612
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Construction of protein-, polysaccharide- and polyphenol-based conjugates as delivery systems

, , &

References

  • Alavarse, A. C., E. C. G. Frachini, R. da Silva, V. H. Lima, A. Shavandi, and D. F. S. Petri. 2022. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. International Journal of Biological Macromolecules 202:558–96. doi: 10.1016/j.ijbiomac.2022.01.029.
  • Cai, W., T. Hu, and Q. Huang. 2022. Rheological properties and critical concentrations of a hyperbranched polysaccharide from Lignosus rhinocerotis sclerotia. International Journal of Biological Macromolecules 202:46–54. doi: 10.1016/j.ijbiomac.2022.01.051.
  • Carn, F., S. Guyot, A. Baron, J. Pérez, E. Buhler, and D. Zanchi. 2012. Structural properties of colloidal complexes between condensed tannins and polysaccharide hyaluronan. Biomacromolecules 13 (3):751–9. doi: 10.1021/bm201674n.
  • Carvalho, E., N. Mateus, B. Plet, I. Pianet, E. Dufourc, and V. De Freitas. 2006. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. Journal of Agricultural and Food Chemistry 54 (23):8936–44. doi: 10.1021/jf061835h.
  • Chen, C., K. Shi, X. Qin, H. Zhang, H. Chen, D. G. Hayes, Q. Wu, Z. Hu, and G. Liu. 2021. Effect of interactions between glycosylated protein and tannic acid on the physicochemical stability of Pickering emulsions. LWT 152:112383. doi: 10.1016/j.lwt.2021.112383.
  • Chen, F., and C. Chi. 2021. Development of pullulan/carboxylated cellulose nanocrystal/tea polyphenol bionanocomposite films for active food packaging. International Journal of Biological Macromolecules 186:405–13. doi: 10.1016/j.ijbiomac.2021.07.025.
  • Chen, T., Y. Shen, D. Wu, R. Wu, J. Sheng, X. Feng, and X. Tang. 2022. Biodegradable films of chitosan and tea polyphenols catalyzed by laccase and their physical and antioxidant activities. Food Bioscience 46:101513. doi: 10.1016/j.fbio.2021.101513.
  • Cheng, J., S. Shen, H. Yang, D. Tang, X. Wang, Y. Lin, and X. Liu. 2023. Improved physicochemical stability and bioaccessibility of astaxanthin-loaded oil-in-water emulsions by a casein-caffeic acid-glucose ternary conjugate. Food Research International 163:112153. doi: 10.1016/j.foodres.2022.112153.
  • Chiang, Z., H. Li, A. Chao, and Y. Su. 2011. Characterization of the morphology and hydrophilicity of chitosan/caffeic acid hybrid scaffolds. Journal of Polymer Research 18 (6):2205–12. doi: 10.1007/s10965-011-9631-5.
  • Dai, S., P. Liao, Y. Wang, T. Tian, X. Tong, B. Lyu, L. Cheng, L. Miao, W. Qi, L. Jiang, et al. 2023. Soy protein isolate-catechin non-covalent and covalent complexes: Focus on structure, aggregation, stability and in vitro digestion characteristics. Food Hydrocolloids 135:108108. doi: 10.1016/j.foodhyd.2022.108108.
  • Deng, L., Y. Li, F. Feng, D. Wu, and H. Zhang. 2019. Encapsulation of allopurinol by glucose cross-linked gelatin/zein nanofibers: Characterization and release behavior. Food Hydrocolloids. 94:574–84. doi: 10.1016/j.foodhyd.2019.04.004.
  • Ding, J., Z. Xu, B. Qi, S. Cui, T. Wang, L. Jiang, Y. Zhang, and X. Sui. 2019. Fabrication and characterization of soybean oil bodies encapsulated in maltodextrin and chitosan-EGCG conjugates: An in vitro digestibility study. Food Hydrocolloids 94:519–27. doi: 10.1016/j.foodhyd.2019.04.001.
  • Dridi, W., and N. Bordenave. 2021. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydrate Polymers 274:118670. doi: 10.1016/j.carbpol.2021.118670.
  • Eissa, A. S. 2019. Effect of SDS on whey protein polymers. Molecular investigation via dilute solution viscometry and dynamic light scattering. Food Hydrocolloids 87:97–100. doi: 10.1016/j.foodhyd.2018.07.046.
  • Feng, J., Z. Xu, L. Jiang, and X. Sui. 2023. Functional properties of soybean isolate protein as influenced by its critical overlap concentration. Food Hydrocolloids 138:108478. doi: 10.1016/j.foodhyd.2023.108478.
  • Ge, L., M. Zhu, X. Li, Y. Xu, X. Ma, R. Shi, D. Li, and C. Mu. 2018. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids 83:308–16. doi: 10.1016/j.foodhyd.2018.04.052.
