1,908
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system

&

References

  • Abbeele, P. V. D., S. Deyaert, R. Albers, A. Baudot, and A. Mercenier. 2023. Carrot RG-I reduces interindividual differences between 24 adults through consistent effects on gut microbiota composition and function ex vivo. Nutrients 15 (9):2090. doi:10.3390/nu15092090.
  • Abbeele, P. V. D., C. Duysburgh, I. Cleenwerck, R. Albers, M. Marzorati, and A. Mercenier. 2021. Consistent prebiotic effects of carrot Rg-I on the gut microbiota of four human adult donors in the shime® model despite baseline individual variability. Microorganisms 9 (10):2142. doi:10.3390/microorganisms9102142.
  • Ai, L., Y.-C. Chung, S.-Y. Lin, K.-C. Lee, P. F.-H. Lai, Y. Xia, G. Wang, and S. W. Cui. 2018. Active pectin fragments of high in vitro antiproliferation activities toward human colon adenocarcinoma cells: Rhamnogalacturonan II. Food Hydrocolloids. 83(October): 239–45. doi:10.1016/j.foodhyd.2018.05.017.
  • Allaire, J. M., S. M. Crowley, H. T. Law, S. Y. Chang, H. J. Ko, and B. A. Vallance. 2018. The intestinal epithelium: Central coordinator of mucosal immunity. Trends in Immunology 39 (9):677–96. doi:10.1016/j.it.2018.04.002.
  • Allaire, J. M., V. Morampudi, S. M. Crowley, M. Stahl, H. B. Yu, K. Bhullar, L. A. Knodler, B. Bressler, K. Jacobson, and B. A. Vallance. 2018. Frontline defenders: Goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. American Journal of Physiology. Gastrointestinal and Liver Physiology 314 (3):G360–G377. doi:10.1152/ajpgi.00181.2017.
  • Anderson, J. W., P. Baird, R. H. Davis, S. Ferreri, M. Knudtson, A. Koraym, V. Waters, and C. L. Williams. 2009. Health benefits of dietary fiber. Nutrition Reviews 67 (4):188–205. doi:10.1111/j.1753-4887.2009.00189.x.
  • Arrieta, M. C., K. Madsen, J. Doyle, and J. Meddings. 2009. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58 (1):41–8. doi:10.1136/gut.2008.150888.
  • Atuma, C., V. Strugala, A. Allen, and L. Holm. 2001. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. American Journal of Physiology - Gastrointestinal and Liver Physiology 280 (5):43–5.
  • Baggio, C. H., F. Lopes, A. Nascimento, T. Cipriani, D. McKay, and W. MacNaughton. 2017. Modulation of intestinal epithelial barrier function by rhamnogalacturonan. The FASEB Journal 31 (S1):995–7. doi:10.1096/fasebj.31.1_supplement.995.7.
  • Bang, S. J., G. Kim, M. Y. Lim, E. J. Song, D. H. Jung, J. S. Kum, Y. D. Nam, C. S. Park, and D. H. Seo. 2018. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 8 (1):98. doi:10.1186/s13568-018-0629-9.
  • Barber, T. M., S. Kabisch, A. F. H. Pfeiffer, and M. O. Weickert. 2020. The health benefits of dietary fibre. Nutrients 2020, Vol. 12, Page 320912 (10):3209. doi:10.3390/nu12103209.
  • Bayliss, C. E., and A. P. Houston. 1984. Characterization of plant polysaccharide- and mucin-fermenting anaerobic bacteria from human feces. Applied and Environmental Microbiology 48 (3):626–32. doi:10.1128/aem.48.3.626-632.1984.
  • Beukema, M., M. M. Faas, and P. De Vos. 2020. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Experimental & Molecular Medicine 52 (9):1364–76. doi:10.1038/s12276-020-0449-2.
  • Beukema, M., É. Jermendi, M. A. van den Berg, M. M. Faas, H. A. Schols, and P. de Vos. 2021. The impact of the level and distribution of methyl-esters of pectins on TLR2-1 dependent anti-inflammatory responses. Carbohydrate Polymers 251(January): 117093. doi:10.1016/j.carbpol.2020.117093.
  • Beukema, M., É. Jermendi, M. M. P. Oerlemans, M. J. Logtenberg, R. Akkerman, R. An, M. A. van den Berg, E. G. Zoetendal, T. Koster, C. Kong, et al. 2022. The level and distribution of methyl-esters influence the impact of pectin on intestinal T cells, microbiota, and Ahr activation. Carbohydrate Polymers 286:119280. (June): doi:10.1016/j.carbpol.2022.119280.
  • Bianchi, F., N. Larsen, T. D. M. Tieghi, M. A. T. Adorno, W. Kot, S. M. I. Saad, L. Jespersen, and K. Sivieri. 2018. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with bifidobacterium longum BB-46. Applied Microbiology and Biotechnology 102 (20):8827–40. doi:10.1007/s00253-018-9234-8.
  • Bischoff, S. C. 2011. Gut health: A new objective in medicine? BMC Medicine 9 (1):24. doi:10.1186/1741-7015-9-24.
  • Blanco-Pérez, F., H. Steigerwald, S. Schülke, S. Vieths, M. Toda, and S. Scheurer. 2021. The dietary fiber pectin: Health benefits and potential for the treatment of allergies by modulation of gut microbiota. Current Allergy and Asthma Reports 21 (10):43. doi:10.1007/s11882-021-01020-z.
