3,510
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem

, , , &

References

  • Akdeniz, V., and A. S. Akalın. 2019. New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology 86:392–8. doi: 10.1016/j.tifs.2019.02.046.
  • Albergaria, H., and N. Arneborg. 2016. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: Role of physiological fitness and microbial interactions. Applied Microbiology and Biotechnology 100 (5):2035–46. doi: 10.1007/s00253-015-7255-0.
  • Arioli, S., C. Monnet, S. Guglielmetti, C. Parini, I. De Noni, J. Hogenboom, P. M. Halami, and D. Mora. 2007. Aspartate biosynthesis is essential for the growth of Streptococcus thermophilus in milk, and aspartate availability modulates the level of urease activity. Applied and Environmental Microbiology 73 (18):5789–96. doi: 10.1128/AEM.00533-07.
  • Arioli, S., G. Della Scala, M. C. Remagni, M. Stuknyte, S. Colombo, S. Guglielmetti, I. De Noni, E. Ragg, and D. Mora. 2017. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation. International Journal of Food Microbiology 247:55–64. doi: 10.1016/j.ijfoodmicro.2016.01.006.
  • Azcarate-Peril, M. A., O. McAuliffe, E. Altermann, S. Lick, W. M. Russell, and T. R. Klaenhammer. 2005. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Applied and Environmental Microbiology 71 (10):5794–804. doi: 10.1128/AEM.71.10.5794-5804.2005.
  • Bai, A. J., and V. R. Rai. 2011. Bacterial Quorum Sensing and Food Industry. Comprehensive Reviews in Food Science and Food Safety 10 (3):183–93. doi: 10.1111/j.1541-4337.2011.00150.x.
  • Bintsis, T. 2018. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology 4 (4):665–84. doi: 10.3934/microbiol.2018.4.665.
  • Blaya, J., Z. Barzideh, and G. LaPointe. 2018. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment. Journal of Dairy Science 101 (4):3611–29. doi: 10.3168/jds.2017-13345.
  • Borland, S.,A. Oudart,C. Prigent-Combaret,C. Prigent-Combaret, andF. Wisniewski-Dyé. 2015. Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum. BMC Genomics. 16, 833. doi: 10.1186/s12864-015-1962-x.
  • Buck, B. L., M. A. Azcarate-Peril, and T. R. Klaenhammer. 2009. Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. Journal of Applied Microbiology 107 (1):269–79. doi: 10.1111/j.1365-2672.2009.04204.x.
  • Buist, G., G. Venema, and J. Kok. 1998. Autolysis of Lactococcus lactis is influenced by proteolysis. Journal of Bacteriology 180 (22):5947–53. doi: 10.1128/JB.180.22.5947-5953.1998.
  • Canon, F., T. Nidelet, E. Guédon, A. Thierry, and V. Gagnaire. 2020. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. Frontiers in Microbiology 11:2088. doi: 10.3389/fmicb.2020.02088.
  • Castillo Martinez, F. A., E. M. Balciunas, J. M. Salgado, J. M. Domínguez González, A. Converti, and R. P. d S. Oliveira. 2013. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology 30 (1):70–83. doi: 10.1016/j.tifs.2012.11.007.
  • Chen, C., S. Zhao, G. Hao, H. Yu, H. Tian, and G. Zhao. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties 20 (sup1):S316–S330. doi: 10.1080/10942912.2017.1295988.
  • Chen, S., Y. Wu, H. Niu, J. Sun, X. Han, and L. Zhang. 2021. Imbalance between peptidoglycan synthases and hydrolases regulated lysis of Lactobacillus bulgaricus in batch culture. Archives of Microbiology 203 (7):4571–8. doi: 10.1007/s00203-021-02433-0.
  • Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415 (6871):545–9. doi: 10.1038/415545a.
  • Cibik, R., and M. P. Chapot-Chartier. 2000. Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE. Journal of Applied Microbiology 89 (5):862–9. doi: 10.1046/j.1365-2672.2000.01191.x.
  • Cogan, T. M., T. P. Beresford, J. Steele, J. Broadbent, N. P. Shah, and Z. Ustunol. 2007. Invited review: Advances in starter cultures and cultured foods. Journal of Dairy Science 90 (9):4005–21. doi: 10.3168/jds.2006-765.
  • Coquant, G., D. Aguanno, S. Pham, N. Grellier, S. Thenet, V. Carrière, J.-P. Grill, and P. Seksik. 2021. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World Journal of Gastroenterology 27 (42):7247–70. doi: 10.3748/wjg.v27.i42.7247.
  • Coquant, G., J.-P. Grill, and P. Seksik. 2020. Impact of N-Acyl-homoserine lactones, quorum sensing molecules, on gut immunity. Frontiers in Immunology 11:1827. doi: 10.3389/fimmu.2020.01827.
  • Cousin, F. J., S. Louesdon, M.-B. Maillard, S. Parayre, H. Falentin, S.-M. Deutsch, G. Boudry, and G. Jan. 2012. The first dairy product exclusively fermented by Propionibacterium freudenreichii: A new vector to study probiotic potentialities in vivo. Food Microbiology 32 (1):135–46. doi: 10.1016/j.fm.2012.05.003.
  • Cui, M., L. Liu, S. Zhang, X. H. Li, and J. Lu. 2013. Analysis of factors influencing the autolysis of Lactobacillus delbrueckii subsp. bulgaricus LJJ. Food and Fermentation Industry 39 (7):7. doi: 10.13995/j.cnki.11-1802/ts.2013.07.026.
