304
Views
0
CrossRef citations to date
0
Altmetric
Review

A multi-omics approach to understand the influence of polyphenols in ovarian cancer for precision nutrition: a mini-review

, , , &

References

  • Abdolmaleki, A., A. Asadi, K. Gurushankar, T. Karimi Shayan, and F. Abedi Sarvestani. 2020. Importance of nano medicine and new drug therapies for cancer. Advanced Pharmaceutical Bulletin 11 (3):450–7. doi: 10.34172/apb.2021.052.
  • Açar, Y., and G. Akbulut. 2023. Nutritional epigenetics and phytochemicals in cancer formation. Journal of the American Nutrition Association 42 (7):700–5. doi: 10.1080/27697061.2022.2147106.
  • Ajjarapu, S. M., A. Tiwari, G. Taj, D. B. Singh, S. Singh, and S. Kumar. 2021. Simulation studies, 3D QSAR and molecular docking on a point mutation of protein kinase B with flavonoids targeting ovarian cancer. BMC Pharmacology & Toxicology 22 (1):68. doi: 10.1186/S40360-021-00512-Y/TABLES/8.
  • Alharbi, R. A. 2020. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi Journal of Biological Sciences 27 (3):968–74. doi: 10.1016/j.sjbs.2020.01.020.
  • AlHilli, M. M., and V. Bae-Jump. 2020. Diet and gut microbiome interactions in gynecologic cancer. Gynecologic Oncology 159 (2):299–308. doi: 10.1016/j.ygyno.2020.08.027.
  • Alizadeh, M., N. Sampaio Moura, A. Schledwitz, S. A. Patil, J. Ravel, and J. Pierre Raufman. 2023. Big data in gastroenterology research. International Journal of Molecular Sciences 24 (3):2458. doi: 10.3390/IJMS24032458.
  • Antónia Nunes, M., Francisca Rodrigues, A. F. Vinha, R. C. Alves, and M. B. P. Oliveira. 2018. Nutrigenomics and polyphenols. In Polyphenols: Properties, recovery, and applications. Vienna, Austria, Elsevier, 103–32. doi: 10.1016/B978-0-12-813572-3.00004-X.
  • Aruoma, O. I., S. Hausman-Cohen, J. Pizano, M. A. Schmidt, D. M. Minich, Y. Joffe, S. Brandhorst, S. J. Evans, and D. M. Brady. 2019. Personalized nutrition: Translating the science of nutrigenomics into practice: Proceedings from the 2018 American College of Nutrition Meeting. Journal of the American College of Nutrition 38 (4):287–301. doi: 10.1080/07315724.2019.1582980.
  • Babu, M., and M. Snyder. 2023. Multi-omics profiling for health. Molecular & Cellular Proteomics: MCP 22 (6):100561. doi: 10.1016/j.mcpro.2023.100561.
  • Bakhtin, P., E. Khabirova, I. Kuzminov, and T. Thurner. 2020. The future of food production – A text-mining approach. Technology Analysis & Strategic Management 32 (5):516–28. doi: 10.1080/09537325.2019.1674802.
  • Balkir, P., K. Kemahlioglu, and U. Yucel. 2021. Foodomics: A new approach in food quality and safety. Trends in Food Science & Technology 108 (February):49–57. doi: 10.1016/j.tifs.2020.11.028.
  • Baranova, I., H. Kovarikova, J. Laco, I. Sedlakova, F. Vrbacky, D. Kovarik, P. Hejna, V. Palicka, and M. Chmelarova. 2020. Identification of a four-gene methylation biomarker panel in high-grade serous ovarian carcinoma. Clinical Chemistry and Laboratory Medicine 58 (8):1332–40. doi: 10.1515/cclm-2019-1319.
  • Barboza, J. R., F. A. N. Pereira, C. C. Vasconcelos, M. N. de Sousa Ribeiro, and A. J. O. Lopes. 2023. Molecular mechanisms of action and chemosensitization of tumor cells in ovarian cancer by phytochemicals: A narrative review on pre-clinical and clinical studies. Phytotherapy Research: PTR 37 (6):2484–512. doi: 10.1002/PTR.7842.
  • Barnett, B. 2023. Precision nutrition for cancer treatment. Cancer Health. https://www.cancerhealth.com/article/precision-nutrition-cancer-treatment.
  • Barreira, J. C., A. Alvarez Arraibi, and I. C. Ferreira. 2019. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: potential use in dermal formulations. Trends in Food Science & Technology 90 (August):76–87. doi: 10.1016/j.tifs.2019.05.014.
  • Belaud, J.-P., N. Prioux, C. Vialle, and C. Sablayrolles. 2019. Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry 111 (October):41–50. doi: 10.1016/j.compind.2019.06.006.
  • Bewicke-Copley, F., E. Arjun Kumar, G. Palladino, K. Korfi, and J. Wang. 2019. Applications and analysis of targeted genomic sequencing in cancer studies. Computational and Structural Biotechnology Journal 17 (January):1348–59. doi: 10.1016/j.csbj.2019.10.004.
  • Bhat, S. A., and N. F. Huang. 2021. Big data and AI revolution in precision agriculture: Survey and challenges. IEEE Access 9:110209–22. doi: 10.1109/ACCESS.2021.3102227.
  • Bisht, D., A. Arora, and M. Sachan. 2022. Role of DNA de-methylation intermediate “5-hydroxymethylcytosine” in ovarian cancer management: A comprehensive review. s.r.l. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 155 (November):113674. doi: 10.1016/j.biopha.2022.113674.
  • Borsoi, F. T., I. A. Neri-Numa, W. Q. de Oliveira, F. F. de Araújo, and G. M. Pastore. 2023. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chemistry: Molecular Sciences 6 (December 2022):100155. doi: 10.1016/j.fochms.2022.100155.
  • Bracken, C. P., H. S. Scott, and G. J. Goodall. 2016. A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews. Genetics 17 (12):719–32. doi: 10.1038/nrg.2016.134.
