507
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications

, & ORCID Icon

References

  • Adegun, A. O., T. A. Akinnifesi, I. A. Ololade, R. Busquets, P. S. Hooda, P. C. W. Cheung, A. K. Aseperi, and J. Barker. 2020. Quantification of neonicotinoid pesticides in six cultivable fish species from the river Owena in Nigeria and a template for food safety assessment. Water 12 (9):2422. doi: 10.3390/w12092422.
  • Ai, J., X. Wang, Y. Zhang, H. Hu, H. Zhou, Y. Duan, D. Wang, H. Wang, H. Du, and Y. Yang. 2022. A sensitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nanocomposite. Applied Physics A 128 (9):831. doi: 10.1007/s00339-022-05952-9.
  • Ajermoun, N., A. Farahi, S. Lahrich, M. Bakasse, S. Saqrane, and M. Abderrahim El Mhammedi. 2019. Electrocatalytic activity of the metallic silver electrode for thiamethoxam reduction: Application for the detection of a neonicotinoid in tomato and orange samples. Journal of the Science of Food and Agriculture 99 (9):4407–13. doi: 10.1002/jsfa.9675.
  • Ajermoun, N., A. Loudiki, A. Farahi, S. Lahrich, S. Saqrane, M. Bakasse, and M. A. El Mhammedi. 2021. Review-Sensor evaluation for thiamethoxam detection in different matrices. Journal of the Electrochemical Society 168 (11):116508. doi: 10.1149/1945-7111/ac38f5.
  • Ansah, I. B., S. H. Lee, J.-Y. Yang, C. Mun, S. Jung, H. S. Jung, M. Y. Lee, T. Kang, S. Lee, D.-H. Kim, et al. 2023. In-situ fabrication of 3D interior hotspots templated with a protein@Au core-shell structure for label-free and on-site SERS detection of viral diseases. Biosensors & Bioelectronics 220:114930. doi: 10.1016/j.bios.2022.114930.
  • Babazadeh, S., P. A. Moghaddam, S. Keshipour, and K. Mollazade. 2020. Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum dot/Au (III) chemosensor. Scientific Reports 10 (1):14327. doi: 10.1038/s41598-020-71349-4.
  • Bai, F., T. Bu, R. Li, S. Zhao, K. He, M. Li, H. Zhang, Y. Zhang, L. Zhang, Y. Wang, et al. 2022. Rose petals-like Bi semimetal embedded on the zeolitic imidazolate frameworks based-immunochromatographic strip to sensitively detect acetamiprid. Journal of Hazardous Materials 423 (Pt B):127202. doi: 10.1016/j.jhazmat.2021.127202.
  • Bai, F., T. Bu, S. Zhao, K. He, H. Zhang, R. Li, M. Li, Y. Wang, and L. Wang. 2022. Golf-shaped Bi2Se3 microparticles based-immunochromatographic strip for ultrasensitive detection of acetamiprid. Journal of Hazardous Materials 433:128810. doi: 10.1016/j.jhazmat.2022.128810.
  • Beatty, M. A., and F. Hof. 2021. Host-guest binding in water, salty water, and biofluids: General lessons for synthetic, bio-targeted molecular recognition. Chemical Society Reviews 50 (8):4812–32. doi: 10.1039/D0CS00495B.
  • Butcherine, P., K. Benkendorff, B. Kelaher, and B. J. Barkla. 2019. The risk of neonicotinoid exposure to shrimp aquaculture. Chemosphere 217:329–48. doi: 10.1016/j.chemosphere.2018.10.197.
  • Cardinal, M. F., E. V. Ende, R. A. Hackler, M. O. McAnally, P. C. Stair, G. C. Schatz, and R. P. Van Duyne. 2017. Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews 46 (13):3886–903. doi: 10.1039/C7CS00207F.
  • Cardoso, A. G., H. Viltres, G. A. Ortega, V. Phung, R. Grewal, H. Mozaffari, S. R. Ahmed, A. R. Rajabzadeh, and S. Srinivasan. 2023. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. TrAC Trends in Analytical Chemistry 160:116965. doi: 10.1016/j.trac.2023.116965.
  • Chang, K., Y. Zhao, M. Wang, Z. Xu, L. Zhu, L. Xu, and Q. Wang. 2023. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chemical Engineering Journal 459:141539. doi: 10.1016/j.cej.2023.141539.
  • Chen, D., Y. Zhang, B. Lv, Z. Liu, J. Han, J. Li, Y. Zhao, and Y. Wu. 2020. Dietary exposure to neonicotinoid insecticides and health risks in the Chinese general population through two consecutive total diet studies. Environment International 135:105399. doi: 10.1016/j.envint.2019.105399.
  • Chen, M., A. Qileng, H. Liang, H. Lei, W. Liu, and Y. Liu. 2023. Advances in immunoassay-based strategies for mycotoxin detection in food: From single-mode immunosensors to dual-mode immunosensors. Comprehensive Reviews in Food Science and Food Safety 22 (2):1285–311. doi: 10.1111/1541-4337.13111.
  • Chen, Z., Z. Zhang, J. Qi, J. You, J. Ma, and L. Chen. 2023. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. Journal of Hazardous Materials 441:129889. doi: 10.1016/j.jhazmat.2022.129889.
  • Del Río-Celestino, M., and R. Font. 2020. The health benefits of fruits and vegetables. Foods 9 (3):369. doi: 10.3390/foods9030369.
  • Deng, Y., R. Liu, M. Zheng, Z. Wang, S. Yu, Y. Zhou, Z. Zhou, and J. Diao. 2022. From the first to third generation of neonicotinoids: Implication for saving the loss of fruit quality and flavor by pesticide applications. Journal of Agricultural and Food Chemistry 70 (49):15415–29. doi: 10.1021/acs.jafc.2c06055.
  • Dhuldhaj, U. P., R. Singh, and V. K. Singh. 2022. Pesticide contamination in agro-ecosystems: Toxicity, impacts, and bio-based management strategies. Environmental Science and Pollution Research International 30 (4):9243–70. doi: 10.1007/s11356-022-24381-y.
  • Di Giulio, T., A. Barca, T. Verri, M. De Gennaro, G. Giancane, E. Mazzotta, and C. Malitesta. 2023. Molecular imprinting based on metal-ion mediated recognition: Electrosynthesis of artificial receptors for the selective detection of peptides. Sensors and Actuators B: Chemical 383:133589. doi: 10.1016/j.snb.2023.133589.