  • Cui, X., Y. Sun, K. Wang, Z. Wang, Y. Liang, Z. Xu, and T. Wang. 2021. Research progress on symbiotic relationship between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Food Research and Development 42 (6):184–9. doi: 10.12161/j.issn.1005-6521.2021.06.030.
  • Cui, Y., T. Xu, X. Qu, T. Hu, X. Jiang, and C. Zhao. 2016. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains. International Journal of Molecular Sciences 17 (10):1701. doi: 10.3390/ijms17101701.
  • Cui, Y., W. Liu, X. Qu, Z. Chen, X. Zhang, T. Liu, and L. Zhang. 2012. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus. Microbiological Research 167 (5):253–61. doi: 10.1016/j.micres.2011.11.003.
  • De Filippis, F., E. Pasolli, and D. Ercolini. 2020. The food-gut axis: Lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiology Reviews 44 (4):454–89. doi: 10.1093/femsre/fuaa015.
  • De Kievit, T. R., and B. H. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infection and Immunity 68 (9):4839–49. doi: 10.1128/IAI.68.9.4839-4849.2000.
  • Deng, Y., J. Wu, F. Tao, and L.-H. Zhang. 2011. Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chemical Reviews 111 (1):160–73. doi: 10.1021/cr100354f.
  • Di Cagno, R., M. De Angelis, R. Coda, F. Minervini, and M. Gobbetti. 2009. Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Research in Microbiology 160 (5):358–66. doi: 10.1016/j.resmic.2009.04.006.
  • Dubern, J.-F., and S. P. Diggle. 2008. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Molecular bioSystems 4 (9):882–8. doi: 10.1039/b803796p.
  • Fernandez, A. M., É. Picard-Deland, and M. Anne. 2019. Yogurt: Roles in Nutrition and Impacts on Health. Chapter 1 Yogurt Composition, 1st ed. 3–10. Boca Raton: CRC Press.doi: 10.1201/b21826.
  • Frey-Klett, P., P. Burlinson, A. Deveau, M. Barret, M. Tarkka, and A. Sarniguet. 2011. Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews: MMBR 75 (4):583–609. doi: 10.1128/MMBR.00020-11.
  • Gänzle, M. G. 2015. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science 2:106–17. doi: 10.1016/j.cofs.2015.03.001.
  • Garault, P., C. Letort, V. Juillard, and V. Monnet. 2000. Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Applied and Environmental Microbiology 66 (12):5128–33. doi: 10.1128/AEM.66.12.5128-5133.2000.
  • Gasson, M. J. 1996. Lytic systems in lactic acid bacteria and their bacteriophages. Antonie Van Leeuwenhoek 70 (2–4):147–59. doi: 10.1007/BF00395931.
  • Ge, Y., X. Yu, X. Zhao, C. Liu, T. Li, S. Mu, L. Zhang, Z. Chen, Z. Zhang, Z. Song, et al. 2023. Fermentation characteristics and post-acidification of yogurt by Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. Bulgaricus CICC 6047 at optimal inoculum ratio. Journal of Dairy Science S0022-0302(23):00577-5. doi: 10.3168/jds.2023-23817.
  • George, F., C. Daniel, M. Thomas, E. Singer, A. Guilbaud, F. J. Tessier, A.-M. Revol-Junelles, F. Borges, and B. Foligné. 2018. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Frontiers in Microbiology 9:2899. doi: 10.3389/fmicb.2018.02899.
  • Gesudu, Q., Y. Zheng, X. Xi, Q. C. Hou, H. Xu, W. Huang, H. Zhang, B. Menghe, and W. Liu. 2016. Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing. Journal of Dairy Science 99 (10):7852–63. doi: 10.3168/jds.2016-11167.
  • Groisman, E. A. 2016. Feedback control of two-component regulatory systems. Annual Review of Microbiology 70 (1):103–24. doi: 10.1146/annurev-micro-102215-095331.
  • Gu, Y. 2017. The effects of environmental stresses and yeast on LuxS/AI-2 quorum sensing system of lactic acid bacteria., PHD thesis., Inner Mongolia Agricultural University.
  • Gu, Y., B. Li, J. Tian, R. Wu, and Y. He. 2018. The response of LuxS/AI-2 quorum sensing in Lactobacillus fermentum 2-1 to changes in environmental growth conditions. Annals of Microbiology 68 (5):287–94. doi: 10.1007/s13213-018-1337-z.
  • Guo, X. P., and Y. C. Sun. 2017. New Insights into the non-orthodox two component rcs ohosphorelay system. Frontiers in Microbiology 8:2014. doi: 10.3389/fmicb.2017.02014.
  • Hill, D., I. Sugrue, E. Arendt, C. Hill, C. Stanton, and R. P. Ross. 2017. Recent advances in microbial fermentation for dairy and health. F1000Research 6:751. doi: 10.12688/f1000research.10896.1.
  • Hols, P., F. Hancy, L. Fontaine, B. Grossiord, D. Prozzi, N. Leblond-Bourget, B. Decaris, A. Bolotin, C. Delorme, S. Dusko Ehrlich, et al. 2005. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiology Reviews 29 (3):435–63. doi: 10.1016/j.femsre.2005.04.008.
  • Hu, T., Y. Zhang, Y. Cui, C. Zhao, X. Jiang, X. Zhu, Y. Wang, and X. Qu. 2018. Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk. Archives of Microbiology 200 (4):567–80. doi: 10.1007/s00203-017-1468-9.
