562
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Intestinal organoid technology and applications in probiotics

, , , ORCID Icon, , & show all

References

  • Abo, H., B. Chassaing, A. Harusato, M. Quiros, J. C. Brazil, V. L. Ngo, E. Viennois, D. Merlin, A. T. Gewirtz, A. Nusrat, et al. 2020. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nature Communications 11 (1):513. doi: 10.1038/s41467-019-14258-z.
  • Anand, S., and S. S. Mande. 2022. Host-microbiome interactions: gut-liver axis and its connection with other organs. NPJ Biofilms and Microbiomes 8 (1):89. doi: 10.1038/s41522-022-00352-6.
  • Bajic, D., A. Niemann, A.-K. Hillmer, R. Mejias-Luque, S. Bluemel, M. Docampo, M. C. Funk, E. Tonin, M. Boutros, B. Schnabl, et al. 2020. Gut microbiota-derived propionate regulates the expression of Reg3 mucosal lectins and ameliorates experimental colitis in mice. Journal of Crohn’s & Colitis 14 (10):1462–72. doi: 10.1093/ecco-jcc/jjaa065.
  • Bao, L., X. Cui, R. Bai, and C. Chen. 2023. Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease. Nano Research 16 (3):3976–90. doi: 10.1007/s12274-022-5150-4.
  • Bartfeld, S., T. Bayram, M. van de Wetering, M. Huch, H. Begthel, P. Kujala, R. Vries, P. J. Peters, and H. Clevers. 2015. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148 (1):126–36.e6. Elsevier. doi: 10.1053/j.gastro.2014.09.042.
  • Bhatia, S. N., and D. E. Ingber. 2014. Microfluidic organs-on-chips. Nature Biotechnology 32 (8):760–72. doi: 10.1038/nbt.2989.
  • Boj, S. F., A. M. Vonk, M. Statia, J. Su, J. F. Dekkers, R. R. Vries, J. M. Beekman, and H. Clevers. 2017. Forskolin-induced swelling in intestinal organoids: An in vitro assay for assessing drug response in cystic fibrosis patients. Journal of Visualized Experiments (120):e55159. MyJoVE Corporation. doi: 10.3791/55159-v.
  • Capeling, M. M., S. Huang, C. J. Childs, J. H. Wu, Y.-H. Tsai, A. Wu, N. Garg, E. M. Holloway, N. Sundaram, C. Bouffi, et al. 2022. Suspension culture promotes serosal mesothelial development in human intestinal organoids. Cell Reports 38 (7):110379. Elsevier. doi: 10.1016/j.celrep.2022.110379.
  • Chen, Y.-W., S. X. Huang, A. L. Rodrigues Toste de Carvalho, S.-H. Ho, M. N. Islam, S. Volpi, L. D. Notarangelo, M. Ciancanelli, J.-L. Casanova, J. Bhattacharya, et al. 2017. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nature Cell Biology 19 (5):542–9. doi: 10.1038/ncb3510.
  • Clevers, H. 2016. Modeling development and disease with organoids. Cell 165 (7):1586–97. doi: 10.1016/j.cell.2016.05.082.
  • Clevers, H., and R. Nusse. 2012. Wnt/β-catenin signaling and disease. Cell 149 (6):1192–205. Elsevier. doi: 10.1016/j.cell.2012.05.012.
  • Crespo, M., E. Vilar, S.-Y. Tsai, K. Chang, S. Amin, T. Srinivasan, T. Zhang, N. H. Pipalia, H. J. Chen, M. Witherspoon, et al. 2017. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nature Medicine 23 (7):878–84. doi: 10.1038/nm.4355.
  • Cruz-Acuña, R., M. Quirós, A. E. Farkas, P. H. Dedhia, S. Huang, D. Siuda, V. García-Hernández, A. J. Miller, J. R. Spence, A. Nusrat, et al. 2017. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology 19 (11):1326–35. doi: 10.1038/ncb3632.
  • Curvello, R., G. Kerr, D. J. Micati, W. H. Chan, V. S. Raghuwanshi, J. Rosenbluh, H. E. Abud, and G. Garnier. 2021. Engineered plant-based nanocellulose hydrogel for small intestinal organoid growth. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 8 (1):2002135. Wiley. doi: 10.1002/advs.202002135.