  • Geng, M., X. Feng, H. Yang, X. Wu, L. Li, Y. Li, and F. Teng. 2022. Comparison of soy protein isolate-(–)-epigallocatechin gallate complexes prepared by mixing, chemical polymerization, and ultrasound treatment. Ultrasonics Sonochemistry 90:106172. doi: 10.1016/j.ultsonch.2022.106172.
  • Gu, L., Y. Su, M. Zhang, C. Chang, J. Li, D. J. McClements, and Y. Yang. 2017. Protection of beta-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Research International 96:84–93. doi: 10.1016/j.foodres.2017.03.015.
  • Guo, Q., X. Xiao, L. Lu, L. Ai, M. Xu, Y. Liu, and H. D. Goff. 2022. Polyphenol–polysaccharide complex: Preparation, characterization, and potential utilization in food and health. Annual Review of Food Science and Technology 13 (1):59–87. doi: 10.1146/annurev-food-052720-010354.
  • Guo, Y., H. Ma, W. Cai, and Q. Huang. 2023. Oxidized yeast β-glucan: Rheological behaviors and the formation of entanglement network at different oxidation degree. Food Hydrocolloids. 137:108363. doi: 10.1016/j.foodhyd.2022.108363.
  • Gürer, F., R. Kargl, M. Bračič, D. Makuc, M. Thonhofer, J. Plavec, T. Mohan, and K. S. Kleinschek. 2021. Water-based carbodiimide mediated synthesis of polysaccharide-amino acid conjugates: Deprotection, charge and structural analysis. Carbohydrate Polymers 267:118226. doi: 10.1016/j.carbpol.2021.118226.
  • Hao, Z., X. Peng, and C. Tang. 2020. Edible pickering high internal phase emulsions stabilized by soy glycinin: Improvement of emulsification performance and pickering stabilization by glycation with soy polysaccharide. Food Hydrocolloids 103:105672. doi: 10.1016/j.foodhyd.2020.105672.
  • He, M., F. Teng, H. Chen, C. Wu, Y. Huang, and Y. Li. 2022. Fabrication of soy protein isolate-succinic anhydride-dextran nanogels: Properties, performance, and controlled release of curcumin. LWT 160:113259. doi: 10.1016/j.lwt.2022.113259.
  • Hu, M., F. Xie, S. Zhang, Y. Li, and B. Qi. 2020. Homogenization pressure and soybean protein concentration impact the stability of perilla oil nanoemulsions. Food Hydrocolloids 101:105575. doi: 10.1016/j.foodhyd.2019.105575.
  • Hu, Q., and Y. Luo. 2016. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydrate Polymers 151:624–39. doi: 10.1016/j.carbpol.2016.05.109.
  • Huang, Y., J. Lin, X. Tang, Z. Wang, and S. Yu. 2021. Grape seed proanthocyanidin-loaded gel-like W/O/W emulsion stabilized by genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates: Fabrication, stability, and in vitro digestion. International Journal of Biological Macromolecules 186:759–69. doi: 10.1016/j.ijbiomac.2021.07.062.
  • Huerta-Madroñal, M., J. Caro-León, E. Espinosa-Cano, M. R. Aguilar, and B. Vázquez-Lasa. 2021. Chitosan - Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydrate Polymers 273:118619. doi: 10.1016/j.carbpol.2021.118619.
  • İlyasoğlu, H., M. Nadzieja, and Z. Guo. 2019. Caffeic acid grafted chitosan as a novel dual-functional stabilizer for food-grade emulsions and additive antioxidant property. Food Hydrocolloids 95:168–76. doi: 10.1016/j.foodhyd.2019.04.043.
  • Jia, W., J. Zhu, X. Wang, J. Peng, and L. Shi. 2022. Covalent or non-covalent binding of polyphenols, polysaccharides, metal ions and nanoparticles to beta-lactoglobulin and advanced processing techniques: Reduce allergenicity and regulate digestion of beta-lactoglobulin. Trends in Food Science & Technology 129:634–45. doi: 10.1016/j.tifs.2022.11.012.
  • Jing, H., J. Sun, Y. Mu, M. Obadi, D. J. McClements, and B. Xu. 2020. Sonochemical effects on the structure and antioxidant activity of egg white protein-tea polyphenol conjugates. Food & Function 11 (8):7084–94. doi: 10.1039/d0fo01636e.
  • Jones-Moore, H. R., R. E. Jelley, M. Marangon, and B. Fedrizzi. 2022. The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocolloids 123:107150. doi: 10.1016/j.foodhyd.2021.107150.
  • Ju, M., G. Zhu, G. Huang, X. Shen, Y. Zhang, L. Jiang, and X. Sui. 2020. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocolloids 99:105329. doi: 10.1016/j.foodhyd.2019.105329.