  • Bolognini, D., A. B. Tobin, G. Milligan, and C. E. Moss. 2016. The pharmacology and function of receptors for short-chain fatty acids. Molecular Pharmacology 89 (3):388–98. doi:10.1124/mol.115.102301.
  • Bourlioux, P., B. Koletzko, F. o Guarner, and V. Braesco. 2003. The intestine and its microflora are partners for the protection of the host: Report on the danone symposium ‘the intelligent intestine. The American Journal of Clinical Nutrition 78 (4):675–83. doi:10.1093/ajcn/78.4.675.
  • Braccini, I., and S. Pérez. 2001. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2 (4):1089–96. doi:10.1021/bm010008g.
  • Brouns, F., E. Theuwissen, A. Adam, M. Bell, A. Berger, and R. P. Mensink. 2011. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. European Journal of Clinical Nutrition 2012 66:566 (5):591–9. doi:10.1038/ejcn.2011.208.
  • Brown, L., B. Rosner, W. W. Willett, and F. M. Sacks. 1999. Cholesterol-lowering effects of dietary fiber: A meta-analysis. The American Journal of Clinical Nutrition 69 (1):30–42. doi:10.1093/ajcn/69.1.30.
  • Buhner, S., C. Buning, J. Genschel, K. Kling, D. Herrmann, A. Dignass, I. Kuechler, S. Krueger, H. H.-J. Schmidt, and H. Lochs. 2006. Genetic basis for increased intestinal permeability in families with Crohn’s disease: Role of CARD15 3020insC mutation? Gut 55 (3):342–7. doi:10.1136/gut.2005.065557.
  • Caffall, K. H., and D. Mohnen. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344 (14):1879–900. doi:10.1016/j.carres.2009.05.021.
  • Cardoso, S. M., M. A. Coimbra, and J. A. Lopes da Silva. 2003. Temperature dependence of the formation and melting of pectin–Ca2+ networks: A rheological study. Food Hydrocolloids. 17 (6):801–7. doi:10.1016/S0268-005X(03)00101-2.
  • Cerf-Bensussan, N., and V. Gaboriau-Routhiau. 2010. The immune system and the gut microbiota: Friends or foes? Nature Reviews. Immunology 10 (10):735–44. doi:10.1038/nri2850.
  • Chan, S. Y., W. S. Choo, D. J. Young, and X. J. Loh. 2017. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydrate Polymers 161:118–39. doi:10.1016/j.carbpol.2016.12.033.
  • Chanput, W., J. Mes, R. A. M. Vreeburg, H. F. J. Savelkoul, and H. J. Wichers. 2010. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: A tool to study inflammation modulating effects of food-derived compounds. Food & Function 1 (3):254–61. 2010. doi:10.1039/c0fo00113a.
  • Christensen, S. H. 2020. Pectins. Food Hydrocolloids. 205–30.
  • Chung, W. S., Faith, A. W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S. H. Duncan, and H. J. Flint. 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 14 (1):3. doi:10.1186/s12915-015-0224-3.
  • Ciriminna, R., N. Chavarría-Hernández, A. I. R. Hernández, and M. Pagliaro. 2015. Pectin: A new perspective from the biorefinery standpoint. Biofuels, Bioproducts and Biorefining 9 (4):368–77. doi:10.1002/bbb.1551.
  • Cui, Y. S., Y. X. Li, S. L. Jiang, A. N. Song, Z. Fu, C. X. Dong, Z. Yao, and W. Qiao. 2020. Isolation, purification, and structural characterization of polysaccharides from atractylodis macrocephalae rhizoma and their immunostimulatory activity in RAW264.7 cells. International Journal of Biological Macromolecules 163(November): 270–8. doi:10.1016/j.ijbiomac.2020.06.269.
  • Decreux, A., and J. Messiaen. 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant and Cell Physiology 46 (2):268–78. doi:10.1093/pcp/pci026.
  • Dongowski, G., and A. Lorenz. 2004. Intestinal steroids in rats are influenced by the structural parameters of pectin. The Journal of Nutritional Biochemistry 15 (4):196–205. doi:10.1016/S0955-2863(03)00080-9.
  • Dongowski, G., A. Lorenz, and H. Anger. 2000. Degradation of pectins with different degrees of esterification by bacteroides thetaiotaomicron isolated from human gut flora. Applied and Environmental Microbiology 66 (4):1321–7. doi:10.1128/AEM.66.4.1321-1327.2000.
  • Dongowski, G., A. Lorenz, and J. Proll. 2002. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. The Journal of Nutrition 132 (7):1935–44. doi:10.1093/jn/132.7.1935.
  • Dong, Q., X. Liu, J. Yao, X. T. Dong, C. Ma, Y. X. Xu, J. N. Fang, and K. Ding. 2010. Structural characterization of a pectic polysaccharide from nerium indicum flowers. Phytochemistry 71 (11-12):1430–7. doi:10.1016/j.phytochem.2010.05.019.
  • do Prado, S. B. R., G. R. Santos, P. A. Mourão, and J. P. Fabi. Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. International Journal of Biological Macromolecules 126:170–8. doi:10.1016/j.ijbiomac.2018.12.191.
  • Dumic, J., S. Dabelic, and M. Flögel. 2006. Galectin-3: An open-ended story. Biochimica Et Biophysica Acta 1760 (4):616–35. doi:10.1016/j.bbagen.2005.12.020.