  • Dong, S., K. He, J. Yang, Q. Shi, L. Guan, Z. Chen, and J. Feng. 2022. A simple mesoporous silica Nanoparticle-based aptamers SERS sensor for the detection of acetamiprid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 283:121725. doi: 10.1016/j.saa.2022.121725.
  • Dong, X., S. Qi, I. M. Khan, Y. Sun, Y. Zhang, and Z. Wang. 2023. Advances in riboswitch-based biosensor as food samples detection tool. Comprehensive Reviews in Food Science and Food Safety 22 (1):451–72. doi: 10.1111/1541-4337.13077.
  • Elbaz, G. A., H. E. Zaazaa, L. M. Abd El Halim, and H. H. Monir. 2023. LC-MS/MS determination and quantitation of some pesticides residues in thyme and guava leaves extracts: Application of QuEChERS protocol. Microchemical Journal 185:108218. doi: 10.1016/j.microc.2022.108218.
  • Escobar, L., and P. Ballester. 2021. Molecular recognition in water using macrocyclic synthetic receptors. Chemical Reviews 121 (4):2445–514. doi: 10.1021/acs.chemrev.0c00522.
  • Ewere, E. E., D. Powell, D. Rudd, A. Reichelt-Brushett, P. Mouatt, N. H. Voelcker, and K. Benkendorff. 2019. Uptake, depuration and sublethal effects of the neonicotinoid, imidacloprid, exposure in Sydney rock oysters. Chemosphere 230:1–13. doi: 10.1016/j.chemosphere.2019.05.045.
  • Fan, K., W. Kang, S. Qu, L. Li, B. Qu, and L. Lu. 2019. A label-free and enzyme-free fluorescent aptasensor for sensitive detection of acetamiprid based on AT-rich dsDNA-templated copper nanoparticles. Talanta 197:645–52. doi: 10.1016/j.talanta.2019.01.069.
  • Fang, X., D. Duan, J. Ye, and K. Li. 2021. A sensitive visual detection of thiamethoxam based on fluorescence resonance energy transfer from NH2-SiO2@CsPbBr3 to merocyanine configuration of spiropyran. Analytica Chimica Acta 1183:338938. doi: 10.1016/j.aca.2021.338938.
  • Ferreira Oliveira, A. E., G. B. Bettio, and A. C. Pereira. 2018. An electrochemical sensor based on electropolymerization of ss-cyclodextrin and reduced graphene oxide on a glassy carbon electrode for determination of neonicotinoids. Electroanalysis 30 (9):1918–28. doi: 10.1002/elan.201800236.
  • Fritea, L., M. Tertiş, C. Cristea, and R. Săndulescu. 2023. Exploring the research progress about the applications of cyclodextrins and nanomaterials in electroanalysis. Electroanalysis 35 (1):2200014. doi: 10.1002/elan.202200014.
  • Gao, T., D.-W. Sun, Y. Tian, and Z. Zhu. 2021. Gold-silver core-shell nanorods based time-temperature indicator for quality monitoring of pasteurized milk in the cold chain. Journal of Food Engineering 306:110624. doi: 10.1016/j.jfoodeng.2021.110624.
  • García-Vara, M., C. Postigo, P. Palma, M. J. Bleda, and M. López de Alda. 2022. QuEChERS-based analytical methods developed for LC-MS/MS multiresidue determination of pesticides in representative crop fatty matrices: Olives and sunflower seeds. Food Chemistry 386:132558. doi: 10.1016/j.foodchem.2022.132558.
  • Gioia, R. R., J. O. Fernandes, C. A. Rolim Bernardino, C. F. Mahler, B. F. Braz, C. S. Capella Lopes, B. S. Archanjo, E. S. Ribeiro, E. D'Elia, R. E. Santelli, et al. 2022. An electrochemical sensor-based carbon black associated with a modified mixed oxide (SiO2/TiO2/Sb2O5) for direct determination of thiamethoxam in raw honey and water samples. Mikrochimica Acta 189 (8):307. doi: 10.1007/s00604-022-05412-4.
  • Gross, M. S., E. E. Woodward, and M. L. Hladik. 2022. Evaluation of ELISA for the analysis of imidacloprid in biological matrices: Cross-reactivities, matrix interferences, and comparison to LC-MS/MS. Chemosphere 286 (Pt 3):131746. doi: 10.1016/j.chemosphere.2021.131746.
  • Guo, L., M. Tian, L. Wang, X. Zhou, Q. Wang, L. Hao, Q. Wu, Z. Wang, and C. Wang. 2023. Synthesis of hydroxyl-functional magnetic hypercrosslinked polymer as high efficiency adsorbent for sensitively detecting neonicotinoid residues in water and lettuce samples. Microchemical Journal 187:108412. doi: 10.1016/j.microc.2023.108412.
  • Han, W., Y. Tian, and X. Shen. 2018. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 192:59–65. doi: 10.1016/j.chemosphere.2017.10.149.
  • He, H., D.-W. Sun, Z. Wu, H. Pu, and Q. Wei. 2022. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends in Food Science & Technology 119:243–56. doi: 10.1016/j.tifs.2021.11.029.
  • He, H., D.-W. Sun, H. Pu, and L. Huang. 2020. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry 324:126832. doi: 10.1016/j.foodchem.2020.126832.
  • He, K., L. Wang, and X. Xu. 2023. Chapter 17 – Chemical sensing of pesticides in water. In Advanced Sensor Technology, ed. A. Barhoum and Z. Altintas, 647–68. Elsevier. doi: 10.1016/B978-0-323-90222-9.00008-X.
  • He, Q., B. Wang, J. Liang, J. Liu, B. Liang, G. Li, Y. Long, G. Zhang, and H. Liu. 2023. Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Materials Today Advances 17:100340. doi: 10.1016/j.mtadv.2022.100340.
  • Hu, B., D.-W. Sun, H. Pu, and Q. Wei. 2020. A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta 218:121188 (647–668). doi: 10.1016/j.talanta.2020.121188.
  • Hu, B., D.-W. Sun, H. Pu, and Z. Huang. 2023. High-performance homogeneous carboxymethylcellulose-stabilized Au@Ag NRs-CMC surface-enhanced Raman scattering chip for thiram detection in fruits. Food Chemistry 412:135332. doi: 10.1016/j.foodchem.2022.135332.