  • Lachowicz, S., J. Oszmiański, and S. Kalisz. 2018. Effects of various polysaccharide clarification agents and reaction time on content of polyphenolic compound, antioxidant activity, turbidity and colour of chokeberry juice. LWT 92:347–60. doi: 10.1016/j.lwt.2018.02.054.
  • Lan, T., Y. Dong, M. Zheng, L. Jiang, Y. Zhang, and X. Sui. 2020. Complexation between soy peptides and epigallocatechin-3-gallate (EGCG): Formation mechanism and morphological characterization. LWT 134:109990. doi: 10.1016/j.lwt.2020.109990.
  • Li, H., Y. Pan, Z. Yang, J. Rao, and B. Chen. 2022. Modification of β-lactoglobulin by phenolic conjugations: Protein structural changes and physicochemical stabilities of stripped hemp oil-in-water emulsions stabilized by the conjugates. Food Hydrocolloids 128:107578. doi: 10.1016/j.foodhyd.2022.107578.
  • Li, H., T. Wang, Y. Hu, J. Wu, and P. Van der Meeren. 2022. Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends in Food Science & Technology 119:272–87. doi: 10.1016/j.tifs.2021.12.007.
  • Li, J., Y. Cheng, P. Wang, W. Zhao, L. Yin, and M. Saito. 2012. A novel improvement in whey protein isolate emulsion stability: Generation of an enzymatically cross-linked beet pectin layer using horseradish peroxidase. Food Hydrocolloids 26 (2):448–55. doi: 10.1016/j.foodhyd.2010.11.015.
  • Li, M., X. Li, D. J. McClements, M. Shi, Q. Shang, X. Liu, and F. Liu. 2021. Physicochemical and functional properties of lactoferrin-hyaluronic acid complexes: Effect of non-covalent and covalent interactions. LWT 151:112121. doi: 10.1016/j.lwt.2021.112121.
  • Li, R., Z. Zeng, G. Fu, Y. Wan, C. Liu, and D. J. McClements. 2019. Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature. Food Research International 120:748–55. doi: 10.1016/j.foodres.2018.11.034.
  • Li, X., S. Li, X. Liang, D. J. McClements, X. Liu, and F. Liu. 2020. Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends in Food Science & Technology 103:78–93. doi: 10.1016/j.tifs.2020.06.014.
  • Li, Y., Z. Peng, L. Tan, Y. Zhu, C. Zhao, Q. H. Zeng, G. Liu, J. Wang, and Y. Zhao. 2022. Structural and functional properties of soluble Antarctic krill proteins covalently modified by rutin. Food Chemistry 379:132159. doi: 10.1016/j.foodchem.2022.132159.
  • Liang, Y., X. Zhao, P. X. Ma, B. Guo, Y. Du, and X. Han. 2019. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. Journal of Colloid and Interface Science 536:224–34. doi: 10.1016/j.jcis.2018.10.056.
  • Lin, J., X. Guo, C. Ai, T. Zhang, and S. Yu. 2020. Genipin crosslinked sugar beet pectin-whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties. Food Hydrocolloids 105:105802. doi: 10.1016/j.foodhyd.2020.105802.
  • Lin, J., H. Meng, S. Yu, Z. Wang, C. Ai, T. Zhang, and X. Guo. 2021. Genipin-crosslinked sugar beet pectin-bovine serum albumin nanoparticles as novel pickering stabilizer. Food Hydrocolloids 112:106306. doi: 10.1016/j.foodhyd.2020.106306.
  • Liu, F., C. Ma, Y. Gao, and D. J. McClements. 2017. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. Comprehensive Reviews in Food Science and Food Safety 16 (1):76–95. doi: 10.1111/1541-4337.12229.
  • Liu, F., C. Ma, D. J. McClements, and Y. Gao. 2016. Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions. Food Hydrocolloids 61:578–88. doi: 10.1016/j.foodhyd.2016.05.031.
  • Liu, F., C. Ma, R. Zhang, Y. Gao, and D. Julian McClements. 2017. Controlling the potential gastrointestinal fate of beta-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry 221:395–403. doi: 10.1016/j.foodchem.2016.10.057.
  • Liu, F., D. J. McClements, C. Ma, and X. Liu. 2023. Novel colloidal food ingredients: Protein complexes and conjugates. Annual Review of Food Science and Technology 14 (1):35–61. doi: 10.1146/annurev-food-060721-023522.
  • Liu, F., D. Wang, C. Sun, D. J. McClements, and Y. Gao. 2016. Utilization of interfacial engineering to improve physicochemical stability of beta-carotene emulsions: Multilayer coatings formed using protein and protein-polyphenol conjugates. Food Chemistry 205:129–39. doi: 10.1016/j.foodchem.2016.02.155.