  • d’Aldebert, E., M. Quaranta, M. Sébert, D. Bonnet, S. Kirzin, G. Portier, J.-P. Duffas, S. Chabot, P. Lluel, S. Allart, et al. 2020. Characterization of human colon organoids from inflammatory bowel disease patients. Frontiers in Cell and Developmental Biology 8:363. doi: 10.3389/fcell.2020.00363.
  • de Jong, P. R., K. Taniguchi, A. R. Harris, S. Bertin, N. Takahashi, J. Duong, A. D. Campos, G. Powis, M. Corr, M. Karin, et al. 2016. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nature Communications 7 (1):11551. doi: 10.1038/ncomms11551.
  • de Poel, E., J. W. Lefferts, and J. M. Beekman. 2020. Intestinal organoids for cystic fibrosis research. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society 19 (Suppl 1):S60–S64. Elsevier. doi: 10.1016/j.jcf.2019.11.002.
  • den Besten, G., K. van Eunen, A. K. Groen, K. Venema, D.-J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 (9):2325–40. Elsevier. doi: 10.1194/jlr.R036012.
  • Eto, T., K. Miyake, K. Nosho, M. Ohmuraya, Y. Imamura, K. Arima, S. Kanno, L. Fu, Y. Kiyozumi, D. Izumi, et al. 2018. Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression. The Journal of Pathology 245 (4):445–55.). Wiley. doi: 10.1002/path.5098.
  • Evans, G. S., N. Flint, A. S. Somers, B. Eyden, and C. S. Potten. 1992. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. Journal of Cell Science 101 (1):219–31. doi: 10.1242/jcs.101.1.219.
  • Fawad, J. A., D. H. Luzader, G. F. Hanson, T. J. Moutinho, Jr., C. A. McKinney, P. G. Mitchell, K. Brown-Steinke, A. Kumar, M. Park, S. Lee, et al. 2022. Histone deacetylase inhibition by gut microbe-generated short-chain fatty acids entrains intestinal epithelial circadian rhythms. Gastroenterology 163 (5):1377–90.e11. Elsevier. doi: 10.1053/j.gastro.2022.07.051.
  • Finkbeiner, S. R., D. R. Hill, C. H. Altheim, P. H. Dedhia, M. J. Taylor, Y.-H. Tsai, A. M. Chin, M. M. Mahe, C. L. Watson, J. J. Freeman, et al. 2015. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Reports 4 (6):1140–55. doi: 10.1016/j.stemcr.2015.04.010.
  • Forbester, J. L., D. Goulding, L. Vallier, N. Hannan, C. Hale, D. Pickard, S. Mukhopadhyay, and G. Dougan. 2015. Interaction of salmonella enterica Serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infection and Immunity 83 (7):2926–34. American Society for Microbiology. doi: 10.1128/IAI.00161-15.
  • Fordham, R. P., S. Yui, N. R. F. Hannan, C. Soendergaard, A. Madgwick, P. J. Schweiger, O. H. Nielsen, L. Vallier, R. A. Pedersen, T. Nakamura, et al. 2013. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13 (6):734–44. doi: 10.1016/j.stem.2013.09.015.
  • Frazier, K., A. Kambal, E. A. Zale, J. F. Pierre, N. Hubert, S. Miyoshi, J. Miyoshi, D. Ringus, D. Harris, K. Yang, et al. 2022. High fat diet disrupts diurnal interactions between small intestinal host innate immune factor REG3γ and gut microbiota resulting in metabolic dysfunction. The FASEB Journal 36 (S1):R4553. Wiley. doi: 10.1096/fasebj.2022.36.S1.R4553.
  • Frede, A., P. Czarnewski, G. Monasterio, K. P. Tripathi, D. A. Bejarano, R. O. Ramirez Flores, C. Sorini, L. Larsson, X. Luo, L. Geerlings, et al. 2022. B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 55 (12):2336–51.e12. Elsevier. doi: 10.1016/j.immuni.2022.11.002.
  • Fujii, M., M. Matano, K. Toshimitsu, A. Takano, Y. Mikami, S. Nishikori, S. Sugimoto, and T. Sato. 2018. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23 (6):787–93.e6. Elsevier. doi: 10.1016/j.stem.2018.11.016.