  • Husson-Kao, C., J. Mengaud, J.-C. Gripon, L. Benbadis, and M.-P. Chapot-Chartier. 2000. Characterization of Streptococcus thermophilus strains that undergo lysis under unfavourable environmental conditions. International Journal of Food Microbiology 55 (1–3):209–13. doi: 10.1016/S0168-1605(00)00166-5.
  • Husson-Kao, Clara, Jérôme, Mengaud, Jean-Claude, Gripon, Laurent Benbadis, and Marie-Pierre Chapot-Chartier. (1999). The autolysis of Streptococcus thermophilus DN-001065 is triggered by several food-grade environmental signals. International Dairy Journal, 9(10), 715–723. doi: 10.1016/S0958-6946(99)00145-4.
  • Hutkins, R. W. (ed.) 2006. Microbiology and technology of fermented foods Chapter 2 Microorganisms and Metabolism. 22–36. Oxford: Blackwell Publishing. doi: 10.1002/9780470277515.
  • Iskandar, C. F., C. Cailliez-Grimal, F. Borges, and A.-M. Revol-Junelles. 2019. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends in Food Science & Technology 88:121–32. doi: 10.1016/j.tifs.2019.03.020.
  • Ivey, M., M. Massel, and T. G. Phister. 2013. Microbial interactions in food fermentations. Annual Review of Food Science and Technology 4 (1):141–62. doi: 10.1146/annurev-food-022811-101219.
  • Iyer, R., S. K. Tomar, T. Uma Maheswari, and R. Singh. 2010. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. International Dairy Journal 20 (3):133–41. doi: 10.1016/j.idairyj.2009.10.005.
  • Johansen, P., and L. Jespersen. 2017. Impact of quorum sensing on the quality of fermented foods. Current Opinion in Food Science 13:16–25. doi: 10.1016/j.cofs.2017.01.001.
  • Kabak, B., and A. D. W. Dobson. 2011. An introduction to the traditional fermented foods and beverages of Turkey. Critical Reviews in Food Science and Nutrition 51 (3):248–60. doi: 10.1080/10408390903569640.
  • Karaman, S., and T. Ozcan. 2021. Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology 74 (3):505–17. doi: 10.1111/1471-0307.12776.
  • Kaur, A., N. Capalash, and P. Sharma. 2018. Quorum sensing in thermophiles: Prevalence of autoinducer-2 system. BMC Microbiology 18 (1):62. doi: 10.1186/s12866-018-1204-x.
  • Keller, L., and M. G. Surette. 2006. Communication in bacteria: An ecological and evolutionary perspective. Nature Reviews. Microbiology 4 (4):249–58. doi: 10.1038/nrmicro1383.
  • Kesarwani, M., R. Hazan, J. He, Y.-A. Que, Y. Apidianakis, B. Lesic, G. Xiao, V. Dekimpe, S. Milot, E. Deziel, et al. 2011. A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes. PLoS Pathogens 7 (8):e1002192. doi: 10.1371/journal.ppat.1002192.
  • Lazzi, C., M. Povolo, F. Locci, V. Bernini, E. Neviani, and M. Gatti. 2016. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano. International Journal of Food Microbiology 233:20–8. doi: 10.1016/j.ijfoodmicro.2016.06.009.
  • Lecomte, X., V. Gagnaire, S. Lortal, A. Dary, and M. Genay. 2016. Streptococcus thermophilus, an emerging and promising tool for heterologous expression: Advantages and future trends. Food Microbiology 53 (Pt A):2–9. doi: 10.1016/j.fm.2015.05.003.
  • Lemoine, J., F. Chirat, J. M. Wieruszeski, G. Strecker, N. Favre, and J. R. Neeser. 1997. Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Applied and Environmental Microbiology 63 (9):3512–8. doi: 10.1128/aem.63.9.3512-3518.1997.
  • Li, S., S. Tang, Q. He, J. Hu, and J. Zheng. 2019. Changes in Proteolysis in Fermented Milk Produced by Streptococcus thermophilus in Co-Culture with Lactobacillus plantarum or Bifidobacterium animalis subsp. Lactis during refrigerated storage. Molecules (Basel, Switzerland) 24 (20):3699. doi: 10.3390/molecules24203699.
  • Linciano, P., V. Cavalloro, E. Martino, J. Kirchmair, R. Listro, D. Rossi, and S. Collina. 2020. Tackling antimicrobial resistance with small molecules targeting LsrK: Challenges and opportunities. Journal of Medicinal Chemistry 63 (24):15243–57. doi: 10.1021/acs.jmedchem.0c01282.
  • Liu, E., H. Zheng, T. Shi, L. Ye, T. Konno, M. Oda, H. Shen, and Z.-S. Ji. 2016. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. International Dairy Journal 56:141–50. doi: 10.1016/j.idairyj.2016.01.019.
  • Liu, L., R. Wu, J. Zhang, and P. Li. 2018. Overexpression of luxS promotes stress resistance and biofilm formation of Lactobacillus paraplantarum L-ZS9 by regulating the expression of multiple genes. Frontiers in Microbiology 9:2628. doi: 10.3389/fmicb.2018.02628.
  • Loh, J., R. W. Carlson, W. S. York, and G. Stacey. 2002. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proceedings of the National Academy of Sciences of the United States of America 99 (22):14446–51. doi: 10.1073/pnas.222336799.
  • Lorca, G. L., & G. F. de Valdez. (1999). The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiology, 39(2), 144–149. doi: 10.1006/cryo.1999.2193.
  • Macori, G., and P. D. Cotter. 2018. Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology 49:172–8. doi: 10.1016/j.copbio.2017.09.002.