  • Braconi, D., V. Cicaloni, O. Spiga, and A. Santucci. 2021. Personalized nutrition and omics technologies: Current status and perspectives. Food Technology Disruptions 1, 37–71. doi: 10.1016/B978-0-12-821470-1.00007-0.
  • Bradbury, M., E. Borràs, J. Castellví, O. Méndez, J. Luis Sánchez-Iglesias, A. Pérez-Benavente, A. Gil-Moreno, E. Sabidó, and A. Santamaria. 2022. BRCA1 mutations in high-grade serous ovarian cancer are associated with proteomic changes in DNA repair, splicing, transcription regulation and signaling. Scientific Reports 12 (1):4445. doi: 10.1038/s41598-022-08461-0.
  • Braicu, C., N. Mehterov, B. Vladimirov, V. Sarafian, S. M. Nabavi, A. G. Atanasov, and I. Berindan-Neagoe. 2017. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Seminars in Cancer Biology 46 (February):84–106. doi: 10.1016/j.semcancer.2017.06.011.
  • Cardona, F., C. Andrés-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuño. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22. doi: 10.1016/J.JNUTBIO.2013.05.001.
  • Casado-Pelaez, M., A. Bueno-Costa, and M. Esteller. 2022. Single cell cancer epigenetics. Trends in Cancer 8 (10):820–38. doi: 10.1016/j.trecan.2022.06.005.
  • Casamassimi, A., A. Federico, M. Rienzo, S. Esposito, and A. Ciccodicola. 2017. Transcriptome profiling in human diseases: New advances and perspectives. International Journal of Molecular Sciences 18 (8):1652. doi: 10.3390/ijms18081652.
  • Cassidy, A., T. Huang, M. S. Rice, E. B. Rimm, and S. S. Tworoger. 2014. Intake of dietary flavonoids and risk of epithelial ovarian cancer. The American Journal of Clinical Nutrition 100 (5):1344–51. doi: 10.3945/AJCN.114.088708.
  • Chan, K. K., M. K. Siu, Y. X Jiang, J. J Wang, T. H. Leung, and H. Y. Ngan. 2018. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell International 18 (1):65. doi: 10.1186/S12935-018-0559-2/FIGURES/9.
  • Chandra, A., C. Pius, M. Nabeel, M. Nair, J. K. Vishwanatha, S. Ahmad, and R. Basha. 2019. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Medicine 8 (16):7018–31. doi: 10.1002/CAM4.2560.
  • Chang, X., S. Tamauchi, K. Yoshida, M. Yoshihara, A. Yokoi, Y. Shimizu, Y. Ikeda, N. Yoshikawa, T. Kiyono, Y. Yamamoto, et al. 2023. Downregulating vaccinia-related kinase 1 by luteolin suppresses ovarian cancer cell proliferation by activating the P53 signaling pathway. Gynecologic Oncology 173 (December):31–40. doi: 10.1016/j.ygyno.2023.04.003.
  • Chaudhary, N., V. Kumar, P. Sangwan, N. Chandra Pant, A. Saxena, S. Joshi, and A. N. Yadav. 2021. Personalized nutrition and-omics. In Comprehensive Foodomics, 495–507. Elsevier. doi: 10.1016/B978-0-08-100596-5.22880-1.
  • Cheasley, D., A. Nigam, M. Zethoven, S. Hunter, D. Etemadmoghadam, T. Semple, P. Allan, M. S. Carey, M. L. Fernandez, A. Dawson, et al. 2021. Genomic analysis of low-grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities. The Journal of Pathology 253 (1):41–54. doi: 10.1002/path.5545.
  • Chen, H., Tao, C. Xu, Y. W. Wang Yao, R. Zhe Zhang, L. Xu, and Q. H. Yao. 2018. From human genome and gut microbiome to personalized cancer nutrition. Journal of Nutritonal Oncology 3 (2):70–5. doi: 10.34175/jno201802004.
  • Cheung, P. K., M. H. Ma, H. F. Tse, K. F. Yeung, H. F. Tsang, M. K. M. Chu, C. M. Kan, W. C. S. Cho, L. B. W. Ng, L. W. C. Chan, et al. 2019. The applications of metabolomics in the molecular diagnostics of cancer. Expert Review of Molecular Diagnostics 19 (9):785–93. Taylor & Francis: doi: 10.1080/14737159.2019.1656530.
  • Cipolletti, M., V. Solar Fernandez, E. Montalesi, M. Marino, and M. Fiocchetti. 2018. Beyond the antioxidant activity of dietary polyphenols in cancer: The modulation of estrogen receptors (Ers) signaling. International Journal of Molecular Sciences 19 (9):2624. doi: 10.3390/ijms19092624.
  • Constantiou, I. D., and J. Kallinikos. 2015. New games, new rules: Big data and the changing context of strategy. Journal of Information Technology (1):44–57. doi: 10.1057/jit.2014.17.
  • Dall’Asta, M., M. Barbato, G. Rocchetti, F. Rossi, L. Lucini, P. A. Marsan, and L. Colli. 2022. Nutrigenomics: An underestimated contribution to the functional role of polyphenols. Current Opinion in Food Science 47 (October):100880. doi: 10.1016/j.cofs.2022.100880.
  • de Araújo, F. F., D. de Paulo Farias, I. A. Neri-Numa, and G. M. Pastore. 2021. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry 338 (February):127535. doi: 10.1016/J.FOODCHEM.2020.127535.
  • Dhingra, A., D. Sharma, A. Kumar, S. Singh, and P. Kumar. 2022. Microbiome and development of ovarian cancer. Endocrine, Metabolic & Immune Disorders Drug Targets 22 (11):1073–90. doi: 10.2174/1871530322666220509034847.
  • Dikarlo, P., I. Dorst, O. Moskalenko, and M. Yateem. 2022. Precision nutrition from the view of the gut microbiome. Advances in Precision Nutrition, Personalization and Healthy Aging. Springer, Cham, 67–96. doi: 10.1007/978-3-031-10153-3_4.