  • Edelblum, K. L., and J. R. Turner. 2009. The tight junction in inflammatory disease: Communication breakdown. Current Opinion in Pharmacology 9 (6):715–20. doi:10.1016/j.coph.2009.06.022.
  • Elshahed, M. S., A. Miron, A. C. Aprotosoaie, and M. A. Farag. 2021. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydrate Polymers 255 (March):117388. doi:10.1016/j.carbpol.2020.117388.
  • Ermund, A., A. Schütte, M. E. V. Johansson, J. K. Gustafsson, and G. C. Hansson. 2013. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the peyer’s patches. American Journal of Physiology - Gastrointestinal and Liver Physiology 305 (5):341–7.
  • Everard, A., and P. D. Cani. 2013. Diabetes, obesity and gut microbiota. Best Practice & Research. Clinical Gastroenterology 27 (1):73–83. doi:10.1016/j.bpg.2013.03.007.
  • Faderl, M., M. Noti, N. Corazza, and C. Mueller. 2015. Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life 67 (4):275–85. doi:10.1002/iub.1374.
  • Fan, L. L., S. Zuo, H. Z. Tan, J. L. Hu, J. B. Cheng, Q. Y. Wu, and S. P. Nie. 2020. Preventive effects of pectin with various degrees of esterification on ulcerative colitis in mice. Food & Function 11 (4):2886–97. doi:10.1039/c9fo03068a.
  • Forchielli, M. L., and W. A. Walker. 2005. The role of gut-associated lymphoid tissues and mucosal defence. The British Journal of Nutrition 93 Suppl 1 (S1):S41–S48. doi:10.1079/bjn20041356.
  • Garcia-Diez, F., V. Garcia-Mediavilla, J. E. Bayon, and J. Gonzalez-Gallego. 1996. Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. The Journal of Nutrition 126 (7):1766–71.
  • Girotti, M. R., M. Salatino, T. Dalotto-Moreno, and G. A. Rabinovich. 2019. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. Journal of Experimental Medicine 217 (2):e20182041. doi:10.1084/jem.20182041.
  • Gómez, B., B. Gullón, C. Remoroza, H. A. Schols, J. C. Parajó, and J. L. Alonso. 2014. Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes. Journal of Agricultural and Food Chemistry 62 (40):9769–82. doi:10.1021/jf503475b.
  • Goto, Y., and H. Kiyono. 2012. Epithelial barrier: An interface for the cross-communication between gut flora and immune system. Immunological Reviews 245 (1):147–63. doi:10.1111/j.1600-065X.2011.01078.x.
  • Grønhaug, T. E., H. Kiyohara, A. Sveaass, D. Diallo, H. Yamada, and B. S. Paulsen. 2011. Beta-d-(1 → 4)-galactan-containing side chains in RG-I regions of pectic polysaccharides from Biophytum Petersianum Klotzsch. contribute to expression of immunomodulating activity against intestinal Peyer’s patch cells and macrophages. Phytochemistry 72 (17):2139–47. doi:10.1016/j.phytochem.2011.08.011.
  • Gulfi, M., E. Arrigoni, and R. Amadò. 2006. The chemical characteristics of apple pectin influence its fermentability in vitro. LWT - Food Science and Technology 39 (9):1001–4. doi:10.1016/j.lwt.2006.02.013.
  • Gunning, A. P., R. J. M. Bongaerts, and V. J. Morris. 2009. Recognition of galactan components of pectin by galectin-3. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 23 (2):415–24. doi:10.1096/fj.08-106617.
  • Hino, S., K. Sonoyama, H. Bito, H. Kawagishi, S. Aoe, and T. Morita. 2013. Low-methoxyl pectin stimulates small intestinal mucin secretion irrespective of goblet cell proliferation and is characterized by jejunum Muc2 upregulation in rats. The Journal of Nutrition 143 (1):34–40. doi:10.3945/jn.112.167064.
  • Ho, G. T. T., Y. F. Zou, H. Wangensteen, and H. Barsett. 2016. RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators. International Journal of Biological Macromolecules 92(November): 731–8. doi:10.1016/j.ijbiomac.2016.07.090.
  • Hounnou, G., C. Destrieux, J. Desmé, P. Bertrand, and S. Velut. 2002. Anatomical study of the length of the human intestine. Surgical and Radiologic Anatomy: SRA 24 (5):290–4. doi:10.1007/s00276-002-0057-y.
  • Hsu, D. K., R. Y. Yang, Z. Pan, L. Yu, D. R. Salomon, W. P. Fung-Leung, and F. T. Liu. 2000. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. The American Journal of Pathology 156 (3):1073–83. doi:10.1016/S0002-9440(10)64975-9.
  • Huang, W. Q., Q. Y. Fang, L. L. Fan, T. Hong, H. Z. Tan, and S. P. Nie. 2022. Pectin with Various degrees of esterification differentially alters gut microbiota and metabolome of healthy adults. eFood 3 (1-2):e5. doi:10.1002/efd2.5.
  • Hu, R., Y. Xu, C. J. Yu, K. He, Q. Tang, C. L. Jia, G. He, X. Y. Wang, Y. Z. Kong, and G. K. Zhou. 2017. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of miscanthus lutarioriparius. Scientific Reports 7 (1):9034. doi:10.1038/s41598-017-08690-8.