  • Liu, F., D. Wang, H. Xu, C. Sun, and Y. Gao. 2016. Physicochemical properties of beta-carotene emulsions stabilized by chlorogenic acid-lactoferrin-glucose/polydextrose conjugates. Food Chemistry 196:338–46. doi: 10.1016/j.foodchem.2015.09.047.
  • Liu, H., G. Han, H. Zhang, Q. Liu, and B. Kong. 2019. Improving the physical and oxidative stability of emulsions based on the interfacial electrostatic effects between porcine bone protein hydrolysates and porcine bone protein hydrolysate-rutin conjugates. Food Hydrocolloids 94:418–27. doi: 10.1016/j.foodhyd.2019.03.037.
  • Liu, J., Y. Wang, J. Lv, Y. Wu, Y. Guo, C. Sun, and X. Li. 2023. Biodegradable composite films based on egg white protein and tea polyphenol: Physicochemical, structural and antibacterial properties. Food Packaging and Shelf Life 38:101098. doi: 10.1016/j.fpsl.2023.101098.
  • Liu, Y., M. P. Yadav, H. K. Chau, S. Qiu, H. Zhang, and L. Yin. 2017. Peroxidase-mediated formation of corn fiber gum-bovine serum albumin conjugates: Molecular and structural characterization. Carbohydrate Polymers 166:114–22. doi: 10.1016/j.carbpol.2017.02.069.
  • Luo, Z., B. S. Murray, A. Yusoff, M. R. Morgan, M. J. Povey, and A. J. Day. 2011. Particle-stabilizing effects of flavonoids at the oil-water interface. Journal of Agricultural and Food Chemistry 59 (6):2636–45. doi: 10.1021/jf1041855.
  • Luraghi, A., F. Peri, and L. Moroni. 2021. Electrospinning for drug delivery applications: A review. Journal of Controlled Release: Official Journal of the Controlled Release Society 334:463–84. doi: 10.1016/j.jconrel.2021.03.033.
  • Ma, X., W. Chen, T. Yan, D. Wang, F. Hou, S. Miao, and D. Liu. 2020. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chemistry 309:125501. doi: 10.1016/j.foodchem.2019.125501.
  • Mateus, N., E. Carvalho, C. Luís, and V. de Freitas. 2004. Influence of the tannin structure on the disruption effect of carbohydrates on protein–tannin aggregates. Analytica Chimica Acta 513 (1):135–40. doi: 10.1016/j.aca.2003.08.072.
  • McClements, D. J. 2006. Non-covalent interactions between proteins and polysaccharides. Biotechnology Advances 24 (6):621–5. doi: 10.1016/j.biotechadv.2006.07.003.
  • McClements, D. J. 2020. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances 38:107287. doi: 10.1016/j.biotechadv.2018.08.004.
  • Mehrabi, Z., M. Gill, M. V. Wijk, M. Herrero, and N. Ramankutty. 2020. Livestock policy for sustainable development. Nature Food 1 (3):160–5. doi: 10.1038/s43016-020-0042-9.
  • Miao, R., F. Jin, Z. Wang, W. Lu, J. Liu, X. Li, and R. X. Zhang. 2022. Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials 281:121373. doi: 10.1016/j.biomaterials.2022.121373.
  • Millet, M., P. Poupard, J.-M. Le Quéré, R. Bauduin, and S. Guyot. 2017. Haze in apple-based beverages: Detailed polyphenol, polysaccharide, protein, and mineral compositions. Journal of Agricultural and Food Chemistry 65 (31):6404–14. doi: 10.1021/acs.jafc.6b05819.
  • Mittal, A., A. Singh, S. Benjakul, T. Prodpran, K. Nilsuwan, N. Huda, and K. de la Caba. 2021. Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocolloids. 111:106384. doi: 10.1016/j.foodhyd.2020.106384.
  • Naczk, M., S. Grant, R. Zadernowski, and E. Barre. 2006. Protein precipitating capacity of phenolics of wild blueberry leaves and fruits. Food Chemistry 96 (4):640–7. doi: 10.1016/j.foodchem.2005.03.017.
  • Neri-Numa, I. A., M. G. Pessoa, B. N. Paulino, and G. M. Pastore. 2017. Genipin: A natural blue pigment for food and health purposes. Trends in Food Science & Technology 67:271–9. doi: 10.1016/j.tifs.2017.06.018.
  • Ozdal, T., E. Capanoglu, and F. Altay. 2013. A review on protein–phenolic interactions and associated changes. Food Research International 51 (2):954–70. doi: 10.1016/j.foodres.2013.02.009.