  • Dj Nevena, I., B. Hippe, S. Lilja, and A. G. Haslberger. 2022. Precise Nutrition and Functional Foods. Advances in Precision Nutrition, Personalization and Healthy Aging. Springer, Cham, 231–67. doi: 10.1007/978-3-031-10153-3_10.
  • Du, Z.-H., F.-F. Bi, L. Wang, and Q. Yang. 2018. Next-generation sequencing unravels extensive genetic alteration in recurrent ovarian cancer and unique genetic changes in drug-resistant recurrent ovarian cancer. Molecular Genetics & Genomic Medicine 6 (4):638–47. doi: 10.1002/mgg3.414.
  • El-kott, A. F., Ali, A. Shati, M. Ali, A. Kahtani, and S. A. Alharbi. 2019. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating MiR-424-3p transcription. Journal of Food Biochemistry 43 (12):e13072. doi: 10.1111/jfbc.13072.
  • Elsharkawi, S. M., D. Elkaffash, P. Moez, N. El-Etreby, E. Sheta, and R. S. Z. Taleb. 2023. PCDH17 gene promoter methylation status in a cohort of egyptian women with epithelial ovarian cancer. BMC Cancer 23 (1):89. doi: 10.1186/s12885-023-10549-3.
  • Erben, V., G. Poschet, P. Schrotz-King, and H. Brenner. 2021. Comparing metabolomics profiles in various types of liquid biopsies among screening participants with and without advanced colorectal neoplasms. Diagnostics (Basel, Switzerland) 11 (3):561. doi: 10.3390/diagnostics11030561.
  • Esposito, A., A. Ferraresi, A. Salwa, C. Vidoni, D. N. Dhanasekaran, and C. Isidoro. 2022. Resveratrol contrasts IL-6 Pro-growth effects and promotes autophagy-mediated cancer cell dormancy in 3D ovarian cancer: Role of MiR-1305 and of its target ARH-I. Cancers 14 (9):2142. doi: 10.3390/cancers14092142.
  • Fang, F., H. Cardenas, H. Huang, G. Jiang, S. M. Perkins, C. Zhang, H. N. Keer, Y. Liu, K. P. Nephew, and D. Matei. 2018. Genomic and epigenomic signatures in ovarian cancer associated with resensitization to platinum drugs. Cancer Research 78 (3):631–44. doi: 10.1158/0008-5472.CAN-17-1492.
  • Farhan, M. 2023. Insights on the role of polyphenols in combating cancer drug resistance. Biomedicines 11 (6):1709. doi: 10.3390/biomedicines11061709.
  • Felicio, P. S., R. S. Grasel, N. Campacci, A. E. de Paula, H. C. R. Galvão, G. T. Torrezan, C. S. Sabato, G. C. Fernandes, C. P. Souza, R. D. Michelli, et al. 2021. Whole-exome sequencing of non- BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Human Mutation 42 (3):290–9. doi: 10.1002/humu.24158.
  • Ferguson, J. F., H. Allayee, R. E. Gerszten, F. Ideraabdullah, P. M. Kris-Etherton, J. M. Ordovás, E. B. Rimm, T. J. Wang, and B. J. Bennett. 2016. Nutrigenomics, the microbiome, and gene-environment interactions: New directions in cardiovascular disease research, prevention, and treatment. Circulation. Cardiovascular Genetics 9 (3)Lippincott Williams & Wilkins Hagerstown, MD::291–313. doi: 10.1161/HCG.0000000000000030.
  • Fernandez-Jimenez, N., C. Allard, L. Bouchard, P. Perron, M. Bustamante, J. R. Bilbao, and M.-F. Hivert. 2019. Comparison of illumina 450K and EPIC arrays in placental DNA methylation. Epigenetics 14 (12):1177–82. doi: 10.1080/15592294.2019.1634975.
  • Francenia Santos-Sánchez, N., R. Salas-Coronado, C. Villanueva-Cañongo, and B. Hernández-Carlos. 2019. Antioxidant compounds and their antioxidant mechanism. In Antioxidants. London, UK: IntechOpen. doi: 10.5772/intechopen.85270.
  • Frolinger, T., S. Sims, C. Smith, J. Wang, H. Cheng, J. Faith, L. Ho, K. Hao, and G. M. Pasinetti. 2019. The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Scientific Reports 9 (1):3546. doi: 10.1038/s41598-019-39994-6.
  • Gandomi, A., and M. Haider. 2015. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management 35 (2):137–44. doi: 10.1016/j.ijinfomgt.2014.10.007.
  • Gaona-Luviano, P., L. A. Medina-Gaona, and K. Magaña-Pérez. 2020. Epidemiology of Ovarian cancer. Chinese Clinical Oncology 9 (4):47– doi: 10.21037/cco-20-34.
  • Gates, M. A., S. S. Tworoger, J. L. Hecht, I. De Vivo, B. Rosner, and S. E. Hankinson. 2007. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. International Journal of Cancer 121 (10):2225–32. doi: 10.1002/IJC.22790.
  • Ghini, V., F. Magherini, L. Massai, L. Messori, and P. Turano. 2022. Comparative NMR metabolomics of the responses of A2780 human ovarian cancer cells to clinically established Pt-based drugs. Dalton Transactions (Cambridge, England: 2003) 51 (33):12512–23. doi: 10.1039/D2DT02068H.
  • Ghose, A., S. V. N. Gullapalli, N. Chohan, A. Bolina, M. Moschetta, E. Rassy, and S. Boussios. 2022. Applications of proteomics in ovarian cancer: Dawn of a new era. Proteomes 10 (2):16. doi: 10.3390/proteomes10020016.
  • GLOBOCAN. 2020. World Health Organization. Global Cancer Observatory.