  • Hu, B., H. Pu, and D.-W. Sun. 2023. Flexible Au@AgNRs/CMC/qPCR film with enhanced sensitivity, homogeneity and stability for in-situ extraction and SERS detection of thiabendazole on fruits. Food Chemistry 423:135840. doi: 10.1016/j.foodchem.2023.135840.
  • Huang, L., D.-W. Sun, H. Pu, C. Zhang, and D. Zhang. 2023. Nanocellulose-based polymeric nanozyme as bioinspired spray coating for fruit preservation. Food Hydrocolloids. 135:108138. doi: 10.1016/j.foodhyd.2022.108138.
  • Huang, L., D.-W. Sun, Z. Wu, H. Pu, and Q. Wei. 2021. Reproducible, shelf-stable, and bioaffinity SERS nanotags inspired by multivariate polyphenolic chemistry for bacterial identification. Analytica Chimica Acta 1167:338570. doi: 10.1016/j.aca.2021.338570.
  • Hussain, A., H. Pu, and D.-W. Sun. 2020a. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. Journal of Food Measurement and Characterization 14 (4):2021–29. doi: 10.1007/s11694-020-00448-7.
  • Hussain, A., D.-W. Sun, and H. Pu. 2020b. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chemistry 317:126429. doi: 10.1016/j.foodchem.2020.126429.
  • Hussain, N., H. Pu, A. Hussain, and D.-W. Sun. 2020. Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 236:118357. doi: 10.1016/j.saa.2020.118357.
  • Hussain, N., H. Pu, and D.-W. Sun. 2021a. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Food Chemistry 350:129025. doi: 10.1016/j.foodchem.2021.129025.
  • Hussain, N., H. Pu, and D.-W. Sun. 2021b. Synthesis of bimetallic core-shelled nanoparticles modified by 2-mercaptoethanol as SERS substrates for detecting ferbam and thiabendazole in apple puree. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (8):1386–99. doi: 10.1080/19440049.2021.1933207.
  • Jayan, H., D.-W. Sun, H. Pu, and Q. Wei. 2023. Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 284:121817. doi: 10.1016/j.saa.2022.121817.
  • Jiang, M., X. Fang, H. Diao, S. Lv, Z. Zhang, X. Zhang, Z. Chen, and Z. Luo. 2023. Semi-automated and efficient parallel SELEX of aptamers for multiple targets. Analytical Methods: Advancing Methods and Applications 15 (16):2039–43. doi: 10.1039/d3ay00367a.
  • Jiao, S., Y. Wang, Y. Chang, P. Liu, Y. Chen, Y. Liu, G. Zhu, and Y. Guo. 2022. Trace immunosensing of multiple neonicotinoid insecticides by a novel broad-specific antibody obtained from a rational screening strategy. Biosensors 12 (9):716. doi: 10.3390/bios12090716.
  • Jiao, Y., Y. Qiu, L. Zhang, W.-G. Liu, H. Mao, H. Chen, Y. Feng, K. Cai, D. Shen, B. Song, et al. 2022. Electron-catalysed molecular recognition. Nature 603 (7900):265–70. doi: 10.1038/s41586-021-04377-3.
  • Jiao, Z., H. Zhang, S. Jiao, Z. Guo, D. Zhu, and X. Zhao. 2019. A turn-on biosensor-based aptamer-mediated carbon quantum dots nanoaggregate for acetamiprid detection in complex samples. Food Analytical Methods 12 (3):668–76. doi: 10.1007/s12161-018-1393-9.
  • Jin, R., Z. Xing, D. Kong, X. Yan, F. Liu, Y. Gao, P. Sun, X. Liang, and G. Lu. 2019. Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes. Journal of Materials Chemistry. B 7 (8):1230–7. doi: 10.1039/c8tb02987c.
  • Jogadi, W., and Y.-R. Zheng. 2023. Supramolecular platinum complexes for cancer therapy. Current Opinion in Chemical Biology 73:102276. doi: 10.1016/j.cbpa.2023.102276.
  • Kaewket, K., and K. Ngamchuea. 2023. Microporous carbon for fast and simple electrochemical detection of imidacloprid insecticide in fruit and water samples. RSC Advances 13 (7):4532–41. doi: 10.1039/d3ra00192j.
  • Kalyabina, V. P., E. N. Esimbekova, K. V. Kopylova, and V. A. Kratasyuk. 2021. Pesticides: Formulants, distribution pathways and effects on human health – A review. Toxicology Reports 8:1179–92. doi: 10.1016/j.toxrep.2021.06.004.
  • Kapoor, A., and J. K. Rajput. 2023. A prompt electrochemical monitoring platform for sensitive and selective determination of thiamethoxam using Fe2O3@g-C3N4@MSB composite modified glassy carbon electrode. Journal of Food Composition and Analysis 115:105033. doi: 10.1016/j.jfca.2022.105033.
  • Kateshiya, M. R., N. I. Malek, and S. K. Kailasa. 2020. Facile synthesis of highly blue fluorescent tyrosine coated molybdenum oxide quantum dots for the detection of imidacloprid pesticide. Journal of Molecular Liquids 319:114329. doi: 10.1016/j.molliq.2020.114329.
  • Kato, K., S. Fa, S. Ohtani, T-h Shi, A. M. Brouwer, and T. Ogoshi. 2022. Noncovalently bound and mechanically interlocked systems using pillar n arenes. Chemical Society Reviews 51 (9):3648–87. doi: 10.1039/d2cs00169a.
  • Kong, Q., F. Yue, M. Liu, J. Huang, F. Yang, J. Liu, J. Li, F. Li, X. Sun, Y. Guo, et al. 2022. Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables. Analytica Chimica Acta 1202:339677. doi: 10.1016/j.aca.2022.339677.
  • Kumar, S. R. S., R. B. Rakhi, and V. S. Haritha. 2023. WS2-nanosheet-modified electrodes as an efficient electrochemical sensing platform for the nonenzymatic detection of the insecticide imidacloprid. ACS Omega 8 (9):8695–702. doi: 10.1021/acsomega.2c08077.
  • Kumar, V., and K.-H. Kim. 2022. Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples. Environmental Pollution 299:118824. doi: 10.1016/j.envpol.2022.118824.
  • Laskowski, W., H. Górska-Warsewicz, K. Rejman, M. Czeczotko, and J. Zwolińska. 2019. How important are cereals and cereal products in the average polish diet? Nutrients 11 (3):679. doi: 10.3390/nu11030679.