  • Fukamachi, H. 1992. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture. Journal of Cell Science 103 (2):511–9. doi: 10.1242/jcs.103.2.511.
  • Göttert, S., J. C. Fischer, G. Eisenkolb, E. Thiele Orberg, D. Busch, S. Jarosch, E. Holler, T. Engleitner, L. Klostermeier, C. Walther, et al. 2021. IFN-gamma producing regulatory T cells counterbalance T cell-mediated injury to the intestinal stem cell compartment in mice and humans. Blood 138 (Supplement 1):89. doi: 10.1182/blood-2021-152925.
  • He, G.-W., L. Lin, J. DeMartino, X. Zheng, N. Staliarova, T. Dayton, H. Begthel, W. J. van de Wetering, E. Bodewes, J. van Zon, et al. 2022. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 29 (9):1333–45.e6. Elsevier doi: 10.1016/j.stem.2022.08.002.
  • Heddes, M., B. Altaha, Y. Niu, S. Reitmeier, K. Kleigrewe, D. Haller, and S. Kiessling. 2022. The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nature Communications 13 (1):6068. doi: 10.1038/s41467-022-33609-x.
  • Hillion, K., and M. M. Mahe. 2022. Redesigning hydrogel geometry for enhanced organoids. Nature Methods 19 (11):1347–8. doi: 10.1038/s41592-022-01656-3.
  • Hillmer, E. J., H. Zhang, H. S. Li, and S. S. Watowich. 2016. STAT3 signaling in immunity. Cytokine & Growth Factor Reviews 31 (October):1–15. doi: 10.1016/j.cytogfr.2016.05.001.
  • Hou, Y., W. Wei, X. Guan, Y. Liu, G. Bian, D. He, Q. Fan, X. Cai, Y. Zhang, G. Wang, et al. 2021. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut. Nature Communications 12 (1):271. doi: 10.1038/s41467-020-20673-4.
  • Hou, Q., L. Ye, H. Liu, L. Huang, Q. Yang, J. R. Turner, and Q. Yu. 2018. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death and Differentiation 25 (9):1657–70. doi: 10.1038/s41418-018-0070-2.
  • Howell, K. J., J. Kraiczy, K. M. Nayak, M. Gasparetto, A. Ross, C. Lee, T. N. Mak, B.-K. Koo, N. Kumar, T. Lawley, et al. 2018. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154 (3):585–98. Elsevier. doi: 10.1053/j.gastro.2017.10.007.
  • Hu, H., H. Gehart, B. Artegiani, C. LÖpez-Iglesias, F. Dekkers, O. Basak, J. van Es, S. M. Chuva de Sousa Lopes, H. Begthel, J. Korving, et al. 2018. Long-term expansion of functional mouse and human hepatocytes as 3d organoids. Cell 175 (6):1591–606.e19. Elsevier. doi: 10.1016/j.cell.2018.11.013.
  • Ikpa, P. T., M. Doktorova, K. F. Meijsen, N. D. Nieuwenhuijze, H. J. Verkade, J. W. Jonker, H. R. de Jonge, J. Marcel, and C. Bijvelds. 2020. Impaired intestinal farnesoid x receptor signaling in cystic fibrosis mice. Cellular and Molecular Gastroenterology and Hepatology 9 (1):47–60. Elsevier. doi: 10.1016/j.jcmgh.2019.08.006.
  • In, J., J. Foulke-Abel, N. C. Zachos, A.-M. Hansen, J. B. Kaper, H. D. Bernstein, M. Halushka, S. Blutt, M. K. Estes, M. Donowitz, et al. 2016. Enterohemorrhagic Escherichia coli Reduces mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cellular and Molecular Gastroenterology and Hepatology 2 (1):48–62.e3. Elsevier. doi: 10.1016/j.jcmgh.2015.10.001.
  • Johansson, M. E. V., M. Phillipson, J. Petersson, A. Velcich, L. Holm, and G. C. Hansson. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America 105 (39):15064–9. doi: 10.1073/pnas.0803124105.