  • Govindarajan, M., C. Wohlmuth, M. Waas, M. Q. Bernardini, and T. Kislinger. 2020. High-throughput approaches for precision medicine in high-grade serous ovarian cancer. Journal of Hematology & Oncology 13 (1):134. doi: 10.1186/s13045-020-00971-6.
  • Grossman, R. L., A. P. Heath, V. Ferretti, H. E. Varmus, D. R. Lowy, W. A. Kibbe, and L. M. Staudt. 2016. Toward a shared vision for cancer genomic data. The New England Journal of Medicine 375 (12):1109–12. doi: 10.1056/NEJMp1607591.
  • Gull, N., M. R. Jones, P.-C. Peng, S. G. Coetzee, T. C. Silva, J. T. Plummer, A. L. P. Reyes, B. D. Davis, S. S. Chen, K. Lawrenson, et al. 2022. DNA methylation and transcriptomic features are preserved throughout disease recurrence and chemoresistance in high grade serous ovarian cancers. Journal of Experimental & Clinical Cancer Research: CR 41 (1):232. doi: 10.1186/s13046-022-02440-z.
  • Hao, N., K. E. Shearwin, and I. B. Dodd. 2017. Programmable DNA looping using engineered bivalent DCas9 complexes. Nature Communications 8 (1):1628. doi: 10.1038/s41467-017-01873-x.
  • Hasanzad, M., N. Sarhangi, S. Ehsani Chimeh, N. Ayati, M. Afzali, F. Khatami, S. Nikfar, and H. R. Aghaei Meybodi. 2022. Precision medicine journey through omics approach. Journal of Diabetes and Metabolic Disorders 21 (1):881–8. doi: 10.1007/S40200-021-00913-0/METRICS.
  • Hassan, F-u., M. Saif-Ur Rehman, M. S. Khan, M. A. Ali, A. Javed, A. Nawaz, and C. Yang. 2019. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Frontiers in Genetics 10 (June):514. doi: 10.3389/fgene.2019.00514.
  • Hawkins, G. M., W. C. Burkett, A. N. McCoy, H. B. Nichols, A. F. Olshan, R. Broaddus, J. D. Merker, B. Weissman, W. R. Brewster, J. Roach, et al. 2022. Differences in the Microbial Profiles of Early Stage Endometrial Cancers between Black and White Women. Gynecologic Oncology 165 (2):248–56. doi: 10.1016/j.ygyno.2022.02.021.
  • He, Z., S. Wu, J. Lin, A. Booth, G. O. Rankin, I. Martinez, and Y. C. Chen. 2020. Polyphenols extracted from Chinese Hickory (Carya cathayensis) promote apoptosis and inhibit proliferation through the P53-dependent intrinsic and HIF-1α-VEGF pathways in ovarian cancer cells. Applied Sciences 10 (23):8615. doi: 10.3390/app10238615.
  • Heber, D. 2024. Precision nutrition and cancer. In Precision nutrition, 277–98. Los Angeles, USA: Elsevier. doi: 10.1016/B978-0-443-15315-0.00006-7.
  • Hinojosa-Nogueira, D., B. Ortiz-Viso, B. Navajas-Porras, S. Pérez-Burillo, V. González-Vigil, S. P. de la Cueva, and J. Á. Rufián-Henares. 2023. Stance4Health nutritional APP: A path to personalized smart nutrition. Nutrients 15 (2):276. doi: 10.3390/nu15020276.
  • Hishinuma, E., M. Shimada, N. Matsukawa, D. Saigusa, B. Li, K. Kudo, K. Tsuji, S. Shigeta, H. Tokunaga, K. Kumada, et al. 2021. Wide-targeted metabolome analysis identifies potential biomarkers for prognosis prediction of epithelial ovarian cancer. Toxins 13 (7):461. doi: 10.3390/toxins13070461.
  • Hu, X., X. Xu, X. Zeng, R. Jin, S. Wang, H. Jiang, Y. Tang, G. Chen, J. Wei, T. Chen, et al. 2023. Gut microbiota dysbiosis promotes the development of epithelial ovarian cancer via regulating hedgehog signaling pathway. Gut Microbes 15 (1):2221093. doi: 10.1080/19490976.2023.2221093.
  • Hua, T., S. Kang, X.-F. Li, Y.-J. Tian, and Y. Li. 2021. DNA methylome profiling identifies novel methylated genes in epithelial ovarian cancer patients with platinum resistance. The Journal of Obstetrics and Gynaecology Research 47 (3):1031–9. doi: 10.1111/jog.14634.
  • Hua, X., L. Yu, R. You, Y. Yang, J. Liao, D. Chen, and L. Yu. 2016. Association among dietary flavonoids, flavonoid subclasses and ovarian cancer risk: A meta-analysis. Plos ONE 11 (3):e0151134. doi: 10.1371/journal.pone.0151134.
  • Huo, X., H. Sun, Q. Qian, X. Ma, P. Peng, M. Yu, Y. Zhang, J. Yang, D. Cao, T. Gui, et al. 2020. CYP27B1 downregulation: A new molecular mechanism regulating EZH2 in ovarian cancer tumorigenicity. Frontiers in Cell and Developmental Biology 8 (October):561804. doi: 10.3389/FCELL.2020.561804/BIBTEX.
  • Imran, M., A. Insaf, N. Hasan, V. V. Sugandhi, D. Shrestha, K. R. Paudel, S. K. Jha, P. M. Hansbro, K. Dua, H. P. Devkota, et al. 2023. Exploring the remarkable chemotherapeutic potential of polyphenolic antioxidants in battling various forms of cancer. Molecules (Basel, Switzerland) 28 (8):3475. doi: 10.3390/molecules28083475.
  • Jabeen, A., G. Malik, J. I. Mir, and R. Rasool. 2023. Nutrigenomics: Linking food to genome. Italian Journal of Food Science 35 (1):26–40. doi: 10.15586/ijfs.v35i1.2262.