  • Leska, A., A. Nowak, I. Nowak, and A. Górczyńska. 2021. Effects of insecticides and microbiological contaminants on Apis Mellifera health. Molecules 26 (16):5080. doi: 10.3390/molecules26165080.
  • Li, D., T. Zheng, Y. Liu, D. Hou, K. K. Yao, W. Zhang, H. Song, H. He, W. Shi, L. Wang, et al. 2020. A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H2O2 and cycle of Fe3+/Fe2+. Journal of Hazardous Materials 396:122591. doi: 10.1016/j.jhazmat.2020.122591.
  • Li, N., R. Li, X. Sun, Y. Yang, and Z. Li. 2020. Dual amplification in a fluorometric acetamiprid assay by using an aptamer, G-quadruplex/hemin DNAzyme, and graphene quantum dots functionalized with D-penicillamine and histidine. Microchimica Acta 187:158. doi: 10.1007/s00604-020-4127-9.
  • Li, W., F. Xiao, X. Bai, and H. Xu. 2023. Magnetic nanoparticles for food hazard factors sensing: Synthesis, modification and application. Chemical Engineering Journal 465:142816. doi: 10.1016/j.cej.2023.142816.
  • Li, X., and X. Kan. 2018. A ratiometric strategy-based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid. The Analyst 143 (9):2150–6. doi: 10.1039/c8an00111a.
  • Li, X., S. He, H. Xiao, T.-T. He, J.-D. Zhang, Z.-R. Luo, J.-Z. Ma, Y.-L. Yin, L. Luo, and L.-Y. Cao. 2022. Neonicotinoid insecticides promote breast cancer progression via G protein-coupled estrogen receptor: In vivo, in vitro and in silico studies. Environment International 170:107568. doi: 10.1016/j.envint.2022.107568.
  • Li, Y., R. Su, H. Li, J. Guo, N. Hildebrandt, and C. Sun. 2022. Fluorescent aptasensors: Design strategies and applications in analyzing chemical contamination of food. Analytical Chemistry 94 (1):193–224. doi: 10.1021/acs.analchem.1c04294.
  • Li, Y., Z. Mu, Y. Yuan, J. Zhou, L. Bai, and M. Qing. 2023. An enzymatic activity regulation-based clusterzyme sensor array for high-throughput identification of heavy metal ions. Journal of Hazardous Materials 454:131501. doi: 10.1016/j.jhazmat.2023.131501.
  • Liu, H., H. Guan, F. He, Y. Song, F. Li, D. Sun-Waterhouse, and D. Li. 2023. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Critical Reviews in Food Science and Nutrition Apr 19 1–31. doi: 10.1080/10408398.2023.2202762.
  • Liu, Y., N. Cao, W. Gui, and Q. Ma. 2018. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection. Talanta 183:339–44. doi: 10.1016/j.talanta.2018.01.063.
  • Lu, C., C.-H. Chang, C. Palmer, M. Zhao, and Q. Zhang. 2018. Neonicotinoid residues in fruits and vegetables: An integrated dietary exposure assessment approach. Environmental Science & Technology 52 (5):3175–84. doi: 10.1021/acs.est.7b05596.
  • Lu, C., Y.-T. Hu, and Q. Cheng. 2020. A review of sub-lethal neonicotinoid insecticides exposure and effects on pollinators. Current Pollution Reports 6 (2):137–51. doi: 10.1007/s40726-020-00142-8.
  • Łukaszewicz, P., P. Stepnowski, and Ł. P. Haliński. 2023. The first fully optimized and validated SPE-LC-MS/MS method for determination of the new-generation neonicotinoids in surface water samples. Chemosphere 310:136868. doi: 10.1016/j.chemosphere.2022.136868.
  • Luo, J., S. Li, Y. Wu, C. Pang, X. Ma, M. Wang, C. Zhang, X. Zhi, and B. Li. 2022. Electrochemical sensor for imidacloprid detection based on graphene oxide/gold nano/beta-cyclodextrin multiple amplification strategy. Microchemical Journal 183:107979. doi: 10.1016/j.microc.2022.107979.
  • Lv, M., H. Pu, and D.-W. Sun. 2023. Preparation of Fe3O4@UiO-66(Zr)@Ag NPs core-shell-satellite structured SERS substrate for trace detection of organophosphorus pesticides residues. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 294:122548. doi: 10.1016/j.saa.2023.122548.
  • Lv, Y., J. Sun, S. Qiao, M. Zhang, and J. Li. 2021. A facile, inexpensive and green electrochemical sensor for sensitive detection of imidacloprid residue in rice using activated electrodes. Analytical Methods: Advancing Methods and Applications 13 (33):3649–58. doi: 10.1039/d1ay00984b.
  • Ma, X., C. Pang, S. Li, J. Li, M. Wang, Y. Xiong, L. Su, J. Luo, Z. Xu, and L. Lin. 2021. Biomimetic synthesis of ultrafine mixed-valence metal-organic framework nanowires and their application in electrochemiluminescence sensing. ACS Applied Materials & Interfaces 13 (35):41987–96. doi: 10.1021/acsami.1c10074.
  • Meskher, H., T. Ragdi, A. Thakur, S. Ha, I. Khelfaoui, R. Sathyamurthy, S. Sharshir, A. K. Pandey, R. Saidur, P. Singh, et al. 2023. A review on CNTs-based electrochemical sensors and biosensors: Unique properties and potential applications. Critical Reviews in Analytical Chemistry 1–24. doi: 10.1080/10408347.2023.2171277.
  • Mou, B., C. Zuo, L. Chen, H. Xie, W. Zhang, Q. Wang, L. Wen, and N. Gan. 2023. On-site simultaneous determination of neonicotinoids, carbamates, and phenyl pyrazole insecticides in vegetables by QuEChERS extraction on nitrogen and sulfur co-doped carbon dots and portable mass spectrometry. Journal of Chromatography. A 1689:463744. doi: 10.1016/j.chroma.2022.463744.
  • Mugo, S. M., W. Lu, and S. V. Robertson. 2022. Molecularly imprinted polymer-modified microneedle sensor for the detection of imidacloprid pesticides in food samples. Sensors 22 (21):8492. doi: 10.3390/s22218492.
  • Orbay, S., and A. Sanyal. 2023. Molecularly imprinted polymeric particles created using droplet-based microfluidics: Preparation and applications. Micromachines 14 (4):763. doi: 10.3390/mi14040763.