  • Hu, S. X., R. Kuwabara, M. Beukema, M. Ferrari, B. J. De Haan, M. T. Walvoort, P. De Vos, and A. M. Smink. 2020. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydrate Polymers 249(December): 116863. doi:10.1016/j.carbpol.2020.116863.
  • Ishisono, K., T. Yabe, and K. Kitaguchi. 2017. Citrus pectin attenuates endotoxin shock via suppression of toll-like receptor signaling in Peyer’s patch myeloid cells. The Journal of Nutritional Biochemistry 50(December): 38–45. doi:10.1016/j.jnutbio.2017.07.016.
  • Jiang, T. T., X. J. Gao, C. Wu, F. Tian, Q. C. Lei, J. C. Bi, B. X. Xie, H. Y. Wang, S. Chen, and X. Y. Wang. 2016. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients 8 (3):126. doi:10.3390/nu8030126.
  • Jia, Z. Q., H. D. Tan, W. Chen, Q. S. Liu, G. J. Yang, and K. K. Li. 2018. Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress- and inflammation-activated signaling pathways 9: 1504.
  • Johansson, M. E. V., D. Ambort, T. Pelaseyed, A. Schütte, J. K. Gustafsson, A. Ermund, D. B. Subramani, J. M. Holmén-Larsson, K. A. Thomsson, J. H. Bergström, et al. 2011. Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences: CMLS 68 (22):3635–41. doi:10.1007/s00018-011-0822-3.
  • Johansson, M. E., J. M. H. Larsson, and G. C. Hansson. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1 (Suppl 1):4659–65. doi:10.1073/pnas.1006451107.
  • Kagnoff, M. F. 1993. Immunology of the intestinal tract. Gastroenterology 105 (5):1275–80. doi:10.1016/0016-5085(93)90128-y.
  • Kamada, N., S. U. Seo, G. Y. Chen, and G. Núñez. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews. Immunology 13 (5):321–35. doi:10.1038/nri3430.
  • Kayama, H., and K. Takeda. 2012. Regulation of intestinal homeostasis by innate and adaptive immunity. International Immunology 24 (11):673–80. doi:10.1093/intimm/dxs094.
  • Kelly, D., and I. E. Mulder. 2012. Microbiome and immunological interactions. Nutrition Reviews 70 Suppl 1 (suppl_1):S18–S30. doi:10.1111/j.1753-4887.2012.00498.x.
  • Kim, C. H., and J. Betz. 2018. Immune regulation by microbiome metabolites. Immunology 154 (2):220–9. doi:10.1111/imm.12930.
  • Kim, S., A. Covington, and E. G. Pamer. 2017. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological Reviews 279 (1):90–105. doi:10.1111/imr.12563.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi:10.1016/j.cell.2016.05.041.
  • Kolatsi-Joannou, M., K. L. Price, P. J. Winyard, and D. A. Long. 2011. Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PLoS One 6 (4):e18683. doi:10.1371/journal.pone.0018683.
  • König, J., J. Wells, P. D. Cani, C. L. García-Ródenas, T. MacDonald, A. Mercenier, J. Whyte, F. Troost, and R. J. Brummer. 2016. Human intestinal barrier function in health and disease. Clinical and Translational Gastroenterology 7 (10):e196. doi:10.1038/ctg.2016.54.
  • Kontogiorgos, V. 2020. Pectin: Technological and Physiological Properties. Pectin: Technological and Physiological Properties, October, 1–207.
  • Kootte, R. S., A. Vrieze, F. Holleman, G. M. Dallinga-Thie, E. G. Zoetendal, W. M. de Vos, A. K. Groen, J. B. Hoekstra, E. S. Stroes, and M. Nieuwdorp. 2012. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Obesity & Metabolism 14 (2):112–20. doi:10.1111/j.1463-1326.2011.01483.x.
  • Larsen, N., C. B. De Souza, L. Krych, T. B. Cahú, M. Wiese, W. Kot, K. M. Hansen, A. Blennow, K. Venema, and L. Jespersen. 2019. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology 10(FEB): 223. doi:10.3389/fmicb.2019.00223.
  • Lattimer, J. M., and M. D. Haub. 2010. Effects of dietary fiber and its components on metabolic health. Nutrients 2 (12):1266–89. doi:10.3390/nu2121266.
  • Lee, Y. K., and S. K. Mazmanian. 2010. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science (New York, N.Y.) 330 (6012):1768–73. doi:10.1126/science.1195568.
  • Lerouge, P., M. A. O’Neill, A. G. Darvill, and P. Albersheim. 1993. Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydrate Research 243 (2):359–71. doi:10.1016/0008-6215(93)87039-u.
  • Liu, L. S., M. L. Fishman, K. B. Hicks, and M. Kende. 2005. Interaction of various pectin formulations with porcine colonic tissues. Biomaterials 26 (29):5907–16. doi:10.1016/j.biomaterials.2005.03.005.
  • Liu, Y. L., M. Dong, Z. Y. Yang, and S. Y. Pan. 2016. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. International Journal of Biological Macromolecules 89(August): 484–8. doi:10.1016/j.ijbiomac.2016.05.015.
  • Li, W. F., K. Zhang, and H. Y. Yang. 2018. Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: Possible role of short-chain fatty acids and gut microbiota regulated by pectin. Journal of Agricultural and Food Chemistry 66 (30):8015–25. doi:10.1021/acs.jafc.8b02979.