  • Jerković, I., Q. Szabo, F. Bantignies, and G. Cavalli. 2020. Higher-order chromosomal structures mediate genome function. Journal of Molecular Biology 432 (3):676–81. doi: 10.1016/j.jmb.2019.10.014.
  • Jung, N., and T.-K. Kim. 2021. Advances in higher-order chromatin architecture: The move towards 4D genome. BMB Reports 54 (5):233–45. doi: 10.5483/BMBRep.2021.54.5.035.
  • Jung, Y. Y., H. Y. Woo, and H.-S. Kim. 2019. Targeted genomic sequencing reveals novel TP53 In-frame deletion mutations leading to P53 overexpression in high-grade serous tubo-ovarian carcinoma. Anticancer Research 39 (6):2883–9. doi: 10.21873/anticanres.13417.
  • Karczewski, K. J., and M. P. Snyder. 2018. Integrative omics for health and disease. Nature Reviews. Genetics 19 (5):299–310. doi: 10.1038/nrg.2018.4.
  • Kelly, R., D. Aviles, C. Krisulevicz, K. Hunter, L. Krill, D. Warshal, and O. Ostrovsky. 2023. The effects of natural epigenetic therapies in 3D ovarian cancer and patient-derived tumor explants: New avenues in regulating the cancer secretome. Biomolecules 13 (7):1066. doi: 10.3390/biom13071066.
  • Khan, M. A., A. Hussain, M. K. Sundaram, U. Alalami, D. Gunasekera, L. Ramesh, A. Hamza, and U. Quraishi. 2015. (−)-Epigallocatechin-3-Gallate Reverses the Expression of Various Tumor-Suppressor Genes by Inhibiting DNA Methyltransferases and Histone Deacetylases in Human Cervical Cancer Cells. Oncology Reports 33 (4):1976–84. doi: 10.3892/or.2015.3802.
  • Khella, C. A., G. A. Mehta, R. N. Mehta, and M. L. Gatza. 2021. Recent advances in integrative multi-omics research in breast and ovarian cancer. Journal of Personalized Medicine 11 (2):149. doi: 10.3390/JPM11020149.
  • Kim, Y.-S., K.-C. Choi, and K.-A. Hwang. 2015. Genistein suppressed epithelial–mesenchymal transition and migration efficacies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-β signaling pathway. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 22 (11):993–9. doi: 10.1016/J.PHYMED.2015.08.003.
  • Kuzminov, I., P. Bakhtin, E. Khabirova, M. Kotsemir, and A. Lavrynenko. 2018. Mapping the radical innovations in food industry: A text mining study. SSRN Electronic Journal 1 (1):1–28. doi: 10.2139/ssrn.3143721.
  • Li, N., X. Zhu, W. Nian, Y. Li, Y. Sun, G. Yuan, Z. Zhang, W. Yang, J. Xu, A. Lizaso, et al. 2022. Blood-based DNA methylation profiling for the detection of ovarian cancer. Gynecologic Oncology 167 (2):295–305. doi: 10.1016/j.ygyno.2022.07.008.
  • Li, Y., Y. Hu, L. Yang, J. Liu, C. Cui, M. Yang, D. Zou, L. Zhou, Q. Zhou, W. Ge, et al. 2023. Luteolin directly binds to KDM4C and attenuates ovarian cancer stemness via epigenetic suppression of PPP2CA/YAP Axis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 160 (January):114350. doi: 10.1016/j.biopha.2023.114350.
  • Lin, J.-N., V. Chia-Hsiang Lin, K.-M. Rau, P.-C. Shieh, D.-H. Kuo, J.-C. Shieh, W.-J. Chen, S.-C. Tsai, and T.-D. Way. 2010. Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. Journal of Agricultural and Food Chemistry 58 (3):1584–92. doi: 10.1021/jf9035782.
  • Liu, S., and K. Zhao. 2021. The toolbox for untangling chromosome architecture in immune cells. Frontiers in Immunology 12 (April):670884. doi: 10.3389/fimmu.2021.670884.
  • Low, C. A. 2020. Harnessing consumer smartphone and wearable sensors for clinical cancer research. NPJ Digital Medicine 3 (1):140. doi: 10.1038/s41746-020-00351-x.
  • Lukanović, D., B. Kobal, and K. Černe. 2022. Ovarian cancer: Treatment and resistance to pharmacotherapy. Reproductive Medicine 3 (2):127–40. doi: 10.3390/reprodmed3020011.
  • Lutfi, A., M. Alrawad, A. Alsyouf, M. A. Almaiah, Al Ahmad, A. Khasawneh, Al Lutfi, A. F. Khasawneh, M. H. Alshira’h, M. Alshirah, et al. 2023. Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling. Journal of Retailing and Consumer Services 70 (January):103129. doi: 10.1016/j.jretconser.2022.103129.
  • Malcomson, F. C., and J. C. Mathers. 2023. Translation of nutrigenomic research for personalised and precision nutrition for cancer prevention and for cancer survivors. Redox Biology 62 (June):102710. doi: 10.1016/j.redox.2023.102710.
  • Manzoni, C., D. A. Kia, J. Vandrovcova, J. Hardy, N. W. Wood, P. A. Lewis, and R. Ferrari. 2018. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics 19 (2):286–302. doi: 10.1093/bib/bbw114.
  • Mardis, E. R. 2019. The impact of next-generation sequencing on cancer genomics: from discovery to clinic. Cold Spring Harbor Perspectives in Medicine 9 (9):1–14. doi: 10.1101/cshperspect.a036269.
  • Martínez-Garay, C., and N. Djouder. 2023. Dietary interventions and precision nutrition in cancer therapy. Trends in Molecular Medicine 29 (7):489–511. doi: 10.1016/j.molmed.2023.04.004.
  • Maurer, T., M. H. Belau, J. von Grundherr, Z. Schlemmer, S. Patra, H. Becher, K.-H. Schulz, B.-C. Zyriax, B. Schmalfeldt, and J. Chang-Claude. 2022. Randomised controlled trial testing the feasibility of an exercise and nutrition intervention for patients with ovarian cancer during and after first-line chemotherapy (BENITA-Study). BMJ Open 12 (2):e054091. doi: 10.1136/bmjopen-2021-054091.
