340
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Biosynthesis of lactobionic acid: a systematic review

, &

References

  • Alonso, S., M. Rendueles, and M. Díaz. 2011. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresource Technology 102 (20):9730–6. doi: 10.1016/j.biortech.2011.07.089.
  • Alonso, S., M. Rendueles, and M. Díaz. 2012a. Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production. Applied Microbiology and Biotechnology 96 (6):1465–77. doi: 10.1007/s00253-012-4254-2.
  • Alonso, S., M. Rendueles, and M. Díaz. 2012b. Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens. Bioresource Technology 109:140–7. doi: 10.1016/j.biortech.2012.01.045.
  • Alonso, S., M. Rendueles, and M. Díaz. 2013a. Bio-production of lactobionic acid: Current status, applications and future prospects. Biotechnology Advances 31 (8):1275–91. doi: 10.1016/j.biotechadv.2013.04.010.
  • Alonso, S., M. Rendueles, and M. Díaz. 2013b. Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresource Technology 134:134–42. doi: 10.1016/j.biortech.2013.01.145.
  • Alonso, S., M. Rendueles, and M. Díaz. 2013c. Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production. Applied Microbiology and Biotechnology 97 (9):3843–54. doi: 10.1007/s00253-012-4607-x.
  • Alonso, S., M. Rendueles, and M. Díaz. 2015a. A novel approach to monitor stress-induced physiological responses in immobilized microorganisms. Applied Microbiology and Biotechnology 99 (8):3573–83. doi: 10.1007/s00253-015-6517-1.
  • Alonso, S., M. Rendueles, and M. Díaz. 2015b. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresource Technology 196:314–23. doi: 10.1016/j.biortech.2015.07.092.
  • Alonso, S., M. Rendueles, and M. Díaz. 2017. Tunable decoupled overproduction of lactobionic acid in Pseudomonas taetrolens through temperature-control strategies. Process Biochemistry 58 (April):9–16. doi: 10.1016/j.procbio.2017.04.034.
  • Baminger, U., R. Ludwig, C. Galhaup, C. Leitner, K. D. Kulbe, and D. Haltrich. 2001. Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins. Journal of Molecular Catalysis B: Enzymatic 11 (4-6):541–50. doi: 10.1016/S1381-1177(00)00034-5.
  • Borges da Silva, E. A., I. Pedruzzi, and A. E. Rodrigues. 2011. Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol. Adsorption 17 (1):145–58. doi: 10.1007/s10450-010-9304-4.
  • Canevascini, G., K. Etienne, and H. Meier. 1982. A direct enzymatic lactose assay using cellobiose-(lactose-)dehydrogenase from sporotrichum thermophile. Zeitschrift f⏧r Lebensmittel-Untersuchung und -Forschung 175 (2):125–9. doi: 10.1007/BF01135049.
  • Carra, S., D. C. Rodrigues, N. M. C. Beraldo, A. B. Folle, M. G. Delagustin, B. C. de Souza, C. Reginatto, T. A. Polidoro, M. M. da Silveira, V. L. Bassani, et al. 2020. High lactobionic acid production by immobilized Zymomonas mobilis cells: A great step for large-scale process. Bioprocess and Biosystems Engineering 43 (7):1265–76. doi: 10.1007/s00449-020-02323-7.
  • De Giorgi, S., N. Raddadi, A. Fabbri, T. Gallina Toschi, and F. Fava. 2018. Potential use of ricotta cheese whey for the production of lactobionic acid by Pseudomonas taetrolens strains. New Biotechnology 42:71–6. doi: 10.1016/j.nbt.2018.02.010.
  • Delagustin, M. G., E. Gonçalves, S. Carra, T. Barcellos, V. Link Bassani, M. M. Da Silveira, and E. Malvessi. 2019. Sodium, potassium, calcium lactobionates, and lactobionic acid from Zymomonas mobilis: A novel approach about stability and stress tests. Journal of Pharmaceutical and Biomedical Analysis 174:104–14. 10.1016/j.jpba.2019.05.060. 31163344
  • Delagustin, M. G., E. Gonçalves, S. Carra, T. Barcellos da Silva, V. Linck Bassani, M. M. d Silveira, and E. Malvessi. 2017. Bioproduction and characterization of sodium, potassium, and calcium lactobionates. Química Nova 40 (9):1003–8. doi: 10.21577/0100-4042.20170108.