  • Li, X., J. Jiang, S. Shi, S. W. A. Bligh, Y. Li, Y. Jiang, D. Huang, Y. Ke, and S. Wang. 2014. A RG-II type polysaccharide purified from aconitum coreanum alleviates lipopolysaccharide-induced inflammation by inhibiting the NF-KB signal pathway. PLoS One 9 (6):e99697. doi:10.1371/journal.pone.0099697.
  • Lutter, R., A. Teitsma-Jansen, E. Floris, S. Lone-Latif, A. Ravi, Y. S. Sabogal Pineros, T. Dekker, B. Smids, R. Khurshid, M. Aparicio-Vergara, et al. 2021. The dietary intake of carrot‐derived rhamnogalacturonan‐I accelerates and augments the innate immune and anti‐viral interferon response to rhinovirus infection and reduces duration and severity of symptoms in humans in a randomized trial. Nutrients 13 (12):4395. doi:10.3390/nu13124395.
  • Macfarlane, S., and G. T. Macfarlane. 2003. Regulation of short-chain fatty acid production. The Proceedings of the Nutrition Society 62 (1):67–72. doi:10.1079/PNS2002207.
  • Maloy, K. J., and F. Powrie. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474 (7351):298–306. doi:10.1038/nature10208.
  • Man, A. L., M. E. Prieto-Garcia, and C. Nicoletti. 2004. Improving M cell mediated transport across mucosal barriers: Do certain bacteria hold the keys? Immunology 113 (1):15–22. doi:10.1111/j.1365-2567.2004.01964.x.
  • Mao, G. Z., S. Li, C. Orfila, X. M. Shen, S. Y. Zhou, R. J. Linhardt, X. Q. Ye, and S. G. Chen. 2019. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium Spp., Lactobacillus Spp. and Faecalibaculum Spp. Food & Function 10 (12):7828–43. doi:10.1039/c9fo01534e.
  • Maria-Ferreira, D., A. M. Nascimento, T. R. Cipriani, A. P. Santana-Filho, P. D. S. Watanabe, D. D. M. G. S. Ana, F. B. Luciano, K. C. P. Bocate, R. M. Van, d Wijngaard, et al. 2018. Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human caco-2 cells. Scientific Reports 8 (1):12261. doi:10.1038/s41598-018-30526-2.
  • Maria-Ferreira, D., L. M. da Silva, D. A. G. B. Mendes, D. d A. Cabrini, A. M. Nascimento, M. Iacomini, T. R. Cipriani, A. R. S. Santos, M. F. d P. Werner, and C. H. Baggio. 2014. Rhamnogalacturonan from Acmella oleracea (L.) R.K. Jansen: Gastroprotective and ulcer healing properties in rats. PLoS One 9 (1):e84762. doi:10.1371/journal.pone.0084762.
  • Marques, F. Z., E. Nelson, P.-Y. Chu, D. Horlock, A. Fiedler, M. Ziemann, J. K. Tan, S. Kuruppu, N. W. Rajapakse, A. El-Osta, et al. 2017. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135 (10):964–77. doi:10.1161/CIRCULATIONAHA.116.024545.
  • Marques, R., and I. G. Boneca. 2011. Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cellular and Molecular Life Sciences: CMLS 68 (22):3661–73. doi:10.1007/s00018-011-0829-9.
  • May, C. D. 1990. Industrial pectins: Sources, production and applications. Carbohydrate Polymers 12 (1):79–99. doi:10.1016/0144-8617(90)90105-2.
  • McKay, S., P. Oranje, J. Helin, J. H. Koek, E. Kreijveld, P. van den Abbeele, U. Pohl, G. Bothe, M. Tzoumaki, M. Aparicio-Vergara, et al. 2021. Development of an affordable, sustainable and efficacious plant-based immunomodulatory food ingredient based on Bell pepper or carrot RG-I pectic polysaccharides. Nutrients 13 (3):963. doi:10.3390/nu13030963.
  • Metwaly, A., S. Reitmeier, and D. Haller. 2022. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nature Reviews. Gastroenterology & Hepatology 19 (6):383–97. doi:10.1038/s41575-022-00581-2.
  • Min, B., I. Y. Bae, H. G. Lee, S. H. Yoo, and S. Lee. 2010. Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology 101 (14):5414–8. doi:10.1016/j.biortech.2010.02.022.
  • Mohnen, D. 2008. Pectin structure and biosynthesis. Current Opinion in Plant Biology 11 (3):266–77. doi:10.1016/j.pbi.2008.03.006.
  • Mörbe, U. M., P. B. Jørgensen, T. M. Fenton, N. V. Burg, L. B. Riis, J. Spencer, and W. W. Agace. 2021. Human gut-associated lymphoid tissues (GALT); Diversity, structure, and function. Mucosal Immunology 14 (4):793–802. doi:10.1038/s41385-021-00389-4.
  • Mort, A. J., F. Qiu, and N. O. Maness. 1993. Determination of the pattern of methyl esterification in pectin. Distribution of contiguous nonesterified residues. Carbohydrate Research 247 (C):21–35. doi:10.1016/0008-6215(93)84238-2.
  • Mowat, A. M., and W. W. Agace. 2014. Regional specialization within the intestinal immune system. Nature Reviews. Immunology 14 (10):667–85. doi:10.1038/nri3738.
  • Naqash, F., F. A. Masoodi, S. A. Rather, S. M. Wani, and A. Gani. 2017. Emerging concepts in the nutraceutical and functional properties of pectin—A review. Carbohydrate Polymers 168:227–39. doi:10.1016/j.carbpol.2017.03.058.