  • Menyhárt, O., and B. Győrffy. 2021. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Computational and Structural Biotechnology Journal 19 (January):949–60. doi: 10.1016/J.CSBJ.2021.01.009.
  • Moore, J. B. 2019. From personalised nutrition to precision medicine: The rise of consumer genomics and digital health. The Proceedings of the Nutrition Society 79 (3):300–10. doi: 10.1017/S0029665120006977.
  • Morgan, S. L., N. C. Mariano, A. Bermudez, N. L. Arruda, F. Wu, Y. Luo, G. Shankar, L. Jia, H. Chen, J.-F. Hu, et al. 2017. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nature Communications 8 (1):15993. doi: 10.1038/ncomms15993.
  • Mu, J., Y. Wu, C. Jiang, L. Cai, D. Li, and J. Cao. 2022. Progress in applicability of scoring systems based on nutritional and inflammatory parameters for ovarian cancer. Frontiers in Nutrition 9 (April):809091. doi: 10.3389/fnut.2022.809091.
  • Musker, R. 2019. Big data in agriculture and nutrition. In Agriculture for improved nutrition: Seizing the momentum, 142–53. UK: CAB International. doi: 10.1079/9781786399311.0142.
  • Nagasawa, S., K. Ikeda, K. Horie-Inoue, S. Sato, A. Itakura, S. Takeda, K. Hasegawa, and S. Inoue. 2019. Systematic identification of characteristic genes of ovarian clear cell carcinoma compared with high-grade serous carcinoma based on RNA-sequencing. International Journal of Molecular Sciences 20 (18):4330. doi: 10.3390/ijms20184330.
  • Natanzon, Y., E. L. Goode, and J. M. Cunningham. 2018. Epigenetics in ovarian cancer. Seminars in Cancer Biology 51 (August):160–9. doi: 10.1016/J.SEMCANCER.2017.08.003.
  • Nené, N. R., D. Reisel, A. Leimbach, D. Franchi, A. Jones, I. Evans, S. Knapp, A. Ryan, S. Ghazali, J. F. Timms, et al. 2019. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: A case-control study. The Lancet. Oncology 20 (8):1171–82. doi: 10.1016/S1470-2045(19)30340-7.
  • Neri-Numa, I. A., C. B. B. Cazarin, A. L. T. G. Ruiz, B. N. Paulino, G. Molina, and G. M. Pastore. 2020. Targeting flavonoids on modulation of metabolic syndrome. Journal of Functional Foods 73 (October):104132. doi: 10.1016/j.jff.2020.104132.
  • Neri Numa, I. A., and G. M. Pastore. 2020. Novel insights into prebiotic properties on human health: A review. Food Research International (Ottawa, Ont.) 131 (May):108973. doi: 10.1016/j.foodres.2019.108973.
  • Norheim, F., I. M. F. Gjelstad, M. Hjorth, K. J. Vinknes, T. M. Langleite, T. Holen, J. Jensen, K. T. Dalen, A. S. Karlsen, A. Kielland, et al. 2012. Molecular nutrition research-the modern way of performing nutritional science. Nutrients 4 (12):1898–944. doi: 10.3390/nu4121898.
  • Panji, M., V. Behmard, Z. Zare, M. Malekpour, H. Nejadbiglari, S. Yavari, T. Nayerpour Dizaj, A. Safaeian, A. Bakhshi, O. Abazari, et al. 2021. Synergistic effects of green tea extract and paclitaxel in the induction of mitochondrial apoptosis in ovarian cancer cell lines. Gene 787 (October):145638. doi: 10.1016/j.gene.2021.145638.
  • Parish, M., G. Massoud, D. Hazimeh, J. Segars, and M. S. Islam. 2023. Green tea in reproductive cancers: could treatment be as simple? Cancers 15 (3):862. doi: 10.3390/cancers15030862.
  • Parker, L. P., D. D. Taylor, J. Kesterson, D. S. Metzinger, and C. Gercel-Taylor. 2009. Modulation of MicroRNA associated with ovarian cancer cells by genistein. Eur. J. Gynaec. Oncol 30 (6):616–21.
  • Patil, P., and S. Killedar. 2021. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. Journal of Drug Delivery Science and Technology 63 (June):102523. doi: 10.1016/j.jddst.2021.102523.
  • Peng, P., W. Zhang, D. Cao, J. Yang, and K. Shen. 2019. The proteomic comparison of peripheral circulation-derived exosomes from the epithelial ovarian carcinoma (EOC) patients and non-EOC subjects. Translational Cancer Research 8 (2):452–65. doi: 10.21037/tcr.2019.03.06.
  • Pierson, W. E., P. N. Peters, M. T. Chang, L-m Chen, D. A. Quigley, A. Ashworth, and J. S. Chapman. 2020. An integrated molecular profile of endometrioid ovarian cancer. Gynecologic Oncology 157 (1):55–61. doi: 10.1016/j.ygyno.2020.02.011.
  • Plewa, S., A. Horała, P. Dereziński, E. Nowak-Markwitz, J. Matysiak, and Z. J. Kokot. 2019. Wide spectrum targeted metabolomics identifies potential ovarian cancer biomarkers. Life Sciences 222 (April):235–44. doi: 10.1016/j.lfs.2019.03.004.
  • Pointner, A., and A. G. Haslberger. 2022. Personalized nutrition for healthy aging, a review. In Advances in Precision Nutrition, Personalization and Healthy Aging. Springer, Cham, 97–143. doi: 10.1007/978-3-031-10153-3_5.
  • Qin, J., M. Fu, J. Wang, F. Huang, H. Liu, M. Huangfu, D. Yu, H. Liu, X. Li, X. Guan, et al. 2020. PTEN/AKT/MTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncology Reports 43 (6):1885–96. doi: 10.3892/or.2020.7571.