  • Dhariwal, A., V. Mavrov, and I. Schroeder. 2006. Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimisation of process variables using response surface methods (RSM). Journal of Molecular Catalysis B: Enzymatic 42 (1-2):64–9. 10.1016/j.molcatb.2006.06.013.
  • Fischer, C., A. Krause, and T. Kleinschmidt. 2014. Optimization of production, purification and lyophilisation of cellobiose dehydrogenase by Sclerotium rolfsii. BMC Biotechnology 14 (1):97. doi: 10.1186/s12896-014-0097-5.
  • Fischer, E., and J. Meyer. 1889. Oxidation of milk-sugar. American Journal of Pharmacy (Aug 1889):425 .
  • Folle, A. B., V. M. Baschera, L. T. Vivan, S. Carra, T. A. Polidoro, E. Malvessi, and M. M. da Silveira. 2018. Assessment of different systems for the production of aldonic acids and sorbitol by calcium alginate-immobilized Zymomonas mobilis cells. Bioprocess and Biosystems Engineering 41 (2):185–94. doi: 10.1007/s00449-017-1856-1.
  • García, C., L. Bautista, M. Rendueles, and M. Díaz. 2019. A new synbiotic dairy food containing lactobionic acid and Lactobacillus casei. International Journal of Dairy Technology 72 (1):47–56. doi: 10.1111/1471-0307.12558.
  • García, C., G. Ranieri, M. Rendueles, and M. Díaz. 2020. Exploring encapsulation strategies as a protective mechanism to avoid amensalism in mixed populations of Pseudomonas taetrolens and Lactobacillus casei. Bioprocess and Biosystems Engineering 43 (1):55–66. doi: 10.1007/s00449-019-02204-8.
  • García, C., M. Rendueles, and M. Díaz. 2017a. Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess and Biosystems Engineering 40 (7):1111–22. doi: 10.1007/s00449-017-1773-3.
  • García, C., M. Rendueles, and M. Díaz. 2017b. Synbiotic fermentation for the co-production of lactic acid and lactobionic acids from residual dairy whey. Biotechnology Progress 33 (5):1250–6. doi: 10.1002/btpr.
  • Goderska, K. 2021. Biosynthesis of lactobionic acid in whey-containing medium by microencapsulated and free bacteria of Pseudomonas taetrolens. Indian Journal of Microbiology 61 (3):315–23. doi: 10.1007/s12088-021-00944-4.
  • Goderska, K., W. Juzwa, A. Szwengiel, and Z. Czarnecki. 2015. Lactobionic acid production by glucose–fructose oxidoreductase from Zymomonas mobilis expressed in Escherichia coli. Biotechnology Letters 37 (10):2047–53. doi: 10.1007/s10529-015-1887-0.
  • Goderska, K., A. Szwengiel, and Z. Czarnecki. 2014. The utilization of Pseudomonas taetrolens to produce lactobionic acid. Applied Biochemistry and Biotechnology 173 (8):2189–97. doi: 10.1007/s12010-014-1024-x.
  • Gupta, G., R. Gangwar, A. Gautam, L. Kumar, A. Dhariwal, V. Sahai, and S. Mishra. 2014. Production of cellobiose dehydrogenase from a newly isolated white rot fungus Termitomyces sp. OE147. Applied Biochemistry and Biotechnology 173 (8):2099–115. doi: 10.1007/s12010-014-1010-3.
  • Han, H. J., Y. R. Oh, S. W. Han, S. S. Lee, and G. T. Eom. 2022. Efficient production of lactobionic acid using Escherichia coli capable of synthesizing pyrroloquinoline quinone. Journal of Agricultural and Food Chemistry 70 (6):1962–70. doi: 10.1021/acs.jafc.1c08010.