  • Nascimento, A. M., L. M. de Souza, C. H. Baggio, M. F. d P. Werner, D. Maria-Ferreira, L. M. da Silva, G. L. Sassaki, P. A. J. Gorin, M. Iacomini, and T. R. Cipriani. 2013. Gastroprotective effect and structure of a rhamnogalacturonan from Acmella oleracea. Phytochemistry 85 (January):137–42. doi:10.1016/j.phytochem.2012.08.024.
  • do Nascimento, G. E., S. M. B. Winnischofer, M. I. Ramirez, M. Iacomini, and L. M. C. Cordeiro. 2017. The influence of sweet pepper pectin structural characteristics on cytokine secretion by THP-1 macrophages. Food Research International (Ottawa, Ont.) 102(December): 588–94. doi:10.1016/j.foodres.2017.09.037.
  • Ndeh, D., A. Rogowski, A. Cartmell, A. S. Luis, A. Baslé, J. Gray, I. Venditto, J. Briggs, X. Zhang, A. Labourel, et al. 2017. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544 (7648):65–70. doi:10.1038/nature21725.
  • Neu, J., R. Sharma, and C. Young. 2010. Molecular modulation of intestinal epithelial barrier: Contribution of microbiota. Journal of Biomedicine & Biotechnology 2010:305879. 2010. doi:10.1155/2010/305879.
  • Nishida, A., R. Inoue, O. Inatomi, S. Bamba, Y. Naito, and A. Andoh. 2017. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical Journal of Gastroenterology 2017 11:1, 11 (1):1–10. doi:10.1007/s12328-017-0813-5.
  • Ohira, H., W. Tsutsui, and Y. Fujioka. 2017. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? Journal of Atherosclerosis and Thrombosis 24 (7):660–72. doi:10.5551/jat.RV17006.
  • Okumura, R., and K. Takeda. 2018. Maintenance of intestinal homeostasis by mucosal barriers. Inflammation and Regeneration 38 (1):5. doi:10.1186/s41232-018-0063-z.
  • Paone, P., and P. D. Cani. 2020. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 69 (12):2232–43. doi:10.1136/gutjnl-2020-322260.
  • Pappolla, M. A., G. Perry, X. Fang, M. Zagorski, K. Sambamurti, and B. Poeggeler. 2021. Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer’s disease. Neurobiology of Disease 156(August): 105403. doi:10.1016/j.nbd.2021.105403.
  • Parkar, S. G., E. L. Redgate, R. Wibisono, X. X. Luo, E. T. Koh, and R. Schröder. 2010. Gut health benefits of kiwifruit pectins: Comparison with commercial functional polysaccharides. Journal of Functional Foods 2 (3):210–8. doi:10.1016/j.jff.2010.04.009.
  • Park, S. N., K. T. Noh, Y.-I. Jeong, I. D. Jung, H. K. Kang, G. S. Cha, S. J. Lee, J. K. Seo, D. H. Kang, T.-H. Hwang, et al. 2013. Rhamnogalacturonan II is a toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells. Experimental & Molecular Medicine 2013 45:2 45 (2):e8–e8–e8. doi:10.1038/emm.2013.14.
  • Perrone, P., C. M. Hewage, A. R. Thomson, K. Bailey, I. H. Sadler, and S. C. Fry. 2002. Patterns of methyl and O-acetyl esterification in Spinach pectins: New complexity. Phytochemistry 60 (1):67–77. doi:10.1016/s0031-9422(02)00039-0.
  • Peterson, L. W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews. Immunology 14 (3):141–53. doi:10.1038/nri3608.
  • Petruzziello, L., F. Iacopini, M. Bulajic, S. Shah, and G. Costamagna. 2006. Review article: Uncomplicated diverticular disease of the colon. Alimentary Pharmacology & Therapeutics 23 (10):1379–91. doi:10.1111/j.1365-2036.2006.02896.x.
  • Popov, S. V., P. A. Markov, G. Y. Popova, I. R. Nikitina, L. Efimova, and Y. S. Ovodov. 2013. Anti-inflammatory activity of low and high methoxylated citrus pectins. Biomedicine & Preventive Nutrition 3 (1):59–63. doi:10.1016/j.bionut.2012.10.008.
  • Popov, S. V., R. G. Ovodova, P. A. Markov, I. R. Nikitina, and Y. S. Ovodov. 2006. Protective effect of comaruman, a pectin of cinquefoil Comarum palustre L., on acetic acid-induced colitis in mice. Digestive Diseases and Sciences 51 (9):1532–7. doi:10.1007/s10620-005-9034-8.
  • Popov, S. V., and Y. S. Ovodov. 2013. Polypotency of the immunomodulatory effect of pectins. Biochemistry. Biokhimiia 78 (7):823–35. doi:10.1134/S0006297913070134.
  • Priyadarshini, M., K. Lednovich, K. Xu, S. Gough, B. Wicksteed, and B. T. Layden. 2021. FFAR from the gut microbiome crowd: SCFA receptors in T1D pathology. Metabolites 11 (5):302. doi:10.3390/metabo11050302.
  • Rajamma, S. S., V. Krishnaswami, and R. Kandasamy. 2022. Functional role of prebiotic supplement in brain signalling. Microbiome-Gut-Brain Axis: Implications on Health 215–36. Singapore: Springer. doi:10.1007/978-981-16-1626-6_9.