  • Joosten, S. P., J. Zeilstra, H. van Andel, R. Clinton Mijnals, J. Zaunbrecher, A. A. Duivenvoorden, M. van de Wetering, H. Clevers, M. Spaargaren, and S. T. Pals. 2017. MET signaling mediates intestinal crypt-villus development, regeneration, and adenoma formation and is promoted by stem cell CD44 isoforms. Gastroenterology 153 (4):1040–53.e4. Elsevier. doi: 10.1053/j.gastro.2017.07.008.
  • Jowett, G. M., M. D. A. Norman, T. T. L. Yu, P. Rosell Arévalo, D. Hoogland, S. T. Lust, E. Read, E. Hamrud, N. J. Walters, U. Niazi, et al. 2021. ILC1 drive intestinal epithelial and matrix remodelling. Nature Materials 20 (2):250–9. doi: 10.1038/s41563-020-0783-8.
  • Karve, S. S., S. Pradhan, D. V. Ward, and A. A. Weiss. 2017. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PloS One 12 (6):e0178966. Public Library of Science. doi: 10.1371/journal.pone.0178966.
  • Kawamoto, A., S. Nagata, S. Anzai, J. Takahashi, M. Kawai, M. Hama, D. Nogawa, K. Yamamoto, R. Kuno, K. Suzuki, et al. 2019. Ubiquitin D is upregulated by synergy of notch signalling and TNF-α in the inflamed intestinal epithelia of IBD patients. Journal of Crohn’s & Colitis 13 (4):495–509. doi: 10.1093/ecco-jcc/jjy180.
  • Kim, S., Y. S. Choi, J. S. Lee, S.-H. Jo, Y.-G. Kim, and S.-W. Cho. 2022. Intestinal extracellular matrix hydrogels to generate intestinal organoids for translational applications. Journal of Industrial and Engineering Chemistry 107:155–64. doi: 10.1016/j.jiec.2021.11.044.
  • Kim, S., S. Min, Y. S. Choi, S.-H. Jo, J. H. Jung, K. Han, J. Kim, S. An, Y. W. Ji, Y.-G. Kim, et al. 2022. Tissue extracellular matrix hydrogels as alternatives to matrigel for culturing gastrointestinal organoids. Nature Communications 13 (1):1692. doi: 10.1038/s41467-022-29279-4.
  • Lamers, M. M., J. Beumer, J. van der Vaart, K. Knoops, J. Puschhof, T. I. Breugem, R. B. G. Ravelli, J. Paul van Schayck, A. Z. Mykytyn, H. Q. Duimel, et al. 2020. SARS-CoV-2 productively infects human gut enterocytes. Science (New York, N.Y.) 369 (6499):50–4. American Association for the Advancement of Science. doi: 10.1126/science.abc1669.
  • Lancaster, M. A., M. Renner, C.-A. Martin, D. Wenzel, L. S. Bicknell, M. E. Hurles, T. Homfray, J. M. Penninger, A. P. Jackson, and J. A. Knoblich. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501 (7467):373–9. doi: 10.1038/nature12517.
  • Larsson, E., V. Tremaroli, Y. S. Lee, O. Koren, I. Nookaew, A. Fricker, J. Nielsen, R. E. Ley, and F. Bäckhed. 2012. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61 (8):1124–31. doi: 10.1136/gutjnl-2011-301104.
  • Lee, H., K. B. Jung, O. Kwon, Y. Seul Son, E. Choi, W. D. Yu, N. Son, J. Hyoung Jeon, H. Jo, H. Yang, et al. 2022. Limosilactobacillus reuteri DS0384 promotes intestinal epithelial maturation via the postbiotic effect in human intestinal organoids and infant mice. Gut Microbes 14 (1):2121580. Taylor & Francis. doi: 10.1080/19490976.2022.2121580.
  • Leslie, J. L., S. Huang, J. S. Opp, M. S. Nagy, M. Kobayashi, V. B. Young, and J. R. Spence. 2015. Persistence and toxin production by clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and Immunity 83 (1):138–45. American Society for Microbiology. doi: 10.1128/IAI.02561-14.
  • Li, X.-G., M-x Chen, S-q Zhao, and X-q Wang. 2022. Intestinal models for personalized medicine: From conventional models to microfluidic primary intestine-on-a-chip. Stem Cell Reviews and Reports 18 (6):2137–51. doi: 10.1007/s12015-021-10205-y.