  • Han, H. J., Y.-R. Oh, and G. T. Eom. 2022. Isolation and characterization of a new superior lactobionic acid-producing bacterium, Enterobacter cloacae KRICT-1, from environmental soil samples. ACS Food Science & Technology 2 (1):66–74. doi: 10.1021/acsfoodscitech.1c00322.
  • Hua, L., M. Nordkvist, P. M. Nielsen, and J. Villadsen. 2007. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system. Biotechnology and Bioengineering 97 (4):842–9. doi: 10.1002/bit.21272.
  • Júnior, J. B. S., T. L. M. Alves, and H. C. Ferraz. 2014. Removal of lactobionic acid by electrodialysis. Brazilian Journal of Chemical Engineering 31 (4):1003–11. doi: 10.1590/0104-6632.20140314s00002537.
  • Severo, J. B., J. C. Pinto, H. C. Ferraz, and T. L. M. Alves. 2011. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis. Journal of Industrial Microbiology & Biotechnology 38 (9):1575–85. doi: 10.1007/s10295-011-0948-1.
  • Kim, J. H., Y. A. Jang, S. B. Seong, S. A. Jang, S. H. Hong, J. K. Song, and G. T. Eom. 2020. High-level production and high-yield recovery of lactobionic acid by the control of pH and temperature in fermentation of Pseudomonas taetrolens. Bioprocess and Biosystems Engineering 43 (5):937–44. doi: 10.1007/s00449-020-02290-z.
  • Kiryu, T., T. Kiso, H. Nakano, K. Ooe, T. Kimura, and H. Murakami. 2009. Involvement of Acetobacter orientalis in the production of lactobionic acid in Caucasian yogurt (“Caspian Sea yogurt”) in Japan. Journal of Dairy Science 92 (1):25–34. doi: 10.3168/jds.2008-1081.
  • Kiryu, T., T. Kiso, H. Sato, and H. Murakami. 2020. Oxidation of isomaltose, gentiobiose, and melibiose by membrane-bound quinoprotein glucose dehydrogenase from acetic acid bacteria. Bioscience, Biotechnology, and Biochemistry 84 (3):507–17. doi: 10.1080/09168451.2019.1689095.
  • Kiryu, T., H. Nakano, T. Kiso, and H. Murakami. 2008. Purification and characterization of a carbohydrate: Acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently. Bioscience, Biotechnology, and Biochemistry 72 (3):833–41. doi: 10.1271/bbb.70701.
  • Kiryu, T., K. Yamauchi, A. Masuyama, K. Ooe, T. Kimura, T. Kiso, H. Nakano, and H. Murakami. 2012. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, “caspian sea yogurt”. Bioscience, Biotechnology, and Biochemistry 76 (2):361–3. doi: 10.1271/bbb.110608.
  • Kluyver, A. J., J. de Ley, and A. Rijven. 1951. The formation and consumption of lactobionic and maltobionic acids by Pseudomonas species. Antonie Van Leeuwenhoek 17 (1):1–14. doi: 10.1007/BF02062244.
  • Lee, M. H., W. L. Lai, S. F. Lin, Y. Liu, Y. H. Hsu, and Y. C. Tsai. 2006. Purification and characterization of a novel cellooligosaccharide oxidase from rice pathogen Sarocladium oryzae. Enzyme and Microbial Technology 39 (1):85–91. doi: 10.1016/j.enzmictec.2005.09.011.
  • Lee, S. S., Y. R. Oh, B. Y. Jeong, and G. T. Eom. 2022. Isolation of new lactobionic acid-producing microorganisms and improvement of their production ability by heterologous expression of glucose dehydrogenase from Pseudomonas taetrolens. Enzyme and Microbial Technology 153:109954. doi: 10.1016/j.enzmictec.2021.109954.