  • Pan, J., H. Lian, H. Jia, S. Li, R. Hao, Y. Wang, X. Zhang, and X. Dong. 2020. Ultrasound treatment modified the functional mode of gallic acid on properties of fish myofibrillar protein. Food Chemistry 320:126637. doi: 10.1016/j.foodchem.2020.126637.
  • Pascal, C., C. Poncet-Legrand, A. Imberty, C. Gautier, P. Sarni-Manchado, V. Cheynier, and A. Vernhet. 2007. Interactions between a non glycosylated human proline-rich protein and flavan-3-ols are affected by protein concentration and polyphenol/protein ratio. Journal of Agricultural and Food Chemistry 55 (12):4895–901. doi: 10.1021/jf0704108.
  • Perro, A., N. Coudon, J.-P. Chapel, N. Martin, L. Béven, and J.-P. Douliez. 2022. Building micro-capsules using water-in-water emulsion droplets as templates. Journal of Colloid and Interface Science 613:681–96. doi: 10.1016/j.jcis.2022.01.047.
  • Pirestani, S., A. Nasirpour, J. Keramat, S. Desobry, and J. Jasniewski. 2018. Structural properties of canola protein isolate-gum Arabic Maillard conjugate in an aqueous model system. Food Hydrocolloids 79:228–34. doi: 10.1016/j.foodhyd.2018.01.001.
  • Poncetlegrand, C., A. Edelmann, J. Putaux, D. Cartalade, P. Sarnimanchado, and A. Vernhet. 2006. Poly(l-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocolloids 20 (5):687–97. doi: 10.1016/j.foodhyd.2005.06.009.
  • Qin, X., Q. Gao, and Z. Luo. 2021. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydorcolloids 116:106658 doi: 10.1016/j.foodhyd.2021.106658.
  • Quan, T. H., S. Benjakul, T. Sae-Leaw, A. K. Balange, and S. Maqsood. 2019. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507–17. doi: 10.1016/j.tifs.2019.07.049.
  • Quevedo, M., U. Jandt, U. Kulozik, H. P. Karbstein, and M. A. Emin. 2019. Investigation on the influence of high protein concentrations on the thermal reaction behaviour of β-lactoglobulin by experimental and numerical analyses. International Dairy Journal 97:99–110. doi: 10.1016/j.idairyj.2019.06.004.
  • Quevedo, M., H. P. Karbstein, and M. A. Emin. 2021. Concentration-dependent changes in the reaction behavior of whey proteins: Diffusion-controlled or transition state-controlled reactions? Food Hydrocolloids 118:106745. doi: 10.1016/j.foodhyd.2021.106745.
  • Razi, M. A., R. Wakabayashi, Y. Tahara, M. Goto, and N. Kamiya. 2018. Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids and Surfaces. B, Biointerfaces 164:308–15. doi: 10.1016/j.colsurfb.2018.01.041.
  • Frazier, R. A., A. P, I. Mueller-Harvey, D. Kissoon, and R. J. G. 2003. Probing protein-tannin interactions by isothermal titration microcalorimetry. Journal of Agricultural and Food Chemistry 51 (18):5189–95. doi: 10.1021/jf021179v.
  • Richard A. Frazier, A. P., Irene Mueller-Harvey, & Dawn Kissoon, R. J. G. 2003. Probing Protein-Tannin Interactions by Isothermal Titration Microcalorimetry. Journal of Agricultural and Food Chemistry 51:5189–5195. doi: 10.1021/jf021179v.
  • Rocasalbas, G., A. Francesko, S. Touriño, X. Fernández-Francos, G. M. Guebitz, and T. Tzanov. 2013. Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydrate Polymers 92 (2):989–96. doi: 10.1016/j.carbpol.2012.10.045.
  • Rojas, C. C., K. G. Wahlund, B. Bergenståhl, and L. Nilsson. 2008. Macromolecular geometries determined with field-flow fractionation and their impact on the overlap concentration. Biomacromolecules 9 (6):1684–90. doi: 10.1021/bm800127n.
  • Sha, L., and Y. L. Xiong. 2020. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology 102:51–61. doi: 10.1016/j.tifs.2020.05.022.
  • Shen, D., Q. Hu, J. Sun, X. Pang, X. Li, and Y. Lu. 2021. Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles. International Journal of Biological Macromolecules 192:360–8. doi: 10.1016/j.ijbiomac.2021.09.209.
  • Soares, S., N. Mateus, and V. de Freitas. 2012. Carbohydrates inhibit salivary proteins precipitation by condensed tannins. Journal of Agricultural and Food Chemistry 60 (15):3966–72. doi: 10.1021/jf3002747.
  • Soares, S. I., R. M. Gonçalves, I. Fernandes, N. Mateus, and V. de Freitas. 2009. Mechanistic approach by which polysaccharides inhibit alpha-amylase/procyanidin aggregation. Journal of Agricultural and Food Chemistry 57 (10):4352–8. doi: 10.1021/jf900302r.