  • Lindell, A. E., M. Zimmermann-Kogadeeva, and K. R. Patil. 2022. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews. Microbiology 20 (7):431–43. doi: 10.1038/s41579-022-00681-5.
  • Liu, J., N. M. Walker, M. T. Cook, A. Ootani, and L. L. Clarke. 2012. Functional CFTR in crypt epithelium of organotypic enteroid cultures from murine small intestine. American Journal of Physiology. Cell Physiology 302 (10):C1492–C1503. American Physiological Society. doi: 10.1152/ajpcell.00392.2011.
  • Lu, X., S. Xie, L. Ye, L. Zhu, and Q. Yu. 2020. Lactobacillus protects against S. typhimurium–induced intestinal inflammation by determining the fate of epithelial proliferation and differentiation. Molecular Nutrition & Food Research 64 (5)e1900655. Wiley. doi: 10.1002/mnfr.201900655.
  • Lukonin, I., D. Serra, L. Challet Meylan, K. Volkmann, J. Baaten, R. Zhao, S. Meeusen, K. Colman, F. Maurer, M. B. Stadler, et al. 2020. Phenotypic landscape of intestinal organoid regeneration. Nature 586 (7828):275–80. doi: 10.1038/s41586-020-2776-9.
  • Maier, L., M. Pruteanu, M. Kuhn, G. Zeller, A. Telzerow, E. E. Anderson, A. R. Brochado, K. C. Fernandez, H. Dose, H. Mori, et al. 2018. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555 (7698):623–8. doi: 10.1038/nature25979.
  • Martinez-Guryn, K., N. Hubert, K. Frazier, S. Urlass, M. W. Musch, P. Ojeda, J. F. Pierre, J. Miyoshi, T. J. Sontag, C. M. Cham, et al. 2018. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host & Microbe 23 (4):458–69.e5. Elsevier. doi: 10.1016/j.chom.2018.03.011.
  • Mathewson, N. D., R. Jenq, A. V. Mathew, M. Koenigsknecht, A. Hanash, T. Toubai, K. Oravecz-Wilson, S.-R. Wu, Y. Sun, C. Rossi, et al. 2016. Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology 17 (5):505–13. doi: 10.1038/ni.3400.
  • Mavroudis, P. D., D. C. DuBois, R. R. Almon, and W. J. Jusko. 2018. Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat. PloS One 13 (6):e0197534. Public Library of Science. doi: 10.1371/journal.pone.0197534.
  • Mayer, E. A., K. Nance, and S. Chen. 2022. The gut–brain axis. Annual Review of Medicine 73 (1):439–53. doi: 10.1146/annurev-med-042320-014032.
  • Mead, B. E., K. Hattori, L. Levy, S. Imada, N. Goto, M. Vukovic, D. Sze, C. Kummerlowe, J. D. Matute, J. Duan, et al. 2022. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nature Biomedical Engineering 6 (4):476–94. doi: 10.1038/s41551-022-00863-9.
  • Meran, L., I. Massie, S. Campinoti, A. E. Weston, R. Gaifulina, L. Tullie, P. Faull, M. Orford, A. Kucharska, A. Baulies, et al. 2020. Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure. Nature Medicine 26 (10):1593–601. doi: 10.1038/s41591-020-1024-z.
  • Mithal, A., A. Capilla, D. Heinze, A. Berical, C. Villacorta-Martin, M. Vedaie, A. Jacob, K. Abo, A. Szymaniak, M. Peasley, et al. 2020. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nature Communications 11 (1):215. doi: 10.1038/s41467-019-13916-6.
  • Molnár, T., B. Jójárt, T. Resál, K. Szántó, D. Kata, I. Földesi, T. Molnár, J. Maléth, and K. Farkas. 2021. P046 disease modelling of inflammatory bowel disease by human colon organoids. Journal of Crohn’s and Colitis 15 (Supplement_1):S155–S155. doi: 10.1093/ecco-jcc/jjab076.175.
  • Noguchi, M., M. Shimizu, P. Lu, Y. Takahashi, Y. Yamauchi, S. Sato, H. Kiyono, S. Kishino, J. Ogawa, K. Nagata, et al. 2022. Lactic acid bacteria–derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids. The Journal of Biological Chemistry 298 (11):102534. Elsevier. doi: 10.1016/j.jbc.2022.102534.