  • López, R., O. O. Martinez Alfredo, O. Ramos-Lopez, J. A. Martinez, and F. I. Milagro. 2022. Holistic integration of omics tools for precision nutrition in health and disease. Nutrients 14 (19):4074. doi: 10.3390/nu14194074.
  • Reid, B. M., and B. L. Fridley. 2020. DNA methylation in ovarian cancer susceptibility. Cancers 13 (1):108. doi: 10.3390/CANCERS13010108.
  • Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition 57 (1):1–24. doi: 10.1007/s00394-017-1445-8.
  • Rust, P., and A. G. Haslberger. 2022. Trends in personalised precision nutrition, objectives. In Advances in precision nutrition, personalization and healthy aging, 1–24. Cham: Springer International Publishing. doi: 10.1007/978-3-031-10153-3_1.
  • Sarubbo, F., D. Moranta, S. Tejada, M. Jiménez, and S. Esteban. 2023. Impact of gut microbiota in brain ageing: polyphenols as beneficial modulators. Antioxidants (Basel, Switzerland) 12 (4):812. doi: 10.3390/antiox12040812.
  • Sassi, I., S. Ouaftouh, and S. Antr. 2019. Adaptation of classical machine learning algorithms to big data context: Problems and challenges : Case study: Hidden Markov models under spark. In 2019 1st International Conference on Smart Systems and Data Science (ICSSD), 1–7. IEEE. doi: 10.1109/ICSSD47982.2019.9002857.
  • Schmidt, D. R., R. Patel, D. G. Kirsch, C. A. Lewis, M. G. Vander Heiden, and J. W. Locasale. 2021. Metabolomics in cancer research and emerging applications in clinical oncology. CA: A Cancer Journal for Clinicians 71 (4):333–58. doi: 10.3322/caac.21670.
  • Shafabakhsh, R., and Z. Asemi. 2019. Quercetin: A natural compound for ovarian cancer treatment. Journal of Ovarian Research 12 (1):55. doi: 10.1186/s13048-019-0530-4.
  • Sharma, R., and Y. Padwad. 2020. Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends in Food Science & Technology 98 (April):41–52. doi: 10.1016/j.tifs.2020.02.004.
  • Shih, A. J., A. Menzin, J. Whyte, J. Lovecchio, A. Liew, H. Khalili, T. Bhuiya, P. K. Gregersen, and A. T. Lee. 2018. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. edited by sandra orsulic. PloS One 13 (11):e0206785. doi: 10.1371/journal.pone.0206785.
  • Si, W., Y. Zhang, X. Li, Y. Du, and Q. Xu. 2021. Understanding the functional activity of polyphenols using omics-based approaches. Nutrients 13 (11):3953. doi: 10.3390/nu13113953.
  • Simopoulos, A. P. 2020. Impact of nutrigenetics and nutrigenomics on society. In Principles of nutrigenetics and nutrigenomics, 549–55. London, UK: Elsevier. doi: 10.1016/B978-0-12-804572-5.00073-2.
  • Singh, V. 2023. Current challenges and future implications of exploiting the “OMICS” data into nutrigenetics and nutrigenomics for personalized diagnosis and nutrition-based care. Nutrition (Burbank, Los Angeles County, Calif.) 110:112002. doi: 10.1016/J.NUT.2023.112002.
  • Sonka, S. T. 2021. Digital technologies, big data, and agricultural innovation. In The innovation revolution in agriculture, 207–26. Cham: Springer International Publishing. doi: 10.1007/978-3-030-50991-0_8.
  • Srivastava, R. 2023. Applications of artificial intelligence multiomics in precision oncology. Journal of Cancer Research and Clinical Oncology 149 (1):503–10. doi: 10.1007/S00432-022-04161-4/FIGURES/3.
  • Stewart, C., C. Ralyea, S. Lockwood, and W. B. Saunders. 2019. Ovarian cancer: An integrated review. Seminars in Oncology Nursing 35 (2):151–6. doi: 10.1016/j.soncn.2019.02.001.
  • Stockert, A. L., and M. Hill. 2018. Anticancer potential of dietary polyphenols. In Bioactive components, diet and medical treatment in cancer prevention, 25–50. Cham: Springer International Publishing. doi: 10.1007/978-3-319-75693-6_2.
  • Subbannayya, Y., R. Di Fiore, S. A. M. Urru, and J. Calleja-Agius. 2021. The role of omics approaches to characterize molecular mechanisms of rare ovarian cancers: Recent advances and future perspectives. Biomedicines 9 (10):1481. doi: 10.3390/BIOMEDICINES9101481.
  • Sun, S., and H. Fang. 2021. Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/MiR-320a/SMG1 axis. Journal of Ovarian Research 14 (1):158. doi: 10.1186/s13048-021-00916-8.
  • Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71 (3):209–49. doi: 10.3322/caac.21660.
  • Supplitt, S., P. Karpinski, M. Sasiadek, and I. Laczmanska. 2021. Current achievements and applications of transcriptomics in personalized cancer medicine. International Journal of Molecular Sciences 22 (3):1422. doi: 10.3390/ijms22031422.
  • Suwinski, P., C. Ong, M. H. T. Ling, Y. M. Poh, A. M. Khan, and H. S. Ong. 2019. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Frontiers in Genetics 10:49. doi: 10.3389/fgene.2019.00049.
  • Talari, G., E. Cummins, C. McNamara, and J. O’Brien. 2022. State of the art review of big data and web-based decision support systems (DSS) for food safety risk assessment with respect to climate change. Trends in Food Science & Technology 126 (August):192–204. doi: 10.1016/j.tifs.2021.08.032.
  • Tavsan, Z., and H. Ayar. 2019. Flavonoids showed anticancer effects on the ovarian cancer cells : Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 116 (February):109004. doi: 10.1016/j.biopha.2019.109004.