  • Song, H., Y. Fan, Y. Hu, G. Cheng, and F. Xu. 2020. Polysaccharide–peptide conjugates: A versatile material platform for biomedical applications. Advanced Functional Materials 31 (6):2005979. doi: 10.1002/adfm.202005978.
  • Taha, A., E. Ahmed, A. Ismaiel, M. Ashokkumar, X. Xu, S. Pan, and H. Hu. 2020. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology 105:363–77. doi: 10.1016/j.tifs.2020.09.024.
  • Tan, Y., H. Zhou, and D. J. McClements. 2022. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends in Food Science & Technology 122:314–27. doi: 10.1016/j.tifs.2022.02.028.
  • Tao, Y., and D. Feng. 2012. Dilute solution and rheological properties of hyperbranched polysaccharide from Pleurotus tuber-regium sclerotia. Food Hydrocolloids. 28 (1):151–8. doi: 10.1016/j.foodhyd.2011.12.012.
  • Tokareva, M. I., M. N. Ivantsova, and M. A. Mironov. 2017. Heterocycles of natural origin as non-toxic reagents for cross-linking of proteins and polysaccharides. Chemistry of Heterocyclic Compounds 53 (1):21–35. doi: 10.1007/s10593-017-2016-x.
  • Tong, Q., Z. Yi, Y. Ran, X. Chen, G. Chen, and X. Li. 2021. Green tea polyphenol-stabilized gel-like high internal phase pickering emulsions. ACS Sustainable Chemistry & Engineering 9 (11):4076–90. doi: 10.1021/acssuschemeng.0c08633.
  • Tudorache, M., and N. Bordenave. 2019. Phenolic compounds mediate aggregation of water-soluble polysaccharides and change their rheological properties: Effect of different phenolic compounds. Food Hydrocolloids 97:105193. doi: 10.1016/j.foodhyd.2019.105193.
  • Tudorache, M., J. L. McDonald, and N. Bordenave. 2020. Gallic acid reduces the viscosity and water binding capacity of soluble dietary fibers. Food & Function 11 (7):5866–74. doi: 10.1039/d0fo01200a.
  • Wagoner, T. B., E. Çakır-Fuller, M. Drake, and E. A. Foegeding. 2019. Sweetness perception in protein-polysaccharide beverages is not explained by viscosity or critical overlap concentration. Food Hydrocolloids 94:229–37. doi: 10.1016/j.foodhyd.2019.03.010.
  • Wang, W., F. Liu, and Y. Gao. 2016. Quercetagetin loaded in soy protein isolate–κ-carrageenan complex: Fabrication mechanism and protective effect. Food Research International 83:31–40. doi: 10.1016/j.foodres.2016.02.012.
  • Wang, C., C. Sun, W. Lu, K. Gul, A. Mata, and Y. Fang. 2020. Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety 19 (6):2955–71. doi: 10.1111/1541-4337.12621.
  • Wang, D., P. Lv, L. Zhang, S. Yang, and Y. Gao. 2019. Structural and functional characterization of laccase-induced beta-lactoglobulin-ferulic acid-chitosan ternary conjugates. Journal of Agricultural and Food Chemistry 67 (43):12054–60. doi: 10.1021/acs.jafc.9b04557.
  • Wang, D., P. Lv, L. Zhang, S. Yang, Y. Wei, L. Mao, F. Yuan, and Y. Gao. 2020. Enhanced physicochemical stability of beta-carotene emulsions stabilized by beta-lactoglobulin-ferulic acid-chitosan ternary conjugate. Journal of Agricultural and Food Chemistry 68 (31):8404–12. doi: 10.1021/acs.jafc.0c01757.
  • Wang, H., S. You, W. Wang, Y. Zeng, R. Su, W. Qi, K. Wang, and Z. He. 2022. Laccase-catalyzed soy protein and gallic acid complexation: Effects on conformational structures and antioxidant activity. Food Chemistry 375:131865. doi: 10.1016/j.foodchem.2021.131865.
  • Wang, S., S. M. Olarte Mantilla, P. A. Smith, J. R. Stokes, and H. E. Smyth. 2020. Astringency sub-qualities drying and pucker are driven by tannin and pH – Insights from sensory and tribology of a model wine system. Food Hydrocolloids 109:106109. doi: 10.1016/j.foodhyd.2020.106109.
  • Wei, Z., and Y. Gao. 2016. Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocolloids 52:590–9. doi: 10.1016/j.foodhyd.2015.08.002.
  • Wei, Z., and Q. Huang. 2019. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper. Journal of Agricultural and Food Chemistry 67 (5):1344–52. doi: 10.1021/acs.jafc.8b06063.