  • Ogawa, I., D. Onozato, S. Anno, H. Hayashi, T. Kanaki, T. Iwao, and T. Matsunaga. 2022. Suspension culture of human induced pluripotent stem cell-derived intestinal organoids using natural polysaccharides. Biomaterials 288 (September):121696. doi: 10.1016/j.biomaterials.2022.121696.
  • Ooft, S. N., F. Weeber, K. K. Dijkstra, C. M. McLean, S. Kaing, E. van Werkhoven, L. Schipper, L. Hoes, D. J. Vis, J. van de Haar, et al. 2019. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine 11 (513):2574. American Association for the Advancement of Science. doi: 10.1126/scitranslmed.aay2574.
  • Park, S. E., S. Kang, J. Paek, A. Georgescu, J. Chang, A. Y. Yi, B. J. Wilkins, T. A. Karakasheva, K. E. Hamilton, and D. D. Huh. 2022. Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 19 (11):1449–60. doi: 10.1038/s41592-022-01643-8.
  • Parséus, A., N. Sommer, F. Sommer, R. Caesar, A. Molinaro, M. Ståhlman, T. U. Greiner, R. Perkins, and F. Bäckhed. 2017. Microbiota-induced obesity requires farnesoid x receptor. Gut 66 (3):429–37. doi: 10.1136/gutjnl-2015-310283.
  • Pavlidis, P., A. Tsakmaki, A. Treveil, K. Li, D. Cozzetto, F. Yang, U. Niazi, B. H. Hayee, M. Saqi, J. Friedman, et al. 2022. Cytokine responsive networks in human colonic epithelial organoids unveil a molecular classification of inflammatory bowel disease. Cell Reports 40 (13):111439. Elsevier. doi: 10.1016/j.celrep.2022.111439.
  • Pinto, D., A. Gregorieff, H. Begthel, and H. Clevers. 2003. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes & Development 17 (14):1709–13. Cold Spring Harbor Lab. doi: 10.1101/gad.267103.
  • Pocock, K., L. C. Delon, A. Khatri, C. Prestidge, R. Gibson, C. Barbe, and B. Thierry. 2019. Uptake of silica particulate drug carriers in an intestine-on-a-chip: Towards a better in vitro model of nanoparticulate carrier and mucus interactions. Biomaterials Science 7 (6):2410–20. The Royal Society of Chemistry. doi: 10.1039/C9BM00058E.
  • Puschhof, J., C. Pleguezuelos-Manzano, A. Martinez-Silgado, N. Akkerman, A. Saftien, C. Boot, A. de Waal, J. Beumer, D. Dutta, I. Heo, et al. 2021. Intestinal organoid cocultures with microbes. Nature Protocols 16 (10):4633–49. doi: 10.1038/s41596-021-00589-z.
  • Qu, M., L. Xiong, Y. Lyu, X. Zhang, J. Shen, J. Guan, P. Chai, Z. Lin, B. Nie, C. Li, et al. 2021. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Research 31 (3):259–71. doi: 10.1038/s41422-020-00453-x.
  • Quaroni, A., and R. J. May. 1980. Chapter 20: Establishment and characterization of intestinal epithelial cell cultures. In Normal Human Tissue and Cell Culture B. Endocrine, Urogenital, and Gastrointestinal Systems, ed. Curtis C. Harris, Benjamin F. Trump, and Gary D. Stoner, 21, 403–27. Methods in Cell Biology. London: Academic Press. doi: 10.1016/S0091-679X(08)60695-0.
  • Rajan, A., L. Vela, X.-L. Zeng, X. Yu, N. Shroyer, S. E. Blutt, N. M. Poole, L. G. Carlin, J. P. Nataro, M. K. Estes, et al. 2018. Novel segment- and host-specific patterns of enteroaggregative Escherichia coli adherence to human intestinal enteroids. mBio 9 (1):e02419–17. American Society for Microbiology. doi: 10.1128/mBio.02419-17.
  • Ramalho, A. S., E. Fürstová, A. M. Vonk, M. Ferrante, C. Verfaillie, L. Dupont, M. Boon, M. Proesmans, J. M. Beekman, I. Sarouk, et al. 2021. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis. The European Respiratory Journal 57 (1):1902426. doi: 10.1183/13993003.02426-2019.