  • Ralet, M. C., J. C. Cabrera, E. Bonnin, B. Quéméner, P. Hellìn, and J. F. Thibault. 2005. Mapping sugar beet pectin acetylation pattern. Phytochemistry 66 (15):1832–43. doi:10.1016/j.phytochem.2005.06.003.
  • Ralet, M. C., M. J. Crépeau, H. C. Buchholt, and J. F. Thibault. 2003. Polyelectrolyte behaviour and calcium binding properties of sugar beet pectins differing in their degrees of methylation and acetylation. Biochemical Engineering Journal 16 (2):191–201. doi:10.1016/S1369-703X(03)00037-8.
  • Ratajczak, W., A. Rył, A. Mizerski, K. Walczakiewicz, O. Sipak, and M. Laszczyńska. 2019. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica 66 (1):1–12. doi:10.18388/abp.2018_2648.
  • Reddy, B. S., K. Watanabe, and A. Sheinfil. 1980. Effect of dietary wheat bran, alfalfa, pectin and carrageenan on plasma cholesterol and fecal bile acid and neutral sterol excretion in rats. The Journal of Nutrition 110 (6):1247–54. doi:10.1093/jn/110.6.1247.
  • Ren, T., F. R. Liu, D. X. Wang, B. Li, P. Jiang, J. M. Li, H. Li, C. B. Chen, W. Wu, and L. L. Jiao. 2023. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway. Journal of Ethnopharmacology 301(January): 115862. doi:10.1016/j.jep.2022.115862.
  • Rossen, N. G., J. K. MacDonald, E. M. de Vries, G. R. D’Haens, W. M. de Vos, E. G. Zoetendal, and C. Y. Ponsioen. 2015. Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World Journal of Gastroenterology 21 (17):5359–71. doi:10.3748/wjg.v21.i17.5359.
  • Sabater, C., J. A. Molina-Tijeras, T. Vezza, N. Corzo, A. Montilla, and P. Utrilla. 2019. Intestinal anti-inflammatory effects of artichoke pectin and modified pectin fractions in the dextran sulfate sodium model of mice colitis. Artificial neural network modelling of inflammatory markers. Food & Function 10 (12):7793–805. doi:10.1039/c9fo02221j.
  • Sahasrabudhe, N. M., M. Beukema, L. Tian, B. Troost, J. Scholte, E. Bruininx, G. Bruggeman, M. van den Berg, A. Scheurink, H. A. Schols, et al. 2018. Dietary fiber pectin directly blocks toll-like receptor 2-1 and prevents doxorubicin-induced ileitis. Frontiers in Immunology 9 (MAR):383. doi:10.3389/fimmu.2018.00383.
  • Salyers, A. A., S. E. West, J. R. Vercellotti, and T. D. Wilkins. 1977. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Applied and Environmental Microbiology 34 (5):529–33. doi:10.1128/aem.34.5.529-533.1977.
  • Schleimer, R. P., and S. Berdnikovs. 2017. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. The Journal of Allergy and Clinical Immunology 139 (6):1752–61. doi:10.1016/j.jaci.2017.04.010.
  • Schols, H. A., and A. G. Voragen. 1996. Complex pectins: Structure elucidation using enzymes. Progress in Biotechnology 14 (C):3–19.
  • Slavin, J. 2013. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5 (4):1417–35. doi:10.3390/nu5041417.
  • Soliman, G. A. 2019. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 11 (5):1155. doi:10.3390/nu11051155.
  • Sousa, A. G., H. L. Nielsen, I. Armagan, J. Larsen, and S. O. Sørensen. 2015. The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocolloids. 47 (May):130–9. doi:10.1016/j.foodhyd.2015.01.013.
  • Spahn, T. W., and T. Kucharzik. 2004. Modulating the intestinal immune system: The role of lymphotoxin and GALT organs. Gut 53 (3):456–65. doi:10.1136/gut.2003.023671.
  • Szentkuti, L., H. Riedesel, M. L. Enss, K. Gaertner, and W. Von Engelhardt. 1990. Pre-epithelial mucus layer in the colon of conventional and germ-free rats. The Histochemical Journal 22 (9):491–7. doi:10.1007/BF01007234.
  • Tang, X., M. Beukema, M. Ferrari, M. T. C. Walvoort, B. J. De Haan, and P. De Vos. 2023. Efficacy of pectins with different degree of methyl-esterification and of blockiness on preventing gut epithelial cell barrier disruption and impact on sodium-glucose co-transporter expression under low and high glucose conditions. Food & Function 14 (13):6226–35. doi:10.1039/d3fo01436c.
  • Takiishi, T., C. I. M. Fenero, and N. O. S. Câmara. 2017. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 5 (4):e1373208. doi:10.1080/21688370.2017.1373208.
  • Thaiss, C. A., N. Zmora, M. Levy, and E. Elinav. 2016. The microbiome and innate immunity. Nature 535 (7610):65–74. doi:10.1038/nature18847.
  • Thakur, B. R., R. K. Singh, and A. K. Handa. 2009. Chemistry and uses of pectin—A review. Critical Reviews in Food Science and Nutrition 37 (1):47–73. doi:10.1080/10408399709527767.
  • Tian, L. M., G. Bruggeman, M. Van den Berg, K. Borewicz, A. J. W. Scheurink, E. Bruininx, P. De Vos, H. Smidt, H. A. Schols, and H. Gruppen. 2017. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Molecular Nutrition & Food Research 61 (1):1600186. doi:10.1002/mnfr.201600186.