  • Ostovan, A., M. Arabi, Y. Wang, J. Li, B. Li, X. Wang, and L. Chen. 2022. Greenificated molecularly imprinted materials for advanced applications. Advanced Materials 34 (42):E2203154. doi: 10.1002/adma.202203154.
  • Pan, Y., K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, et al. 2018. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. Journal of the American Chemical Society 140 (7):2610–8. doi: 10.1021/jacs.7b12420.
  • Patel, K. D., H.-W. Kim, J. C. Knowles, and A. Poma. 2020. Molecularly imprinted polymers and electrospinning: Manufacturing convergence for next-level applications. Advanced Functional Materials 30 (32):2001955. doi: 10.1002/adfm.202001955.
  • Peng, S., A. Wang, Y. Lian, X. Zhang, B. Zeng, Q. Chen, H. Yang, J. Li, L. Li, J. Dan, et al. 2021. Smartphone-based molecularly imprinted sensors for rapid detection of thiamethoxam residues and applications. PLOS One 16 (11):e0258508. doi: 10.1371/journal.pone.0258508.
  • Pérez-Fernández, B., J. V. Mercader, A. Abad-Fuentes, B. I. Checa-Orrego, A. Costa-García, and A. d l Escosura-Muñiz. 2020. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 209:120465. doi: 10.1016/j.talanta.2019.120465.
  • Pinalli, R., A. Pedrini, and E. Dalcanale. 2018. Biochemical sensing with macrocyclic receptors. Chemical Society Reviews 47 (18):7006–26. doi: 10.1039/c8cs00271a.
  • Qiao, X., F. Xia, D. Tian, P. Chen, J. Liu, J. Gu, and C. Zhou. 2019. Ultrasensitive “signal-on” electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Analytica Chimica Acta 1050:51–9. doi: 10.1016/j.aca.2018.11.004.
  • Ragab, M. A. A., A. F. El-Yazbi, and A. El-Hawiet. 2020. Fast economic electrochemical assay for vitamins and heavy mineral components in honey samples of different botanical origin. Microchemical Journal 155:104770. doi: 10.1016/j.microc.2020.104770.
  • Rahman, S., B. Bozal-Palabiyik, D. N. Unal, C. Erkmen, M. Siddiq, A. Shah, and B. Uslu. 2022. Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants. Trends in Environmental Analytical Chemistry 36:e00176. doi: 10.1016/j.teac.2022.e00176.
  • Rostami, M., B. Zhang, and Y. Zhang. 2023. Selective detection of nitenpyram by silica-supported carbon quantum dots. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 292:122387. doi: 10.1016/j.saa.2023.122387.
  • Saberi, Z., B. Rezaei, and A. A. Ensafi. 2019. Fluorometric label-free aptasensor for detection of the pesticideacetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Mikrochimica Acta 186 (5):273. doi: 10.1007/s00604-019-3378-9.
  • Shen, C., X. Pan, X. Wu, J. Xu, F. Dong, and Y. Zheng. 2022. Predicting and assessing the toxicity and ecological risk of seven widely used neonicotinoid insecticides and their aerobic transformation products to aquatic organisms. The Science of the Total Environment 847:157670. doi: 10.1016/j.scitotenv.2022.157670.
  • Shen, C., X. Pan, X. Wu, J. Xu, Y. Zheng, and F. Dong. 2023. Computer-aided toxicity prediction and potential risk assessment of two novel neonicotinoids, paichongding and cycloxaprid, to hydrobionts. The Science of the Total Environment 861:160605. doi: 10.1016/j.scitotenv.2022.160605.
  • Sheng, E., Y. Lu, Y. Xiao, Z. Li, H. Wang, and Z. Dai. 2021. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip. Biosensors & Bioelectronics 181:113149. doi: 10.1016/j.bios.2021.113149.
  • Shi, Q., H. Tao, Y. Wu, J. Chen, and X. Wang. 2023. An ultrasensitive label-free electrochemical aptasensing platform for thiamethoxam detection based on ZIF-67 derived Co-N doped porous carbon. Bioelectrochemistry 149:108317. doi: 10.1016/j.bioelechem.2022.108317.
  • Shirani, M. P., B. Rezaei, and A. A. Ensafi. 2019. A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 210:36–43. doi: 10.1016/j.saa.2018.08.030.
  • Shu, H., T. Lai, Z. Yang, X. Xiao, X. Chen, and Y. Wang. 2023. High sensitivity electrochemical detection of ultra-trace imidacloprid in fruits and vegetables using a Fe-rich FeCoNi-MOF. Food Chemistry 408:135221. doi: 10.1016/j.foodchem.2022.135221.
  • Silva, S. M. M., M. Li, A. X. Mendes, and S. E. E. Moulton. 2023. Reagentless protein-based electrochemical biosensors. The Analyst 148 (9):1930–8. doi: 10.1039/d3an00341h.
  • Song, S., C. Zhang, Z. Chen, F. He, J. Wei, H. Tan, and X. Li. 2018. Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction. Journal of Chromatography. A 1557:51–61. doi: 10.1016/j.chroma.2018.05.003.
  • Stara, A., M. Pagano, G. Capillo, J. Fabrello, M. Sandova, I. Vazzana, E. Zuskova, J. Velisek, V. Matozzo, and C. Faggio. 2020. Assessing the effects of neonicotinoid insecticide on the bivalve mollusc Mytilus galloprovincialis. The Science of the Total Environment 700:134914. doi: 10.1016/j.scitotenv.2019.134914.
  • Su, B., S. Liao, H. Zhu, S. Ge, Y. Liu, J. Wang, H. Chen, and L. Wang. 2021. Fabrication of a 2D metal-organic framework (MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules. Analytical Methods: Advancing Methods and Applications 13 (47):5700–10. doi: 10.1039/d1ay01837j.
  • Su, Z., F. Ye, K. He, T. Yang, W. Li, and J. Ren. 2022. Determination of acetamiprid by fluorescence monitoring of a glycine-L-histidine copper-organic framework aptasensor. Analytical Letters 55 (4):529–38. doi: 10.1080/00032719.2021.1946555.
  • Sun, Y., Z. Li, X. Huang, D. Zhang, X. Zou, J. Shi, X. Zhai, C. Jiang, X. Wei, and T. Liu. 2019. A nitrile-mediated aptasensor for optical anti-interference detection of acetamiprid in apple juice by surface-enhanced Raman scattering. Biosensors & Bioelectronics 145:111672. doi: 10.1016/j.bios.2019.111672.