  • Rosselot, A. E., M. Park, M. Kim, T. Matsu-Ura, G. Wu, D. E. Flores, K. R. Subramanian, S. Lee, N. Sundaram, T. R. Broda, et al. 2022. Ontogeny and function of the circadian clock in intestinal organoids. The EMBO Journal 41 (2):e106973. Wiley. doi: 10.15252/embj.2020106973.
  • Sarvestani, S. K., S. Signs, B. Hu, Y. Yeu, H. Feng, Y. Ni, D. R. Hill, R. C. Fisher, S. Ferrandon, R. K. DeHaan, et al. 2021. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nature Communications 12 (1):262. doi: 10.1038/s41467-020-20351-5.
  • Sato, T., D. E. Stange, M. Ferrante, R. G. J. Vries, J. H. van Es, S. van den Brink, W. J. van Houdt, A. Pronk, J. van Gorp, P. D. Siersema, et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141 (5):1762–72. doi: 10.1053/j.gastro.2011.07.050.
  • Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459 (7244):262–5. doi: 10.1038/nature07935.
  • Schnalzger, T. E., M. H. de Groot, C. Zhang, M. H. Mosa, B. E. Michels, J. Röder, T. Darvishi, W. S. Wels, and H. F. Farin. 2019. 3D model for car-mediated cytotoxicity using patient-derived colorectal cancer organoids. The EMBO Journal 38 (12):e100928. Wiley. doi: 10.15252/embj.2018100928.
  • Scott, B. M., C. Gutiérrez-Vázquez, L. M. Sanmarco, J. A. da Silva Pereira, Z. Li, A. Plasencia, P. Hewson, L. M. Cox, M. O’Brien, S. K. Chen, et al. 2021. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nature Medicine 27 (7):1212–22. doi: 10.1038/s41591-021-01390-x.
  • Sharon, G., N. Garg, J. Debelius, R. Knight, P. C. Dorrestein, and S. K. Mazmanian. 2014. Specialized metabolites from the microbiome in health and disease. Cell Metabolism 20 (5):719–30. Elsevier. doi: 10.1016/j.cmet.2014.10.016.
  • Sivaprakasam, S., Y. D. Bhutia, S. Yang, and V. Ganapathy. 2017. Short-chain fatty acid transporters: Role in colonic homeostasis. InComprehensive Physiology 8 (1):299–314. doi: 10.1002/cphy.c170014.
  • Stokes, K., A. Cooke, H. Chang, D. R. Weaver, D. T. Breault, and P. Karpowicz. 2017. the circadian clock gene Bmal1 coordinates intestinal regeneration. Cellular and Molecular Gastroenterology and Hepatology 4 (1):95–114. doi: 10.1016/j.jcmgh.2017.03.011.
  • Stokes, K., M. Nunes, C. Trombley, D. E. L. Flôres, G. Wu, Z. Taleb, A. Alkhateeb, S. Banskota, C. Harris, O. P. Love, et al. 2021. The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation. Cellular and Molecular Gastroenterology and Hepatology 12 (5):1847–72.e0. doi: 10.1016/j.jcmgh.2021.08.001.
  • Sugimura, N., Q. Li, E. S. H. Chu, H. C. H. Lau, W. Fong, W. Liu, C. Liang, G. Nakatsu, A. C. Y. Su, O. O. Coker, et al. 2022. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut 71 (10):2011–21. doi: 10.1136/gutjnl-2020-323951.
  • Šuligoj, T., L. K. Vigsnæs, P. Van den Abbeele, A. Apostolou, K. Karalis, G. M. Savva, B. McConnell, and N. Juge. 2020. Effects of human milk oligosaccharides on the adult gut microbiota and barrier function. Nutrients 12 (9):2808. doi: 10.3390/nu12092808.
  • Suzuki, T., S. Yoshida, and H. Hara. 2008. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. The British Journal of Nutrition 100 (2):297–305. Cambridge University Press. doi: 10.1017/S0007114508888733.
  • Takasato, M., X. Pei, Er, H. S. Chiu, B. Maier, G. J. Baillie, C. Ferguson, R. G. Parton, E. J. Wolvetang, M. S. Roost, S. M. Chuva de Sousa Lopes, et al. 2015. Kidney organoids from human ips cells contain multiple lineages and model human nephrogenesis. Nature 526 (7574):564–8. doi: 10.1038/nature15695.