  • Tayanloo-Beik, A., M. Sarvari, M. Payab, K. Gilany, S. Alavi-Moghadam, M. Gholami, P. Goodarzi, B. Larijani, and B. Arjmand. 2020. OMICS insights into cancer histology; metabolomics and proteomics approach. Clinical Biochemistry 84 (October):13–20. doi: 10.1016/j.clinbiochem.2020.06.008.
  • Teekaraman, D., S. Priya Elayapillai, M. Priya Viswanathan, and A. Jagadeesan. 2019. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chemico-Biological Interactions 300(December). :91–100. doi: 10.1016/j.cbi.2019.01.008.
  • Teibo, J. O., V. C. Silvestrini, A. P. Vargas, G. P. Lanfredi, and V. M. Faça. 2022. The Interplay between the transcriptomics and proteomics profiles. In Transcriptomics in health and disease, 187–208. Cham: Springer International Publishing. doi: 10.1007/978-3-030-87821-4_8.
  • Tresserra-Rimbau, A., R. M. Lamuela-Raventos, and J. J. Moreno. 2018. Polyphenols, food and pharma. current knowledge and directions for future research. Biochemical Pharmacology 156 (October):186–95. doi: 10.1016/J.BCP.2018.07.050.
  • Trisha, A. T., M. H. Shakil, S. Talukdar, K. Rovina, N. Huda, and W. Zzaman. 2022. Tea polyphenols and their preventive measures against cancer: current trends and directions. Foods (Basel, Switzerland) 11 (21):3349. doi: 10.3390/foods11213349.
  • Vivarelli, S., R. Salemi, S. Candido, L. Falzone, M. Santagati, S. Stefani, F. Torino, G. L. Banna, G. Tonini, and M. Libra. 2019. Gut microbiota and cancer: From pathogenesis to therapy. Cancers 11 (1):38. doi: 10.3390/cancers11010038.
  • Walther-António, M. R. S., J. Chen, F. Multinu, A. Hokenstad, T. J. Distad, E. H. Cheek, G. L. Keeney, D. J. Creedon, H. Nelson, A. Mariani, et al. 2016. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Medicine 8 (1):122. doi: 10.1186/s13073-016-0368-y.
  • Wan, M., and D. A. Bell. 2020. Analysis of genome-wide methylation using reduced representation bisulfite sequencing (RRBS) technology. In Epigenetics methods, 141–56. London, UK: Elsevier. doi: 10.1016/B978-0-12-819414-0.00008-2.
  • Wang, J., D. C. Dean, F. J. Hornicek, H. Shi, and Z. Duan. 2019. RNA sequencing (RNA-Seq) and its application in ovarian cancer. Gynecologic Oncology 152 (1):194–201. doi: 10.1016/j.ygyno.2018.10.002.
  • Wang, X., X. Zhao, J. Zhao, T. Yang, F. Zhang, and L. Liu. 2021. Serum metabolite signatures of epithelial ovarian cancer based on targeted metabolomics. Clinica Chimica Acta; International Journal of Clinical Chemistry 518 (July):59–69. doi: 10.1016/J.CCA.2021.03.012.
  • Wang, X., Y. Dong, Y. Zheng, and Y. Chen. 2021. Multiomics metabolic and epigenetics regulatory network in cancer: A systems biology perspective. Journal of Genetics and Genomics = Yi Chuan Xue Bao 48 (7):520–30. doi: 10.1016/j.jgg.2021.05.008.
  • WHO. 2022. Cancer. World Health Organization.
  • Xiao, Y., M. Bi, H. Guo, and M. Li. 2022. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. EBioMedicine 79 (May):104001. doi: 10.1016/j.ebiom.2022.104001.
  • Yang, S., L. Si, Y. Jia, W. Jian, Q. Yu, M. Wang, and R. Lin. 2019. Kaempferol exerts anti-proliferative effects on human ovarian cancer cells by inducing apoptosis, G0/G1 cell cycle arrest and modulation of MEK/ERK and STAT3 pathways. Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology 24 (3):975–81.
  • Yao, S., M. Gao, Z. Wang, W. Wang, L. Zhan, and B. Wei. 2021. Upregulation of microrna-34a sensitizes ovarian cancer cells to resveratrol by targeting Bcl-2. Yonsei Medical Journal 62 (8):691–701. doi: 10.3349/ymj.2021.62.8.691.
  • Ye, M., Y. Lin, S. Pan, Z.-W. Wang, and X. Zhu. 2021. Applications of multi-omics approaches for exploring the molecular mechanism of ovarian carcinogenesis. Frontiers in Oncology 11 (September):745808. doi: 10.3389/fonc.2021.745808.
  • Yi, J., S. Li, C. Wang, N. Cao, H. Qu, C. Cheng, Z. Wang, L. Wang, and L. Zhou. 2019. Potential applications of polyphenols on main NcRNAs regulations as novel therapeutic strategy for cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 113:108703. doi: 10.1016/J.BIOPHA.2019.108703.
  • Zeisel, S. H. 2020. Precision (personalized) nutrition: Understanding metabolic heterogeneity. Annual Review of Food Science and Technology 11 (1):71–92. doi: 10.1146/annurev-food-032519.
  • Zhang, W., P. Peng, X. Ou, K. Shen, and X. Wu. 2019. Ovarian cancer circulating extracelluar vesicles promote coagulation and have a potential in diagnosis: An ITRAQ based proteomic analysis. BMC Cancer 19 (1):1095. doi: 10.1186/s12885-019-6176-1.
  • Zhou, E., Y. Li, F. Wu, M. Guo, J. Xu, S. Wang, Q. Tan, P. Ma, S. Song, and Y. Jin. 2021. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine 67(May):103365. doi: 10.1016/j.ebiom.2021.103365.
  • Zhou, L., P. Liu, B. Chen, Y. Wang, X. Wang, Maurizio, C. Internati, M. S. Wachtel, and E. E. Frezza. 2008. Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Research 28 (2A):1119–27. https://ar.iiarjournals.org/content/28/2A/1119.short.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.