  • Majdura, J., U. Jankiewicz, A. Gałązka, and S. Orzechowski. 2023. The role of quorum sensing molecules in bacterial-plant interactions. Metabolites 13 (1):114. doi: 10.3390/metabo13010114.
  • Makarova, K., A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin, E. Koonin, A. Pavlov, N. Pavlova, V. Karamychev, N. Polouchine, et al. 2006. Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America 103 (42):15611–6. doi: 10.1073/pnas.0607117103.
  • Marco, M. L., D. Heeney, S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligné, M. Gänzle, R. Kort, G. Pasin, A. Pihlanto, et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44:94–102. doi: 10.1016/j.copbio.2016.11.010.
  • Marco, M. L., M. E. Sanders, M. Gänzle, M. C. Arrieta, P. D. Cotter, L. De Vuyst, C. Hill, W. Holzapfel, S. Lebeer, D. Merenstein, et al. 2021. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews. Gastroenterology & Hepatology 18 (3):196–208. doi: 10.1038/s41575-020-00390-5.
  • Marx, P., M. Meiers, and R. Brückner. 2014. Activity of the response regulator CiaR in mutants of Streptococcus pneumoniae R6 altered in acetyl phosphate production. Frontiers in Microbiology 5:772. doi: 10.3389/fmicb.2014.00772.
  • McAuliffe, O. 2018. Symposium review: Lactococcus lactis from nondairy sources: Their genetic and metabolic diversity and potential applications in cheese1. Journal of Dairy Science 101 (4):3597–610. doi: 10.3168/jds.2017-13331.
  • Medellin-Peña, M. J., and M. W. Griffiths. 2009. Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Applied and Environmental Microbiology 75 (4):1165–72. doi: 10.1128/AEM.01651-08.
  • Medina-Pradas, E., I. M. Pérez-Díaz, A. Garrido-Fernández, and F. N. Arroyo-López. 2017. The Microbiological Quality of Food. Chapter 9—Review of vegetable fermentations with particular emphasis on processing modifications, microbial ecology, and spoilage, ed. A. Bevilacqua, M. R. Corbo, & M. Sinigaglia, 211–236. New York: Woodhead Publishing. doi: 10.1016/B978-0-08-100502-6.00012-1.
  • Meng, F., M. Zhao, and Z. Lu. 2022. The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria. Trends in Food Science & Technology 127:272–9. doi: 10.1016/j.tifs.2022.05.014.
  • Mokoena, M. P. 2017. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules (Basel, Switzerland) 22 (8):1255. doi: 10.3390/molecules22081255.
  • Mora, D., C. Monnet, C. Parini, S. Guglielmetti, A. Mariani, P. Pintus, F. Molinari, D. Daffonchio, and P. L. Manachini. 2005. Urease biogenesis in Streptococcus thermophilus. Research in Microbiology 156 (9):897–903. doi: 10.1016/j.resmic.2005.04.005.
  • Mora, D., S. Arioli, and C. Compagno. 2013. Food environments select microorganisms based on selfish energetic behavior. Frontiers in Microbiology 4:348. doi: 10.3389/fmicb.2013.00348.
  • Moslehi-Jenabian, S., K. Gori, and L. Jespersen. 2009. AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp. International Journal of Food Microbiology 135 (3):295–302. doi: 10.1016/j.ijfoodmicro.2009.08.011.
  • Mu, T., L. Rong, J. Wu, and R. Li. 2022. Advances in microbial interaction in fermented foods community ecosystem: Focus on cross-feeding. Food and Fermentation Industries, 49 (18):1–10. doi: 10.13995/j.cnki.11-1802/ts.033879.
  • Mukherjee, S., and B. L. Bassler. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews. Microbiology 17 (6):371–82. doi: 10.1038/s41579-019-0186-5.
  • Ng, W.-L., K. M. Kazmierczak, G. T. Robertson, R. Gilmour, and M. E. Winkler. 2003. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. Journal of Bacteriology 185 (1):359–70. doi: 10.1128/JB.185.1.359-370.2003.
  • Ortakci, F., J. R. Broadbent, C. J. Oberg, and D. J. McMahon. 2015. Late blowing of Cheddar cheese induced by accelerated ripening and ribose and galactose supplementation in presence of a novel obligatory heterofermentative nonstarter Lactobacillus wasatchensis. Journal of Dairy Science 98 (11):7460–72. doi: 10.3168/jds.2015-9468.
  • Overbeck, T. J., D. L. Welker, J. E. Hughes, J. L. Steele, and J. R. Broadbent. 2017. Transient MutS-based hypermutation system for adaptive evolution of Lactobacillus casei to low pH. Applied and Environmental Microbiology 83 (20):e01120-17. doi: 10.1128/AEM.01120-17.
  • Pang, X., Q. Zhu, J. Lu, S. Zhang, L. Liu, L. Yang, W. L, and J. Lv. 2020. Progress in quorum sensing system of lactic acid bacteria. Chinese Journal of Bioprocess Engineering 18 (02):141–9. doi: 10.3969/j.issn.1672-3678.2020.02.002
  • Pang, X., S. Zhang, J. Lu, L. Liu, C. Ma, Y. Yang, P. Ti, W. Gao, and J. Lv. 2017. Identification and functional validation of autolysis-associated genes in Lactobacillus bulgaricus ATCC BAA-365. Frontiers in Microbiology 8:1367. doi: 10.3389/fmicb.2017.01367.
  • Pang, X.-Y., W.-M. Cui, L. Liu, S.-W. Zhang, and J.-P. Lv. 2014. Gene knockout and overexpression analysis revealed the role of N-acetylmuramidase in autolysis of Lactobacillus delbrueckii subsp. Bulgaricus ljj-6. PLoS One 9 (8):e104829. doi: 10.1371/journal.pone.0104829.