  • Tian, H., B. Biehs, C. Chiu, C. W. Siebel, Y. Wu, M. Costa, F. J. de Sauvage, and O. D. Klein. 2015. Opposing activities of notch and wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Reports 11 (1):33–42. Elsevier. doi: 10.1016/j.celrep.2015.03.007.
  • Tsai, Y.-H., R. Nattiv, P. H. Dedhia, M. S. Nagy, A. M. Chin, M. Thomson, O. D. Klein, and J. R. Spence. 2017. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development (Cambridge, England) 144 (6):1045–55. doi: 10.1242/dev.138453.
  • Vonk, A. M., P. van Mourik, A. S. Ramalho, I. A. Silva, M. Statia, E. Kruisselbrink, S. W. Suen, J. F. Dekkers, F. P. Vleggaar, R. H. Houwen, et al. 2020. Protocol for application, standardization and validation of the forskolin-induced swelling assay in cystic fibrosis human colon organoids. STAR Protocols 1 (1):100019. doi: 10.1016/j.xpro.2020.100019.
  • Wilson, S. S., A. Tocchi, M. K. Holly, W. C. Parks, and J. G. Smith. 2015. A Small Intestinal Organoid Model of Non-Invasive Enteric Pathogen–Epithelial Cell Interactions. Mucosal Immunology 8 (2):352–61. doi: 10.1038/mi.2014.72.
  • Wu, H., S. Xie, J. Miao, Y. Li, Z. Wang, M. Wang, and Q. Yu. 2020. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes 11 (4):997–1014.). Taylor & Francis. doi: 10.1080/19490976.2020.1734423.
  • Xu, P., H. Becker, M. Elizalde, A. Masclee, and D. Jonkers. 2018. Intestinal organoid culture model is a valuable system to study epithelial barrier function in IBD. Gut 67 (10):1905–6. doi: 10.1136/gutjnl-2017-315685.
  • Yao, Y., X. Xu, L. Yang, J. Zhu, J. Wan, L. Shen, F. Xia, G. Fu, Y. Deng, M. Pan, et al. 2020. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26 (1):17–26.e6. Elsevier. doi: 10.1016/j.stem.2019.10.010.
  • Zhan, T., N. Rindtorff, and M. Boutros. 2017. Wnt signaling in cancer. Oncogene 36 (11):1461–73. doi: 10.1038/onc.2016.304.
  • Zhang, Y., Y. Li, Y. Yuan, J. Wang, S. Zhang, R. Zhu, Y. Wang, Y. Wu, X. Liao, and J. Mi. 2023. Reducing light exposure enhances the circadian rhythm of the biological clock through interactions with the gut microbiota. The Science of the Total Environment 858 (Pt 3):160041. doi: 10.1016/j.scitotenv.2022.160041.
  • Zhang, Y.-G., S. Wu, Y. Xia, and J. Sun. 2014. Salmonella-infected crypt-derived intestinal organoid culture system for host–bacterial interactions. Physiological Reports 2 (9):e12147. Wiley. doi: 10.14814/phy2.12147.
  • Zhao, X., C. Li, X. Liu, M. C. Chiu, D. Wang, Y. Wei, H. Chu, J.-P. Cai, I. Hau-Yee Chan, K. Kak-Yuen Wong, et al. 2021. Human intestinal organoids recapitulate enteric infections of enterovirus and coronavirus. Stem Cell Reports 16 (3):493–504. Elsevier. doi: 10.1016/j.stemcr.2021.02.009.
  • Zhong, H., J. Penders, Z. Shi, H. Ren, K. Cai, C. Fang, Q. Ding, C. Thijs, E. E. Blaak, C. D. A. Stehouwer, et al. 2019. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome 7 (1):2. doi: 10.1186/s40168-018-0608-z.
  • Zhou, J., C. Li, X. Liu, M. C. Chiu, X. Zhao, D. Wang, Y. Wei, A. Lee, A. J. Zhang, H. Chu, et al. 2020. Infection of bat and human intestinal organoids by SARS-CoV-2. Nature Medicine 26 (7):1077–83. doi: 10.1038/s41591-020-0912-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.