  • Tian, L. M., J. Scholte, K. Borewicz, B. Van den Bogert, H. Smidt, A. J. Scheurink, H. Gruppen, and H. A. Schols. 2016. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Molecular Nutrition & Food Research 60 (10):2256–66. doi:10.1002/mnfr.201600149.
  • Tolhurst, G., H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib, E. Diakogiannaki, J. Cameron, J. Grosse, F. Reimann, and F. M. Gribble. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2):364–71. doi:10.2337/db11-1019.
  • Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews. Immunology 9 (11):799–809. doi:10.1038/nri2653.
  • Vincken, J. P., H. A. Schols, R. J. Oomen, M. C. McCann, P. Ulvskov, A. G. J. Voragen, and R. G. F. Visser. 2003. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology 132 (4):1781–9. doi:10.1104/pp.103.022350.
  • Visser, J., J. Rozing, A. Sapone, K. Lammers, and A. Fasano. 2009. Tight junctions, intestinal permeability, and autoimmunity. Annals of the New York Academy of Sciences 1165 (1):195–205. doi:10.1111/j.1749-6632.2009.04037.x.
  • Vogt, L. M., N. M. Sahasrabudhe, U. Ramasamy, D. Meyer, G. Pullens, M. M. Faas, K. Venema, H. A. Schols, and P. De Vos. 2016. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. Journal of Functional Foods 22(April): 398–407. doi:10.1016/j.jff.2016.02.002.
  • Walker, A. W., and T. D. Lawley. 2013. Therapeutic modulation of intestinal dysbiosis. Pharmacological Research 69 (1):75–86. doi:10.1016/j.phrs.2012.09.008.
  • Wang, J. W., C. H. Kuo, F. C. Kuo, Y. K. Wang, W. H. Hsu, F. J. Yu, H. M. Hu, P. I. Hsu, J. Y. Wang, and D. C. Wu. 2019. Fecal microbiota transplantation: Review and update. Journal of the Formosan Medical Association = Taiwan Yi Zhi 118 Suppl 1(March): S23–S31. doi:10.1016/j.jfma.2018.08.011.
  • Wang, X., L. Wilson, and D. J. Cosgrove. 2020. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. Journal of Experimental Botany 71 (9):2629–40. doi:10.1093/jxb/eraa059.
  • Wikiera, A., M. Irla, and M. Mika. 2014. Health-promoting properties of pectin. Postepy Higieny i Medycyny Doswiadczalnej (Online) 68 (January):590–6. doi:10.5604/17322693.1102342.
  • Willats, W. G., J. P. Knox, and J. D. Mikkelsen. 2006. Pectin: New insights into an old polymer are starting to gel. Trends in Food Science & Technology 17 (3):97–104. doi:10.1016/j.tifs.2005.10.008.
  • Williams, L. M., H. A. Scott, and L. G. Wood. 2019. Soluble fibre as a treatment for inflammation in asthma. Journal of Nutrition & Intermediary Metabolism 18(December): 100108. doi:10.1016/j.jnim.2019.100108.
  • Wu, C., L.-L. Pan, Y. Luo, W. Niu, X. Fang, W. Liang, J. Li, H. Li, X. Pan, G. Yang, et al. 2019. Low methoxyl pectin protects against autoimmune diabetes and associated caecal dysfunction. Molecular Nutrition & Food Research 63 (21):e1900307. doi:10.1002/mnfr.201900307.
  • Wu, D. M., X. Q. Ye, R. J. Linhardt, X. W. Liu, K. Zhu, C. X. Yu, T. Ding, D. H. Liu, Q. J. He, and S. G. Chen. 2021. Dietary pectic substances enhance gut health by its polycomponent: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):2015–39. doi:10.1111/1541-4337.12723.
  • Wu, D. M., J. Q. Zheng, G. Z. Mao, W. W. Hu, X. Q. Ye, R. J. Linhardt, and S. G. Chen. 2020. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Critical Reviews in Food Science and Nutrition 60 (17):2938–60. doi:10.1080/10408398.2019.1672037.
  • Wu, W. D., L. Zhang, B. Xia, S. L. Tang, J. J. Xie, and H. F. Zhang. 2020. Modulation of pectin on mucosal innate immune function in pigs mediated by gut microbiota. Microorganisms 8 (4):535. doi:10.3390/microorganisms8040535.
  • Xie, J. L., R. X. Yu, J. M. Qi, G. W. Zhang, X. C. Peng, and J. M. Luo. 2020. Pectin and inulin stimulated the mucus formation at a similar level: An omics-based comparative analysis. Journal of Food Science 85 (6):1939–47. doi:10.1111/1750-3841.15163.
  • Yapo, B. M. 2011. Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polymer Reviews 51 (4):391–413. doi:10.1080/15583724.2011.615962.
  • Zhao, L., F. Zhang, X. Ding, G. Wu, Y. Y. Lam, X. Wang, H. Fu, X. Xue, C. Lu, J. Ma, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science (New York, N.Y.) 359 (6380):1151–6. doi:10.1126/science.aao5774.
  • Zhao, Y. Y., J. F. Bi, J. Y. Yi, X. Y. Wu, Y. C. Ma, and R. P. Li. 2021. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation. Carbohydrate Polymers 269(October): 118326. doi:10.1016/j.carbpol.2021.118326.