  • Papenfort, K., and B. L. Bassler. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nature Reviews. Microbiology 14 (9):576–88. doi: 10.1038/nrmicro.2016.89.
  • Park, H., H. Shin, K. Lee, and W. Holzapfel. 2016. Autoinducer-2 properties of kimchi are associated with lactic acid bacteria involved in its fermentation. International Journal of Food Microbiology 225:38–42. doi: 10.1016/j.ijfoodmicro.2016.03.007.
  • Partanen, L., N. Marttinen, and T. Alatossava. 2001. Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Systematic and Applied Microbiology 24 (4):500–6. doi: 10.1078/0723-2020-00078.
  • Pasolli, E., F. De Filippis, I. E. Mauriello, F. Cumbo, A. M. Walsh, J. Leech, P. D. Cotter, N. Segata, and D. Ercolini. 2020. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nature Communications 11 (1):2610. doi: 10.1038/s41467-020-16438-8.
  • Peng, C., G. Yao, Y. Sun, S. Guo, J. Wang, X. Mu, Z. Sun, and H. Zhang. 2022. Comparative effects of the single and binary probiotics of Lacticaseibacillus casei Zhang and Bifidobacterium lactis V9 on the growth and metabolomic profiles in yogurts. Food Research International (Ottawa, Ont.) 152:110603. doi: 10.1016/j.foodres.2021.110603.
  • Pereira, C. S., J. A. Thompson, and K. B. Xavier. 2013. AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews 37 (2):156–81. doi: 10.1111/j.1574-6976.2012.00345.x.
  • Pereira, P. C. 2014. Milk nutritional composition and its role in human health. Nutrition (Burbank, Los Angeles County, Calif.) 30 (6):619–27. doi: 10.1016/j.nut.2013.10.011.
  • Pezzulo, A. A., E. E. Hornick, M. V. Rector, M. Estin, A. C. Reisetter, P. J. Taft, S. C. Butcher, A. B. Carter, J. R. Manak, D. A. Stoltz, et al. 2012. Expression of human paraoxonase 1 decreases superoxide levels and alters bacterial colonization in the gut of Drosophila melanogaster. PLoS One 7 (8):e43777. doi: 10.1371/journal.pone.0043777.
  • Pillidge, C. J., P. S. V. S. Rallabhandi, X.-Z. Tong, P. K. Gopal, P. C. Farley, and P. A. Sullivan. 2002. Autolysis of Lactococcus lactis. International Dairy Journal 12 (2-3):133–40. doi: 10.1016/S0958-6946(01)00135-2.
  • Ponomarova, O., N. Gabrielli, D. C. Sévin, M. Mülleder, K. Zirngibl, K. Bulyha, S. Andrejev, E. Kafkia, A. Typas, U. Sauer, et al. 2017. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Systems 5 (4):345–57.e6. doi: 10.1016/j.cels.2017.09.002.
  • Prazdnova, E. V., A. V. Gorovtsov, N. G. Vasilchenko, M. P. Kulikov, V. N. Statsenko, A. A. Bogdanova, A. G. Refeld, Y. A. Brislavskiy, V. A. Chistyakov, and M. L. Chikindas. 2022. Quorum-Sensing inhibition by gram-positive bacteria. Microorganisms 10 (2):350. doi: 10.3390/microorganisms10020350.
  • Qiao, N., S. Wittouck, P. Mattarelli, J. Zheng, S. Lebeer, G. E. Felis, and M. G. Gänzle. 2022. After the storm-perspectives on the taxonomy of Lactobacillaceae. JDS Communications 3 (3):222–7. doi: 10.3168/jdsc.2021-0183.
  • Qiao, R. 2022. Study on the relationship between signal molecule AI-2 and fermentation characteristics of lactic acid bacteriain meat products. Master’s thesis, Inner Mongolia Agricultural University. doi: 10.27229/d.cnki.gnmnu.2022.000759.
  • Rao, M. S., J. Pintado, W. F. Stevens, and J. P. Guyot. 2004. Kinetic growth parameters of different amylolytic and non-amylolytic Lactobacillus strains under various salt and pH conditions. Bioresource Technology 94 (3):331–7. doi: 10.1016/j.biortech.2003.11.028.
  • Rasmussen, T. B., M. Danielsen, O. Valina, C. Garrigues, E. Johansen, and M. B. Pedersen. 2008. Streptococcus thermophilus core genome: Comparative genome hybridization study of 47 strains. Applied and Environmental Microbiology 74 (15):4703–10. doi: 10.1128/AEM.00132-08.
  • Sakandar, H. A., and H. Zhang. 2021. Trends in probiotic(s)-fermented milks and their in vivo functionality: A review. Trends in Food Science & Technology 110:55–65. doi: 10.1016/j.tifs.2021.01.054.
  • Sakandar, H. A., and H. Zhang. 2022. Curious case of the history of fermented milk: Tangible evidence. Science Bulletin 67 (16):1625–7. doi: 10.1016/j.scib.2022.07.013.
  • Salim-ur-Rehman, Alistair Paterson, and John R. Piggott. (2006). Flavour in sourdough breads: A review. Trends in Food Science & Technology 17(10):557–66. doi: 10.1016/j.tifs.2006.03.006.