  • Lin, S. F., H. M. Hu, T. Inukal, and Y. C. Tsai. 1993. Production of novel oligosaccharide oxidase by wheat bran solid-state fermentation. Biotechnology Advances 11 (3):417–27. doi: 10.1016/0734-9750(93)90011-B.
  • Lin, S. F., C. K. Li, and Y. P. Chung. 2019. Identification of a novel lactose oxidase in Myrmecridium flexuosum NUK-21. FEBS Open Bio 9 (2):364–73. doi: 10.1002/2211-5463.12582.
  • Ludwig, R., Ozga, M., Zámocky, M., Peterbauer,., Kulbe, K. D., & Haltrich, D. (2004). Continuous enzymaticregeneration of electron acceptors used by flavoenzymes: cellobiosedehydrogenase-catalyzed production of lactobionic acid as an example. Biocatalysisand Biotransformation, 22(2), 97-104. 10.1080/10242420410001692787
  • Lynglev, G. B. 2003. Method for producing a fermented dairy product. (Patent No. WO 03/037093 A1). World Intellectual Property Organization.
  • Maischberger, T., T. H. Nguyen, P. Sukyai, R. Kittl, S. Riva, R. Ludwig, and D. Haltrich. 2008. Production of lactose-free galacto-oligosaccharide mixtures: Comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydrate Research 343 (12):2140–7. doi: 10.1016/j.carres.2008.01.040.
  • Malvessi, E., S. Carra, F. C. Pasquali, D. B. Kern, M. M. Da Silveira, and M. A. Z. Ayub. 2013. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. Journal of Industrial Microbiology & Biotechnology 40 (1):1–10. doi: 10.1007/s10295-012-1198-6.
  • Mao, S., Y. Liu, Y. Hou, X. Ma, J. Yang, H. Han, J. Wu, L. Jia, H. Qin, and F. Lu. 2018. Efficient production of sugar-derived aldonic acids by Pseudomonas fragi TCCC11892. RSC Advances 8 (70):39897–901. doi: 10.1039/C8RA07556E.
  • N., Minal, Smitha, Balakrishnan, Nisha N., Chaudhary, A.K., Jain, Bharwade,. (2017). Lactobionic acid: Significance and application in food and pharmaceutical.International Journal of Fermented Foods, 6(1), 25. doi: 10.5958/2321-712X.2017.00003.5.
  • Miyamoto, Y., T. Ooi, and S. Kinoshita. 2000. Production of lactobionic acid from whey by Pseudomonas sp. LS13-1. Biotechnology Letters 22 (5):427–30. doi: 10.1023/A:1005617903152.
  • Nakano, H., T. Kiryu, T. Kiso, and H. Murakami. 2010. Biocatalytic production of lactobionic acid. In Biocatalysis and biomolecular engineering, eds. C. T. Hou & J.-F. Shaw, 391–404. Hoboken, New Jersey: John Wiley & Sons, Inc. doi: 10.1002/9780470608524.ch25.
  • Nordkvist, M., P. M. Nielsen, and J. Villadsen. 2007. Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: Kinetics and operational stability. Biotechnology and Bioengineering 97 (4):694–707. doi: 10.1002/bit.21273.
  • Oh, Y. R., and G. T. Eom. 2021. Identification of a lactose-oxidizing enzyme in Escherichia coli and improvement of lactobionic acid production by recombinant expression of a quinoprotein glucose dehydrogenase from Pseudomonas taetrolens. Enzyme and Microbial Technology 148(December 2020):109828. doi: 10.1016/j.enzmictec.2021.109828.
  • Oh, Y. R., and G. T. Eom. 2022. Efficient isolation of new lactobionic acid-producing microorganisms from environmental samples by colloidal calcium carbonate agar plate-based screening. Bioprocess and Biosystems Engineering 45 (3):599–604. doi: 10.1007/s00449-021-02682-9.
  • Oh, Y. R., Y. A. Jang, S. H. Hong, and G. T. Eom. 2020. Purification and characterization of a malate: Quinone oxidoreductase from Pseudomonas taetrolens capable of producing valuable lactobionic acid. Journal of Agricultural and Food Chemistry 68 (47):13770–8. doi: 10.1021/acs.jafc.0c04094.