  • Tacon, A. G. J., D. Lemos, and M. Metian. 2020. Fish for health: Improved nutritional quality of cultured fish for human consumption. Reviews in Fisheries Science & Aquaculture 28 (4):449–58. doi: 10.1080/23308249.2020.1762163.
  • Tang, F., Q. Hua, X. Wang, F. Luan, L. Wang, Y. Li, X. Zhuang, and C. Tian. 2022. A novel electrochemiluminescence sensor based on a molecular imprinting technique and UCNPs@ZIF-8 nanocomposites for sensitive determination of imidacloprid. The Analyst 147 (17):3917–23. doi: 10.1039/d2an01005d.
  • Tian, Y., Z. Zhang, Z. Zhu, and D.-W. Sun. 2021. Effects of nano-bubbles and constant/variable-frequency ultrasound-assisted freezing on freezing behaviour of viscous food model systems. Journal of Food Engineering 292:110284. doi: 10.1016/j.jfoodeng.2020.110284.
  • Thirumalairajan, S., and K. Girija. 2022. Tailored construction of Ag/WO3 nanospindles modified SERS substrates: An efficient analytical assay for identification of neonicotinoids on the surface of fruits. Optical Materials 132:112861. doi: 10.1016/j.optmat.2022.112861.
  • Thompson, D. A., H.-J. Lehmler, D. W. Kolpin, M. L. Hladik, J. D. Vargo, K. E. Schilling, G. H. LeFevre, T. L. Peeples, M. C. Poch, L. E. LaDuca, et al. 2020. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environmental Science. Processes & Impacts 22 (6):1315–46. doi: 10.1039/c9em00586b.
  • Umapathi, R., S. M. Ghoreishian, S. Sonwal, G. M. Rani, and Y. S. Huh. 2022. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews 453:214305. doi: 10.1016/j.ccr.2021.214305.
  • Verdian, A. 2018. Apta-nanosensors for detection and quantitative determination of acetamiprid – A pesticide residue in food and environment. Talanta 176:456–64. doi: 10.1016/j.talanta.2017.08.070.
  • Wan, Y., Y. Wang, W. Xia, Z. He, and S. Xu. 2019. Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential. The Science of the Total Environment 675:513–9. doi: 10.1016/j.scitotenv.2019.04.267.
  • Wang, H., L. Pan, Y. Liu, Y. Ye, and S. Yao. 2020. Electrochemical sensing of nitenpyram based on the binary nanohybrid of hydroxylated multiwall carbon nanotubes/single-wall carbon nanohorns. Journal of Electroanalytical Chemistry 862:113955. doi: 10.1016/j.jelechem.2020.113955.
  • Wang, H., Y. Fan, Y. Hou, B. Chen, J. Lei, S. Yu, X. Chen, and X. Hou. 2022. Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nature Communications 13 (1):1906. doi: 10.1038/s41467-022-29549-1.
  • Wang, J., Y. Wu, P. Zhou, W. Yang, H. Tao, S. Qiu, and C. Feng. 2018. A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. The Analyst 143 (21):5151–60. doi: 10.1039/c8an01166d.
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2020. A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol-functionalized core-shell Au@Ag nanoparticles. The Analyst 145 (5):1801–09. doi: 10.1039/C9AN02185J.
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2021. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 223 (Pt 2):121782. doi: 10.1016/j.talanta.2020.121782.
  • Wang, P., X. Xu, L. Guo, L. Liu, H. Kuang, J. Xiao, and C. Xu. 2023. Hapten synthesis and a colloidal gold immunochromatographic strip assay to detect nitrofen and bifenox in fruits. The Analyst 148 (11):2449–58. doi: 10.1039/d3an00358b.
  • Wang, Y., and Y. Xianyu. 2023. Colorimetric sensing strategy through the coordination chemistry between ascorbic acid 2-phosphate and copper ions. Analytical Chemistry 95 (18):7202–11. doi: 10.1021/acs.analchem.2c05701.
  • Wang, Y., J. A. Qin, Q. Lu, J. Tian, T. Ke, M. Guo, J. Luo, and M. Yang. 2023. Residue detection and correlation analysis of multiple neonicotinoid insecticides and their metabolites in edible herbs. Food Chemistry: X 17:100603. doi: 10.1016/j.fochx.2023.100603.
  • Wang, Y., Y. Fu, Y. Wang, Q. Lu, H. Ruan, J. Luo, and M. Yang. 2022. A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples. Food Chemistry: X 15:100375. doi: 10.1016/j.fochx.2022.100375.
  • Wang, Z., Y. Guo, and Y. Xianyu. 2023. Applications of self-assembly strategies in immunoassays: A review. Coordination Chemistry Reviews 478:214974. doi: 10.1016/j.ccr.2022.214974.
  • Wei, Q., P. Zhang, H. Pu, and D.-W. Sun. 2022. A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17 beta-estradiol. Food Chemistry 373 (Pt B):131591. doi: 10.1016/j.foodchem.2021.131591.
  • Wei, X., Y. Pan, Z. Tang, Q. Lin, Y. Jiang, J. Chen, W. Xian, R. Yin, A. J. Li, and R. Qiu. 2023. Neonicotinoids residues in cow milk and health risks to the Chinese general population. Journal of Hazardous Materials 452:131296.doi: 10.1016/j.jhazmat.2023.131296.
  • Wu, L., M. Zhou, C. Liu, X. Chen, and Y. Chen. 2021. Double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch for pesticide residues sensing. Journal of Hazardous Materials 403:123619. doi: 10.1016/j.jhazmat.2020.123619.
  • Wu, L., H. Pu, L. Huang, and D.-W. Sun. 2020. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chemistry 328:127105. doi: 10.1016/j.foodchem.2020.127105.
  • Wu, Z., D.-W. Sun, H. Pu, and Q. Wei. 2023. A dual signal-on biosensor based on dual-gated locked mesoporous silica nanoparticles for the detection of Aflatoxin B1. Talanta 253:124027. doi: 10.1016/j.talanta.2022.124027.
  • Wu, Z., D.-W. Sun, H. Pu, Q. Wei, and X. Lin. 2022. Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chemistry 372:131293. doi: 10.1016/j.foodchem.2021.131293.