  • Wu, D., L. Tang, Z. Zeng, J. Zhang, X. Hu, Q. Pan, F. Geng, and H. Li. 2022. Delivery of hyperoside by using a soybean protein isolated-soy soluble polysaccharide nanocomplex: Fabrication, characterization, and in vitro release properties. Food Chemistry 386:132837. doi: 10.1016/j.foodchem.2022.132837.
  • Wu, T., C. Liu, and X. Hu. 2022. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review. Food Chemistry 372:131332. doi: 10.1016/j.foodchem.2021.131332.
  • Xia, T., C. Xue, and Z. Wei. 2021. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science & Technology 107:1–15. doi: 10.1016/j.tifs.2020.11.019.
  • Xu, C., S. Zhou, H. Song, H. Hu, Y. Yang, X. Zhang, S. Ma, X. Feng, Y. Pan, S. Gong, et al. 2023. Green tea polyphenols-derived hybrid materials in manufacturing, environment, food and healthcare. Nano Today. 52:101990. doi: 10.1016/j.nantod.2023.101990.
  • Xu, Y., M. Han, M. Huang, and X. Xu. 2021. Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chemistry 352:129376. doi: 10.1016/j.foodchem.2021.129376.
  • Xu, Z., N. Hao, L. Li, Y. Zhang, L. Yu, L. Jiang, and X. Sui. 2019. Valorization of soy whey wastewater: How epigallocatechin-3-gallate regulates protein precipitation. ACS Sustainable Chemistry & Engineering 7 (18):15504–13. doi: 10.1021/acssuschemeng.9b03208.
  • Xu, Z., G. Shan, N. Hao, L. Li, T. Lan, Y. Dong, J. Wen, R. Tian, Y. Zhang, L. Jiang, et al. 2022. Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate. Biomaterials 283:121455. doi: 10.1016/j.biomaterials.2022.121455.
  • Yacco, R. S., A. A. Watrelot, and J. A. Kennedy. 2016. Red wine tannin structure-activity relationships during fermentation and maceration. Journal of Agricultural and Food Chemistry 64 (4):860–9. doi: 10.1021/acs.jafc.5b05058.
  • Yan, S., Q. Wang, Y. Li, and B. Qi. 2024. Gallic acid-functionalized soy protein-based multiple cross-linked hydrogel: Mechanism analysis, physicochemical properties, and digestive characteristics. Food Chemistry 433:137290. doi: 10.1016/j.foodchem.2023.137290.
  • Yan, S., F. Xie, S. Zhang, L. Jiang, B. Qi, and Y. Li. 2021. Effects of soybean protein isolate − polyphenol conjugate formation on the protein structure and emulsifying properties: Protein − polyphenol emulsification performance in the presence of chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 609:125641. doi: 10.1016/j.colsurfa.2020.125641.
  • Yan, S., Y. Yao, X. Xie, S. Zhang, Y. Huang, H. Zhu, Y. Li, and B. Qi. 2022. Comparison of the physical stabilities and oxidation of lipids and proteins in natural and polyphenol-modified soybean protein isolate-stabilized emulsions. Food Research International 162 (Pt B):112066. doi: 10.1016/j.foodres.2022.112066.
  • Yan, X., C. Ma, F. Cui, D. J. McClements, X. Liu, and F. Liu. 2020a. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science & Technology 103:293–303. doi: 10.1016/j.tifs.2020.07.005.
  • Yan, Y., Q. Zhu, C. Diao, J. Wang, Z. Wu, and H. Wang. 2020b. Enhanced physicochemical stability of lutein-enriched emulsions by polyphenol-protein-polysaccharide conjugates and fat-soluble antioxidant. Food Hydorcolloids 101:105447. doi: 10.1016/j.foodhyd.2019.105447.
  • Yang, H., Y. Yang, B. Z. Li, B. Adhikari, Y. Wang, H. L. Huang, and D. Chen. 2020. Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydrate Polymers 231:115692. doi: 10.1016/j.carbpol.2019.115692.
  • Yang, W., C. Xu, F. Liu, C. Sun, F. Yuan, and Y. Gao. 2015. Fabrication mechanism and structural characteristics of the ternary aggregates by lactoferrin, pectin, and (-)-epigallocatechin gallate using multispectroscopic methods. Journal of Agricultural and Food Chemistry 63 (20):5046–54. doi: 10.1021/acs.jafc.5b01592.
  • Yang, X., J. Dai, X. Wei, Y. Zhong, X. Liu, D. Guo, L. Wang, Y. Huang, C. Zhang, Y. Liu, et al. 2021. Characterization of recombinant GRIP32 as a novel haze protein for protein-polyphenol haze models and prevention of haze formation with polysaccharides in the models. LWT 136:110317. doi: 10.1016/j.lwt.2020.110317.