  • Oh, Y. R., Y. A. Jang, S. H. Hong, J. J. Han, and G. T. Eom. 2020. Efficient production of lactobionic acid using genetically engineered Pseudomonas taetrolens as a whole-cell biocatalyst. Enzyme and Microbial Technology 141 (July):109668. doi: 10.1016/j.enzmictec.2020.109668.
  • Oh, Y. R., Y. A. Jang, S. S. Lee, J. H. Kim, S. H. Hong, J. J. Han, and G. T. Eom. 2020. Enhancement of lactobionic acid productivity by homologous expression of quinoprotein glucose dehydrogenase in Pseudomonas taetrolens. Journal of Agricultural and Food Chemistry 68 (44):12336–44. doi: 10.1021/acs.jafc.0c04246.
  • Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews 10 (1):89. doi: 10.1186/s13643-021-01626-4.
  • Pedruzzi, I., E. A. Borges da Silva, and A. E. Rodrigues. 2011. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: A kinetic study. Enzyme and Microbial Technology 49 (2):183–91. doi: 10.1016/j.enzmictec.2011.04.017.
  • Peretti, F. A., M. M. Silveira, and M. Zeni. 2009. Use of electrodialysis technique for the separation of lactobionic acid produced by Zymomonas mobilis. Desalination 245 (1-3):626–30. doi: 10.1016/j.desal.2009.02.029.
  • Pleissner, D., D. Dietz, J. B. J. H. van Duuren, C. Wittmann, X. Yang, C. S. K. Lin, and J. Venus. 2019. Biotechnological production of organic acids from renewable resources. Advances in Biochemical Engineering/Biotechnology 166:373–410. doi: 10.1007/10_2016_73/COVER.
  • Rasholt, E. L., C. Gilleladen, H. C. Bejder, and M. Faergemand. 2012. Method for producing an acidified milk product. (Patent No. US20120040053A1).
  • Sáez-Orviz, S., I. Marcet, M. Rendueles, and M. Díaz. 2022. Preparation of edible films with Lactobacillus plantarum and lactobionic acid produced by sweet whey fermentation. Membranes 12 (2):115. doi: 10.3390/MEMBRANES12020115.
  • Saha, T., D. Ghosh, S. Mukherjee, S. Bose, and M. Mukherjee. 2008. Cellobiose dehydrogenase production by the mycelial culture of the mushroom Termitomyces clypeatus. Process Biochemistry 43 (6):634–41. doi: 10.1016/j.procbio.2008.01.025.
  • Sarenkova, I., S. Sáez‐Orviz, I. Ciprovica, M. Rendueles, and M. Díaz. 2022. Lactobionic acid production by Pseudomonas taetrolens in a fed‐batch bioreactor using acid whey as substrate. International Journal of Dairy Technology 75 (2):361–71. 10.1111/1471-0307.12841.
  • Satory, M., M. Fürlinger, D. Haltrich, K. D. Kulbe, F. Pittner, and B. Nidetzky. 1997. Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor. Biotechnology Letters 19 (12):1205–8. doi: 10.1023/A:1018485804167.
  • Savary, B. J., K. B. Hicks, and J. V. O’Connor. 2001. Hexose oxidase from Chondrus crispus: Improved purification using perfusion chromatography. Enzyme and Microbial Technology 29 (1):42–51. doi: 10.1016/S0141-0229(01)00351-9.
  • Schaafsma, G. 2008. Lactose and lactose derivatives as bioactive ingredients in human nutrition. International Dairy Journal 18 (5):458–65. doi: 10.1016/j.idairyj.2007.11.013.
  • Shu, C. H., K. Tseng, and R. Jaiswal. 2018. Effects of light intensity and wavelength on the production of lactobionic acid from whey by Pseudomonas taetrolens in batch cultures. Journal of Chemical Technology & Biotechnology 93 (6):1595–600. doi: 10.1002/jctb.5528.