  • Sasaki, Y., H. Horiuchi, H. Kawashima, T. Mukai, and Y. Yamamoto. 2014. NADH Oxidase of Streptococcus thermophilus 1131 is required for the effective yogurt fermentation with Lactobacillus delbrueckii subsp. Bulgaricus 2038. Bioscience of Microbiota, Food and Health 33 (1):31–40. doi: 10.12938/bmfh.33.31.
  • Scala, G. D., F. Volontè, G. Ricci, M. B. Pedersen, S. Arioli, and D. Mora. 2019. Development of a milk-based medium for the selection of urease-defective mutants of Streptococcus thermophilus. International Journal of Food Microbiology 308:108304. doi: 10.1016/j.ijfoodmicro.2019.108304.
  • Schauder, S., K. Shokat, M. G. Surette, and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology 41 (2):463–76. doi: 10.1046/j.1365-2958.2001.02532.x.
  • Settachaimongkon, S., Nout, M. J. R. Fernandes, E. C. A. Hettinga, K. A. Vervoort, J. J. M. Hooijdonk, A. C. M.van, Zwietering, M. H.Smid, E. J. Valenberg, H. J. F. van, et al. 2014. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. Bulgaricus on the metabolite profile of set-yoghurt. International Journal of Food Microbiology 177:29–36. doi: 10.1016/j.ijfoodmicro.2014.02.008.
  • Sharma, H., F. Ozogul, E. Bartkiene, and J. M. Rocha. 2023. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Critical Reviews in Food Science and Nutrition 63 (21):4819–41. doi: 10.1080/10408398.2021.2007844.
  • Sharma, R., P. Garg, P. Kumar, S. K. Bhatia, and S. Kulshrestha. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6 (4):106. doi: 10.3390/fermentation6040106.
  • Shi, R., Q. Luo, Y. Liu, G. Meng, W. Chen, and C. Wang. 2022. Effect of γ-butyrolactone, a quorum sensing molecule, on morphology and secondary metabolism in Monascus. LWT 172:114225. doi: 10.1016/j.lwt.2022.114225.
  • Shrivastava, N., and L. Ananthanarayan. 2015. Use of the backslopping method for accelerated and nutritionally enriched idli fermentation. Journal of the Science of Food and Agriculture 95 (10):2081–7. doi: 10.1002/jsfa.6923.
  • Sieuwerts, S. 2016. Microbial interactions in the yoghurt consortium: current status and product implications. SOJ Microbiology & Infectious Diseases 4 (2):01–5. doi: 10.15226/sojmid/4/2/00150.
  • Sieuwerts, S., D. Molenaar, S. A. F. T. van Hijum, M. Beerthuyzen, M. J. A. Stevens, P. W. M. Janssen, C. J. Ingham, F. A. M. de Bok, W. M. de Vos, and J. E. T. van Hylckama Vlieg. 2010. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Applied and Environmental Microbiology 76 (23):7775–84. doi: 10.1128/AEM.01122-10.
  • Sieuwerts, S., F. A. M. de Bok, J. Hugenholtz, and J. E. T. van Hylckama Vlieg. 2008. Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Applied and Environmental Microbiology 74 (16):4997–5007. doi: 10.1128/AEM.00113-08.
  • Smid, E. J., and C. Lacroix. 2013. Microbe-microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology 24 (2):148–54. doi: 10.1016/j.copbio.2012.11.007.
  • Steensels, J., B. Gallone, K. Voordeckers, and K. J. Verstrepen. 2019. Domestication of industrial microbes. Current Biology: CB 29 (10):R381–R393. doi: 10.1016/j.cub.2019.04.025.
  • Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annual Review of Biochemistry 69 (1):183–215. doi: 10.1146/annurev.biochem.69.1.183.
  • Sturme, M. H. J., M. Kleerebezem, J. Nakayama, A. D. L. Akkermans, E. E. Vaugha, and W. M. de Vos. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81 (1-4):233–43. doi: 10.1023/a:1020522919555.
  • Sun, J. 2010. Studies of autolysis properties and mechanism of lactobic acid bacteria starters. PhD thesis., Chinese Academy of Agricultural Sciences. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD0911&filename=2010171370.nh.
  • Sybesma, W., M. Starrenburg, L. Tijsseling, M. H. N. Hoefnagel, and J. Hugenholtz. 2003. Effects of cultivation conditions on folate production by lactic acid bacteria. Applied and Environmental Microbiology 69 (8):4542–8. doi: 10.1128/AEM.69.8.4542-4548.2003.
  • Takano, E. 2006. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Current Opinion in Microbiology 9 (3):287–94. doi: 10.1016/j.mib.2006.04.003.
  • Tamang, J. P., P. D. Cotter, A. Endo, N. S. Han, R. Kort, S. Q. Liu, B. Mayo, N. Westerik, and R. Hutkins. 2020. Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety 19 (1):184–217. doi: 10.1111/1541-4337.12520.
  • Tamime, A. Y. 2002. Fermented milks: A historical food with modern applications–a review. European Journal of Clinical Nutrition 56 Suppl 4:S2–S15. doi: 10.1038/sj.ejcn.1601657.
  • Tannock, G. W., S. Ghazally, J. Walter, D. Loach, H. Brooks, G. Cook, M. Surette, C. Simmers, P. Bremer, F. Dal Bello, et al. 2005. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Applied and Environmental Microbiology 71 (12):8419–25. doi: 10.1128/AEM.71.12.8419-8425.2005.
  • Tarrah, A., L. Treu, S. Giaretta, V. Duarte, V. Corich, and A. Giacomini. 2018. Differences in carbohydrates utilization and antibiotic resistance between Streptococcus macedonicus and Streptococcus thermophilus strains isolated from dairy products in Italy. Current Microbiology 75 (10):1334–44. doi: 10.1007/s00284-018-1528-7.