  • Yang, X., A. Li, D. Li, Y. Guo, and L. Sun. 2021. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends in Food Science & Technology 109:197–210. doi: 10.1016/j.tifs.2021.01.002.
  • Yao, W., Z. Lei, S. Fu, J. Zhong, and C. Liu. 2019. Effects of Addition Sequence on Structure and Function of β-Lactoglobulin-EGCG-Glucose Ternary Complexes. Food Science 40:41–7. doi: 10.7506/spkx1002-6630-20180814-132.
  • Zhang, C., Z. Wang, Q. Liu, Q. Chen, F. Sun, H. Liu, and B. Kong. 2024. Solubilization strategy of myofibrillar proteins in low-ionic media (prototype soup): The effect of high-intensity ultrasound combined with non-covalent or covalent modification of polyphenols on myosin molecular assembly. Food Chemistry 436:137701. doi: 10.1016/j.foodchem.2023.137701.
  • Zhang, L., J. Liu, X. Zheng, A. Zhang, X. Zhang, and K. Tang. 2019. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications. Carbohydrate Polymers 216:45–53. doi: 10.1016/j.carbpol.2019.04.004.
  • Zhang, Q., Y. Zhou, W. Yue, W. Qin, H. Dong, and T. Vasanthan. 2021. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends in Food Science & Technology 109:169–96. doi: 10.1016/j.tifs.2021.01.026.
  • Zhang, S., X. Li, X. Yan, D. Julian McClements, C. Ma, X. Liu, and F. Liu. 2022. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. Ultrasonics Sonochemistry 89:106110. doi: 10.1016/j.ultsonch.2022.106110.
  • Zhang, T., S. Chen, X. Xu, X. Zhuang, Y. Chen, Y. Xue, C. Xue, and N. Jiang. 2023. Effects of konjac glucomannan on physical properties and microstructure of fish myofibrillar protein gel: Phase behaviours involved. Food Hydrocolloids 134:108034. doi: 10.1016/j.foodhyd.2022.108034.
  • Zhao, D., B. Sheng, Y. Wu, H. Li, D. Xu, Y. Nian, S. Mao, C. Li, X. Xu, and G. Zhou. 2019. Comparison of free and bound advanced glycation end products in food: A review on the possible influence on human health. Journal of Agricultural and Food Chemistry 67 (51):14007–18. doi: 10.1021/acs.jafc.9b05891.
  • Zhao, Q., L. Fan, Y. Liu, and J. Li. 2022. Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chemistry 380:131838. doi: 10.1016/j.foodchem.2021.131838.
  • Zhao, X., C. Li, and F. Xue. 2023. Effects of whey protein-polyphenol conjugates incorporation on physicochemical and intelligent pH-sensing properties of carboxymethyl cellulose based films. Future Foods 7:100211. doi: 10.1016/j.fufo.2022.100211.
  • Zhong, W., Z. Zhi, J. Zhao, D. Li, S. Yu, M. Duan, J. Xu, C. Tong, J. Pang, and C. Wu. 2022. Oxidized chitin nanocrystals greatly strengthen the stability of resveratrol-loaded gliadin nanoparticles. Journal of Agricultural and Food Chemistry 70 (42):13778–86. doi: 10.1021/acs.jafc.2c04174.
  • Zhou, H., X. Hu, X. Xiang, and D. J. McClements. 2023. Modification of textural attributes of potato protein gels using salts, polysaccharides, and transglutaminase: Development of plant-based foods. Food Hydrocolloids. 144:108909. doi: 10.1016/j.foodhyd.2023.108909.
  • Zhou, M., K. Khen, T. Wang, Q. Hu, J. Xue, and Y. Luo. 2018. Chemical crosslinking improves the gastrointestinal stability and enhances nutrient delivery potentials of egg yolk LDL/polysaccharide nanogels. Food Chemistry 239:840–7. doi: 10.1016/j.foodchem.2017.07.019.
  • Zhou, S. D., Y. F. Lin, X. Xu, L. Meng, and M. S. Dong. 2020. Effect of non-covalent and covalent complexation of (-)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics. Food Chemistry 309:125718. doi: 10.1016/j.foodchem.2019.125718.
  • Zhou, Y., S. P. Petrova, and K. J. Edgar. 2021. Chemical synthesis of polysaccharide-protein and polysaccharide-peptide conjugates: A review. Carbohydrate Polymers 274:118662. doi: 10.1016/j.carbpol.2021.118662.
  • Zhu, H., X. Mei, Y. He, H. Mao, W. Tang, R. Liu, J. Yang, K. Luo, Z. Gu, and L. Zhou. 2020. Fast and high strength soft tissue bioadhesives based on a peptide dendrimer with antimicrobial properties and hemostatic ability. ACS Applied Materials & Interfaces 12 (4):4241–53. doi: 10.1021/acsami.9b18720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.