  • Xie, T., M. Zhang, P. Chen, H. Zhao, X. Yang, L. Yao, H. Zhang, A. Dong, J. Wang, and Z. Wang. 2017. A facile molecularly imprinted electrochemical sensor based on graphene: Application to the selective determination of thiamethoxam in grain. RSC Advances 7 (62):38884–94. doi: 10.1039/C7RA05167K.
  • Xie, W., Y. Ju, J. Zhang, Y. Yang, Y. Zeng, H. Wang, and L. Li. 2022. Highly sensitive and specific determination of imidacloprid pesticide by a novel Fe3O4@SiO2@MIPIL fluorescent sensor. Analytica Chimica Acta 1195:339449. doi: 10.1016/j.aca.2022.339449.
  • Xu, C., M. Lin, T. Wang, Z. Yao, W. Zhang, and X. Feng. 2022. Colorimetric aptasensor for on-site detection of acetamiprid with hybridization chain reaction-assisted amplification and smartphone readout strategy. Food Control 137:108934. doi: 10.1016/j.foodcont.2022.108934.
  • Xu, J., J. Sun, X. Lu, Y. Wang, Y. Zhang, and X. Sun. 2023. A highly sensitive fluorescence immunochromatography strip for thiacloprid in fruits and vegetables using recombinant antibodies. Talanta 256:124258. doi: 10.1016/j.talanta.2023.124258.
  • Xu, L., D.-W. Sun, Y. Tian, T. Fan, and Z. Zhu. 2023. Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chemical Engineering Journal 457:141231. doi: 10.1016/j.cej.2022.141231.
  • Xu, L., Z. Zhu, and D.-W. Sun. 2021. Bioinspired nanomodification strategies: Moving from chemical-based agrosystems to sustainable agriculture. ACS Nano 15 (8):12655–86. doi: 10.1021/acsnano.1c03948.
  • Xu, Q., F. Xiao, and H. Xu. 2023. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends in Analytical Chemistry 161:116999. doi: 10.1016/j.trac.2023.116999.
  • Xu, R., S. Dai, M. Dou, J. Yang, X. Wang, X. Liu, C. Wei, Q. Li, and J. Li. 2023. Simultaneous, label-free and high-throughput SERS detection of multiple pesticides on Ag@three-dimensional silica photonic microsphere array. Journal of Agricultural and Food Chemistry 71 (6):3050–9. doi: 10.1021/acs.jafc.2c07846.
  • Yan, F., Y. Hou, C. Yi, Y. Wang, M. Xu, and J. Xu. 2022. Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review. Analytica Chimica Acta 1232:340475. doi: 10.1016/j.aca.2022.340475.
  • Yang, Y., Q. Wei, T. Zou, Y. Kong, L. Su, D. Ma, and Y. Wang. 2020. Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid. Sensors and Actuators B: Chemical 321:128534. doi: 10.1016/j.snb.2020.128534.
  • Yi, J., Z. Liu, J. Liu, H. Liu, F. Xia, D. Tian, and C. Zhou. 2020. A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection. Biosensors & Bioelectronics 148:111827. doi: 10.1016/j.bios.2019.111827.
  • Yu, M., H. Li, J. Xie, Y. Xu, and X. Lu. 2022. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 236:122875. doi: 10.1016/j.talanta.2021.122875.
  • Yu, Q., C. He, Q. Li, Y. Zhou, N. Duan, and S. Wu. 2020. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles. Mikrochimica Acta 187 (4):222. doi: 10.1007/s00604-020-4204-0.
  • Yu, X., F. Xu, R. Zhang, H. Liu, A. Sun, L. Zhang, Z. Zhang, and X. Shi. 2023. Simultaneous determination and dietary intake risk assessment of 60 herbicide residues in aquatic products. The Science of the Total Environment 883:163633. doi: 10.1016/j.scitotenv.2023.163633.
  • Yu, X., R. Zhang, H. Liu, Z. Zhang, X. Shi, A. Sun, and J. Chen. 2021. Highly-selective complex matrices removal via a modified QuEChERS for determination of triazine herbicide residues and risk assessment in bivalves. Food Chemistry 347:129030. doi: 10.1016/j.foodchem.2021.129030.
  • Yu, X., Z. Zhang, W. Li, R. Zhang, H. Jiao, J. Zhao, A. Sun, X. Shi, and J. Chen. 2019. Development and application of the dispersive solid-phase extraction method based on molecular imprinted polymers for removal of matrix components of bivalve shellfish extracts in the GC-MS/MS analysis of amide/dinitroaniline/substituted urea herbicides. Chromatographia 82 (6):961–70. doi: 10.1007/s10337-019-03729-6.
  • Yuan, Y., C. Z. Zhu, Q. Hang, L. S. Zhao, Z. L. Xiong, and J. Zhao. 2022. Hydrophilic molecularly imprinted membranes based on GO-loading for simultaneously selective recognition and detection of three amphenicols drugs in pork and milk. Food Chemistry 384:132542. doi: 10.1016/j.foodchem.2022.132542.
  • Zeng, J., Y. Zhang, T. Zeng, R. Aleisa, Z. Qiu, Y. Chen, J. Huang, D. Wang, Z. Yan, and Y. Yin. 2020. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 32:100855. doi: 10.1016/j.nantod.2020.100855.
  • Zhai, X., M. Zhang, P. Chen, T. Siriphithakyothin, J. Liu, H. Zhao, X. Yang, A. M. Abd El-Aty, D. A. Baranenko, A. Hacimuftuoglu, et al. 2020. Oligochitosan-modified three-dimensional graphene free-standing electrode for electrochemical detection of imidacloprid insecticide. Journal of the Chinese Chemical Society 67 (6):1078–88. doi: 10.1002/jccs.201900395.
  • Zhang, C., L. Huang, D.-W. Sun, and H. Pu. 2022. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. Journal of Hazardous Materials 426:127824. doi: 10.1016/j.jhazmat.2021.127824.
  • Zhang, D., L. Huang, D.-W. Sun, H. Pu, and Q. Wei. 2023. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus. Chemical Engineering Journal 452:139078. doi: 10.1016/j.cej.2022.139078.
  • Zhang, J., H. Wang, L. Xu, and Z. Xu. 2021. A semi-covalent molecularly imprinted fluorescent sensor for highly specific recognition and optosensing of bisphenol A. Analytical Methods: Advancing Methods and Applications 13 (1):133–40. doi: 10.1039/d0ay01822h.