  • Teneva-Angelova, T., I. Hristova, A. Pavlov, and D. Beshkova. 2018. Advances in Biotechnology for Food Industry. Chapter 4—Lactic acid bacteria—From nature through food to health, ed. A. M. Holban & A. M. Grumezescu, 91–133. New York: Academic Press. doi: 10.1016/B978-0-12-811443-8.00004-9.
  • Thevenard, B., N. Rasoava, P. Fourcassié, V. Monnet, P. Boyaval, and F. Rul. 2011. Characterization of Streptococcus thermophilus two-component systems: In silico analysis, functional analysis and expression of response regulator genes in pure or mixed culture with its yogurt partner, Lactobacillus delbrueckii subsp. bulgaricus. International Journal of Food Microbiology 151 (2):171–81. doi: 10.1016/j.ijfoodmicro.2011.08.019.
  • Vaillancourt, K., N. Bédard, C. Bart, M. Tessier, G. Robitaille, N. Turgeon, M. Frenette, S. Moineau, and C. Vadeboncoeur. 2008. Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Applied and Environmental Microbiology 74 (4):1264–7. doi: 10.1128/AEM.01585-07.
  • Van de Guchte, M., S. Penaud, C. Grimaldi, V. Barbe, K. Bryson, P. Nicolas, C. Robert, S. Oztas, S. Mangenot, A. Couloux, et al. 2006. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proceedings of the National Academy of Sciences of the United States of America 103 (24):9274–9. doi: 10.1073/pnas.0603024103.
  • Vinderola, C. G., P. Mocchiutti, and J. A. Reinheimer. 2002. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. Journal of Dairy Science 85 (4):721–9. doi: 10.3168/jds.S0022-0302(02)74129-5.
  • Wang, C., Y. Cui, and X. Qu. 2018. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. Bulgaricus. Archives of Microbiology 200 (9):1381–93. doi: 10.1007/s00203-018-1552-9.
  • Wang, J., H. Sun, S. Guo, Y. Sun, L.-Y. Kwok, H. Zhang, and C. Peng. 2021. Comparison of the effects of single probiotic strains Lactobacillus casei Zhang and Bifidobacterium animalis ssp. Lactis Probio-M8 and their combination on volatile and nonvolatile metabolomic profiles of yogurt. Journal of Dairy Science 104 (7):7509–21. doi: 10.3168/jds.2020-20099.
  • Wang, T., W. Lu, S. Lu, and J. Kong. 2015. Protective role of glutathione against oxidative stress in Streptococcus thermophilus. International Dairy Journal 45:41–7. doi: 10.1016/j.idairyj.2015.01.015.
  • Wang, T., Z. Xu, S. Lu, M. Xin, and J. Kong. 2016. Effects of glutathione on acid stress resistance and symbiosis between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus. International Dairy Journal 61:22–8. doi: 10.1016/j.idairyj.2016.03.012.
  • Wang, Y. 2022. Study on the relationship between signal molecule AI-2 and exopolysaccharides production by lactic acid bacteria. Master’s thesis., Inner Mongolia Agricultural University. doi: 10.27229/d.cnki.gnmnu.2022.000179.
  • Wang, Y., C. Zhang, F. Liu, Z. Jin, and X. Xia. 2023. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Critical Reviews in Food Science and Nutrition 63 (22):5841–55. doi: 10.1080/10408398.2021.2025035.
  • Wang, Y., H. Li, T. Li, X. Du, X. Zhang, T. Guo, and J. Kong. 2019. Glutathione biosynthesis is essential for antioxidant and anti-inflammatory effects of Streptococcus thermophilus. International Dairy Journal 89:31–6. doi: 10.1016/j.idairyj.2018.08.012.
  • Wang, Z. M., Z. M. Lu, J. S. Shi, and Z. H. Xu. 2016. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Scientific Reports 6 (1):26818. doi: 10.1038/srep26818.
  • Wasfi, R., O. A. Abd El-Rahman, M. M. Zafer, and H. M. Ashour. 2018. Probiotic Lactobacillus sp. Inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. Journal of Cellular and Molecular Medicine 22 (3):1972–83. doi: 10.1111/jcmm.13496.
  • Waters, C. M., and B. L. Bassler. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology 21 (1):319–46. doi: 10.1146/annurev.cellbio.21.012704.131001.
  • Wegkamp, A., M. Starrenburg, W. M. de Vos, J. Hugenholtz, and W. Sybesma. 2004. Transformation of folate-consuming Lactobacillus gasseri into a folate producer. Applied and Environmental Microbiology 70 (5):3146–8. doi: 10.1128/AEM.70.5.3146-3148.2004.
  • Weiland-Bräuer, N. 2021. Friends or foes-microbial interactions in nature. Biology 10 (6):496. doi: 10.3390/biology10060496.
  • Whiteley, M., S. P. Diggle, and E. P. Greenberg. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551 (7680):313–20. doi: 10.1038/nature24624.
  • Winters, M., D. Panayotides, M. Bayrak, G. Rémont, C. G. Viejo, D. Liu, B. Le, Y. Liu, J. Luo, P. Zhang, et al. 2019. Defined co-cultures of yeast and bacteria modify the aroma, crumb and sensory properties of bread. Journal of Applied Microbiology 127 (3):778–93. doi: 10.1111/jam.14349.
  • Wolfe, B. E., and R. J. Dutton. 2015. Fermented foods as experimentally tractable microbial ecosystems. Cell 161 (1):49–55. doi: 10.1016/j.cell.2015.02.034.
