. 2022. Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chemistry 378:132088– doi: 10.1016/j.foodchem.2022.132088.
  • Xia, T., C. Xue, and Z. Wei. 2021. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science & Technology 107:1–15. doi: 10.1016/j.tifs.2020.11.019.
  • Yang, F., M. Zhang, B. Bhandari, and Y. Liu. 2018. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. Lwt 87:67–76. doi: 10.1016/j.lwt.2017.08.054.
  • Zhang, L., Y. Lou, and M. A. I. Schutyser. 2018. 3D printing of cereal-based food structures containing probiotics. Food Structure 18:14–22. doi: 10.1016/j.foostr.2018.10.002.
  • Zhang, Y., C. Pu, W. Tang, S. Wang, and Q. Sun. 2019. Gallic acid liposomes decorated with lactoferrin: Characterization, in vitro digestion and antibacterial activity. Food Chemistry 293:315–22. doi: 10.1016/j.foodchem.2019.04.116.
  • Zhang, J., R. Zhang, Y. Zhang, Y. Pan, H. C. Shum, and Z. Jiang. 2022. Alginate-gelatin emulsion droplets for encapsulation of vitamin A by 3D printed microfluidics. Particuology 64:164–70. doi: 10.1016/j.partic.2021.09.004.
  • Zhang, L., A. A. Zaky, C. Zhou, Y. Chen, W. Su, H. Wang, A. M. El-Aty, and M. Tan. 2022. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application. Food Hydrocolloids. 131:107744. doi: 10.1016/j.foodhyd.2022.107744.
  • Zhang, J., M. Zhang, R. Ju, K. Chen, B. Bhandari, and H. Wang. 2022. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Critical Reviews in Food Science and Nutrition. 1–22. doi: 10.1080/10408398.2022.2092834.
  • Zhao, C. F., D. J. Lei, G. H. Song, H. Zhang, H. Xu, and L. J. Yu. 2015. Characterisation of water-soluble proanthocyanidins of Pyracantha fortuneana fruit and their improvement in cell bioavailable antioxidant activity of quercetin. Food Chemistry 169:484–91. doi: 10.1016/j.foodchem.2014.07.091.
  • Zhao, Q., L. Fan, Y. Liu, and J. Li. 2023. Mayonnaise-like high internal phase Pickering emulsions stabilized by co-assembled phosphorylated perilla protein isolate and chitosan for extrusion 3D printing application. Food Hydrocolloids. 135:108133. doi: 10.1016/j.foodhyd.2022.108133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.