  • Splechtna, B., I. Petzelbauer, U. Baminger, D. Haltrich, K. D. Kulbe, and B. Nidetzky. 2001. Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme and Microbial Technology 29 (6-7):434–40. doi: 10.1016/S0141-0229(01)00412-4.
  • Staudigl, P., I. Krondorfer, D. Haltrich, and C. K. Peterbauer. 2013. Pyranose dehydrogenase from Agaricus campestris and Agaricus xanthoderma: Characterization and applications in carbohydrate conversions. Biomolecules 3 (3):535–52. doi: 10.3390/biom3030535.
  • Stodola, F. H., and L. B. Lockwood. 1947. The oxidation of lactose and maltose to bionic acids by Pseudomonas. Journal of Biological Chemistry 171 (1):213–21. doi: 10.1016/s0021-9258(17)41119-7.
  • Tian, Q., Y. Feng, H. Huang, J. Zhang, Y. Yu, Z. Guan, Y. Cai, and X. Liao. 2018. Production of lactobionic acid from lactose using the cellobiose dehydrogenase-3-HAA-laccase system from Pycnoporus sp. SYBC-L10. Letters in Applied Microbiology 67 (6):589–97. doi: 10.1111/lam.13070.
  • Tomlinson, G. A., M. P. Strohm, and L. I. Hochstein. 1978. The metabolism of carbohydrates by extremely halophilic bacteria: The identification of lactobionic acid as a product of lactose metabolism by Halobacterium saccharovorum. Canadian Journal of Microbiology 24 (8):898–903. doi: 10.1139/m78-150.
  • USFDA. 2014, July 20. CFR - Code of Federal Regulations Title 21 CFR - Code of Federal Regulations Title 21 Tariq Al-Jallad CFR - Code of Federal Regulations Title 21 Tariq Al-Jallad. U.S. Food & Drug Administration. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=50.25%0Ahttps://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1257%0Ahttp://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=50.25%0A
  • Van Hecke, W., A. Bhagwat, R. Ludwig, J. Dewulf, D. Haltrich, and H. Van Langenhove. 2009. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnology and Bioengineering 102 (5):1475–82. doi: 10.1002/bit.22165.
  • Van Hecke, W., D. Haltrich, B. Frahm, H. Brod, J. Dewulf, H. Van Langenhove, and R. Ludwig. 2011. A biocatalytic cascade reaction sensitive to the gas-liquid interface: Modeling and upscaling in a dynamic membrane aeration reactor. Journal of Molecular Catalysis B: Enzymatic 68 (2):154–61. doi: 10.1016/j.molcatb.2010.10.004.
  • Van Hecke, W., R. Ludwig, J. Dewulf, M. Auly, T. Messiaen, D. Haltrich, and H. Van Langenhove. 2009. Bubble-free oxygenation of a bi-enzymatic system: Effect on biocatalyst stability. Biotechnology and Bioengineering 102 (1):122–31. doi: 10.1002/bit.22042.
  • Volc, J., P. Sedmera, M. Kujawa, P. Halada, E. Kubátová, and D. Haltrich. 2004. Conversion of lactose to β-D-galactopyranosyl-(1 → 4)-D-arabino-hexos-2-ulose-(2-dehydrolactose) and lactobiono-1,5-lactone by fungal pyranose dehydrogenase. Journal of Molecular Catalysis B: Enzymatic 30 (3-4):177–84. doi: 10.1016/j.molcatb.2004.05.006.
  • Yang, J., P. Xu, L. Long, and S. Ding. 2021. Production of lactobionic acid using an immobilized cellobiose dehydrogenase/laccase system on magnetic chitosan spheres. Process Biochemistry 100:1–9. doi: 10.1016/j.procbio.2020.09.024.
  • Zagorska, J., I. Paeglite, and R. Galoburda. 2022. Application of lactobionic acid in ice cream production. International Journal of Dairy Technology 75 (3):701–9. doi: 10.1111/1471-0307.12873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.