  • Wu, Q., C. K. W. Cheung, and N. P. Shah. 2015. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: Challenges and strategies. Trends in Food Science & Technology 41 (1):24–36. doi: 10.1016/j.tifs.2014.08.010.
  • Xu, T. 2017. Preliminary study on the role of two-component system in the protocooperation relationship of fermented yoghurt strains. Master’s thesis., Harbin Institute of Technology. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAk-6BvX81hrs37AaEFpExs0Cr4COSHHX-CutwaIcxoHuAxKtsRfRr3D6kTYZw-dz4_&uniplatform=NZKPT.
  • Xu, Y., J. Zang, J. M. Regenstein, and W. Xia. 2021. Technological roles of microorganisms in fish fermentation: A review. Critical Reviews in Food Science and Nutrition 61 (6):1000–12. doi: 10.1080/10408398.2020.1750342.
  • Xue, Z. P., Cu, X. Xu, K. Peng, J. H. Liu, H. R. Zhao, R. T. Wang, Z. Wang, T. Xu, and Z. S. 2023. The effect of glutathione biosynthesis of Streptococcus thermophilus ST-1 on cocultured Lactobacillus delbrueckii ssp. Bulgaricus ATCC11842. Journal of Dairy Science 106 (2):884–96. doi: 10.3168/jds.2022-22123.
  • Yamauchi, R., E. Maguin, H. Horiuchi, M. Hosokawa, and Y. Sasaki. 2019. The critical role of urease in yogurt fermentation with various combinations of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. Bulgaricus. Journal of Dairy Science 102 (2):1033–43. doi: 10.3168/jds.2018-15192.
  • Yang, L., W. Fan, and Y. Xu. 2020. Metaproteomics insights into traditional fermented foods and beverages. Comprehensive Reviews in Food Science and Food Safety 19 (5):2506–29. doi: 10.1111/1541-4337.12601.
  • Yeo, S., H. Park, Y. Ji, S. Park, J. Yang, J. Lee, J. M. Mathara, H. Shin, and W. Holzapfel. 2015. Influence of gastrointestinal stress on autoinducer-2 activity of two Lactobacillus species. FEMS Microbiology Ecology 91 (7):fiv065. doi: 10.1093/femsec/fiv065.
  • Yu, J., L. Mo, L. Pan, C. Yao, D. Ren, X. An, T. Tsogtgerel, H. Zhang, and W. Liu. 2018. Bacterial microbiota and metabolic character of traditional sour cream and butter in Buryatia, Russia. Frontiers in Microbiology 9:2496. doi: 10.3389/fmicb.2018.02496.
  • Yu, P., N. Li, M. Geng, Z. Liu, X. Liu, H. Zhang, J. Zhao, H. Zhang, and W. Chen. 2020. Short communication: Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease. Journal of Dairy Science 103 (1):166–71. doi: 10.3168/jds.2019-17009.
  • Zannini, E., D. M. Waters, A. Coffey, and E. K. Arendt. 2016. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology 100 (3):1121–35. doi: 10.1007/s00253-015-7172-2.
  • Zelezniak, A., S. Andrejev, O. Ponomarova, D. R. Mende, P. Bork, and K. R. Patil. 2015. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America 112 (20):6449–54. doi: 10.1073/pnas.1421834112.
  • Zengler, K., and L. S. Zaramela. 2018. The social network of microorganisms—How auxotrophies shape complex communities. Nature Reviews. Microbiology 16 (6):383–90. doi: 10.1038/s41579-018-0004-5.
  • Zhang, L., S. Li, X. Liu, Z. Wang, M. Jiang, R. Wang, L. Xie, Q. Liu, X. Xie, D. Shang, et al. 2020. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nature Communications 11 (1):1. doi: 10.1038/s41467-020-19243-5.
  • Zhang, Q., B. Yang, M. M. Brashears, Z. Yu, M. Zhao, N. Liu, and Y. Li. 2014. Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. Bulgaricus. Journal of the Science of Food and Agriculture 94 (7):1366–72. doi: 10.1002/jsfa.6420.
  • Zhang, Y. 2022. Study on mechanism of biofilm formation and stress resistence by lactic acid bacteria based on luxS/AI-2 quorum sensing system. PHD thesis., Inner Mongolia Agricultural University. doi: 10.27229/d.cnki.gnmnu.2022.000030.
  • Zhao, C., X. Qu, Y. Cui, and T. X. 2015. Review on protocooperation between Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Journal of Dairy Science and Technology 38 (4):21–4. doi: 10.7506/rykxyjs1671-5187-201504006.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–858. doi: 10.1099/ijsem.0.004107.
  • Zhou, H., M. Wang, N. E. Smalley, M. Kostylev, A. L. Schaefer, E. P. Greenberg, A. A. Dandekar, and F. Xu. 2019. Modulation of pseudomonas aeruginosa quorum sensing by glutathione. Journal of Bacteriology 201 (9):e00685-18. doi: 10.1128/JB.00685-18.
  • Zotta, T., A. Ricciardi, F. Ciocia, R. Rossano, and E. Parente. 2008. Diversity of stress responses in dairy thermophilic streptococci. International Journal of Food Microbiology 124 (1):34–42. doi: 10.1016/j.ijfoodmicro.2008.02.024.
  • Zotta, T., K. Asterinou, R. Rossano, A. Ricciardi, M. Varcamonti, and E. Parente. 2009. Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. International Journal of Food Microbiology 129 (3):211–20. doi: 10.1016/j.ijfoodmicro.2008.11.024.