  • Zhang, J., J. Liu, Y. Wang, Y. Wang, R. Yang, and X. Zhou. 2023. Simultaneous determination of ten neonicotinoid insecticides and a metabolite in human whole blood by QuEChERS coupled with UPLC-Q Exactive orbitrap high-resolution mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1222:123689. doi: 10.1016/j.jchromb.2023.123689.
  • Zhang, M., H. Zhang, X. Zhai, X. Yang, H. Zhao, J. Wang, A. Dong, and Z. Wang. 2017. Application of beta-cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemical sensing of the nitenpyram residue in real samples. New Journal of Chemistry 41 (5):2169–77. doi: 10.1039/C6NJ02891H.
  • Zhang, Q., S. Hu, W. Dai, S. Gu, Z. Ying, R. Wang, and C. Lu. 2023. The partitioning and distribution of neonicotinoid insecticides in human blood. Environmental Pollution 320:121082. doi: 10.1016/j.envpol.2023.121082.
  • Zhang, W., C. Liu, K. Han, X. Wei, Y. Xu, X. Zou, H. Zhang, and Z. Chen. 2020. A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid. Biosensors & Bioelectronics 154:112091. doi: 10.1016/j.bios.2020.112091.
  • Zhang, W., C. Liu, X. Zou, H. Zhang, and Y. Xu. 2019. A beta-CD/MWCNT-modified-microelectrode array for rapid determination of imidacloprid in vegetables. Food Analytical Methods 12 (10):2326–33. doi: 10.1007/s12161-019-01580-x.
  • Zhang, W., D.-W. Sun, J. Ma, Z. Wang, A. Qin, and B. Z. Tang. 2023. Simultaneous sensing of ammonia and temperatures using a dual-mode freshness indicator based on Au/Cu nanoclusters for packaged seafood. Food Chemistry 418:135929. doi: 10.1016/j.foodchem.2023.135929.
  • Zhang, X., K. Zhao, X. Wang, H. Wang, W. Yang, J. Liu, and D. Li. 2023. Surface-enhanced Raman spectroscopy for environmental monitoring using gold clusters anchored on reduced graphene oxide. The Science of the Total Environment 856 (Pt 1):158879. doi: 10.1016/j.scitotenv.2022.158879.
  • Zhang, X., Z. Wang, X. Huang, Q. Huang, Y. Wen, B. Li, M. Holmes, J. Shi, and X. Zou. 2023. Uniform stain pattern of robust MOF-mediated probe for flexible paper-based colorimetric sensing toward environmental pesticide exposure. Chemical Engineering Journal 451:138928. doi: 10.1016/j.cej.2022.138928.
  • Zhang, Y., Q. Zhang, S. Li, Y. Zhao, D. Chen, and Y. Wu. 2020. Simultaneous determination of neonicotinoids and fipronils in tea using a modified QuEChERS method and liquid chromatography-high resolution mass spectrometry. Food Chemistry 329:127159. doi: 10.1016/j.foodchem.2020.127159.
  • Zhang, Z., X. Yu, J. Zhao, X. Shi, A. Sun, H. Jiao, T. Xiao, D. Li, and J. Chen. 2020. A fluorescence microplate assay based on molecularly imprinted silica coated quantum dot optosensing materials for the separation and detection of okadaic acid in shellfish. Chemosphere 246:125622. doi: 10.1016/j.chemosphere.2019.125622.
  • Zhangsun, H., Wang, Q., Xu, Z., Wang, J., Wang, X., Zhao, Y., Zhang, H., Zhao, S., Li, L., Li, Z., and Wang, L. 2022. NiCu nanoalloy embedded in N-doped porous carbon composite as superior electrochemical sensor for neonicotinoid determination. Food Chemistry 384, 132607. doi: 10.1016/j.foodchem.2022.132607.
  • Zhao, G., Y. Zhang, D. Sun, S. Yan, Y. Wen, Y. Wang, G. Li, H. Liu, J. Li, and Z. Song. 2023. Recent advances in molecularly imprinted polymers for antibiotic analysis. Molecules 28 (1):335. doi: 10.3390/molecules28010335.
  • Zhao, L., Z. Zhang, H. Jiang, Y. Guo, Z. Chen, X. Wang, and X. Jing. 2023. Hydrophilic and hydrophobic deep eutectic solvent-based extraction to determine parathion in cereals by digital image colorimetry integrated with smartphones. Talanta 265:124831. doi: 10.1016/j.talanta.2023.124831.
  • Zhao, P., H. Liu, L. Zhang, P. Zhu, S. Ge, and J. Yu. 2020. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Applied Materials & Interfaces 12 (7):8845–54. doi: 10.1021/acsami.9b20341.
  • Zhao, Y., X. Zheng, Q. Wang, T. Zhe, Y. Bai, T. Bu, M. Zhang, and L. Wang. 2020. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chemistry 333:127495. doi: 10.1016/j.foodchem.2020.127495.
  • Zhou, Y., H. Lü, D. Zhang, K. Xu, N. Hui, and J. Wang. 2023. Electrochemical biosensors based on conducting polymer composite and PAMAM dendrimer for the ultrasensitive detection of acetamiprid in vegetables. Microchemical Journal 185:108284. doi: 10.1016/j.microc.2022.108284.
  • Zhu, Y., J. Wu, and Q. Zhou. 2023. Functional DNA sensors integrated with nucleic acid signal amplification strategies for non-nucleic acid targets detection. Biosensors & Bioelectronics 230:115282. doi: 10.1016/j.bios.2023.115282.
  • Zhu, Z., H. Liang, and D.-W. Sun. 2023. Infusing silicone and camellia seed oils into micro-/nanostructures for developing novel anti-Icing/frosting surfaces for food freezing applications. ACS Applied Materials & Interfaces 15 (11):14874–83. doi: 10.1021/acsami.3c02342.
  • Zhu, Y., N. Jain, V. Vanage, N. Holschuh, A. H. Agler, and J. D. Smith. 2019. Association between ready-to-eat cereal consumption and nutrient intake, nutritional adequacy, and diet quality in adults in the national health and nutrition examination survey 2015–2016. Nutrients 11 (12):2952. doi: 10.3390/nu11122952.
  • Zuo, J., P. Ma, Z. Li, Y. Zhang, D. Xiao, H. Wu, and A. Dong. 2022. Application of molecularly imprinted polymers in plant natural products: Current progress and future perspectives. Macromolecular Materials and Engineering 308 (3). doi: 10.1002/mame.202200499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.