148
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

New insights of flavonoid glycosidases and their application in food industry

, , , ORCID Icon, & ORCID Icon

References

  • Aakko, J., S. Pietilä, R. Toivonen, A. Rokka, K. Mokkala, K. Laitinen, L. Elo, and A. Hänninen. 2020. A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Scientific Reports 10 (1):12411. doi: 10.1038/s41598-020-69241-2.
  • Abe, S. K., and M. Inoue. 2021. Green tea and cancer and cardiometabolic diseases: A review of the current epidemiological evidence. European Journal of Clinical Nutrition 75 (6):865–76. doi: 10.1038/s41430-020-00710-7.
  • Ahmed, A., M. Aslam, M. Ashraf, F. Ul-Hassan Nasim, K. Batool, and A. Bibi. 2017. Microbial β-glucosidases: Screening, characterization, cloning and applications. Journal of Applied & Environmental Microbiology 5 (2):57–73. doi: 10.12691/jaem-5-2-2.
  • Ahmed, S. A., N. M. A. El-Shayeb, A.-G M. Hashem, S. A. A. Saleh, and A. F. Abdel-Fattah. 2015. Chemical modification of Aspergillus niger β-glucosidase and its catalytic properties. Brazilian Journal of Microbiology 46 (1):23–28. doi: 10.1590/S1517-838246120120462.
  • Ahn, H. J., H. J. You, M. S. Park, Z. Li, D. Choe, T. V. Johnston, S. Ku, and G. E. Ji. 2020. Microbial biocatalysis of quercetin-3-glucoside and isorhamnetin-3-glucoside in Salicornia herbacea and their contribution to improved anti-inflammatory activity. RSC Advances 10 (9):5339–50. doi: 10.1039/C9RA08059G.
  • Akintola, O., W. Ren, P. J. P. Adabala, S. Bhosale, Y. Wang, Y. Ganga-Sah, R. Britton, and A. J. Bennet. 2021. Intrinsic nucleophilicity of inverting and retaining glycoside hydrolases revealed using carbasugar Glyco-Tools. ACS Catalysis 11 (15):9377–89. doi: 10.1021/acscatal.1c01634.
  • Akiyama, T., J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, and Y. Fukami. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of Biological Chemistry 262 (12):5592–5. doi: 10.1016/S0021-9258(18)45614-1.
  • Al-Ishaq, R. K., A. Liskova, P. Kubatka, and D. Büsselberg. 2021. Enzymatic metabolism of flavonoids by gut microbiota and its impact on gastrointestinal cancer. Cancers 13 (16):3934. doi: 10.3390/cancers13163934.
  • Baumgertel, A., R. Grimm, W. Eisenbeiss, and W. Kreis. 2003. Purification and characterization of a flavonol 3-O-β-heterodisaccharidase from the dried herb of Fagopyrum esculentum Moench. Phytochemistry 64 (2):411–8. doi: 10.1016/S0031-9422(03)00418-7.
  • Bezerra, T., R. Monti, E. B. Hansen, and J. Contiero. 2017. Microbial glycosidases for nondigestible oligosaccharides production. In Enzyme inhibitors and activators, ed. M. Senturk. InTech. 191–206. doi: 10.5772/65935.
  • Bo, S., S. K. Chang, H. Zhu, Y. Jiang, and B. Yang. 2023. Naturally occurring prenylated stilbenoids: Food sources, biosynthesis, ­applications and health benefits. Critical Reviews in Food Science and Nutrition 63 (26):8083–106. doi: 10.1080/10408398.2022.2056131.
  • Bodakowska-Boczniewicz, J., and Z. Garncarek. 2019. Immobilization of naringinase from Penicillium decumbens on chitosan cicrospheres for debittering grapefruit juice. Molecules 24 (23):4234. doi: 10.3390/molecules24234234.
  • Borkar, V., S. Chakraborty, and J. S. Gokhale. 2021. Fermentative production of naringinase from Aspergillus niger van Tieghem MTCC 2425 using citrus wastes: Process optimization, partial purification, and characterization. Applied Biochemistry and Biotechnology 193 (5):1321–37. doi: 10.1007/s12010-020-03385-9.
  • Braune, A., and M. Blaut. 2018. Catenibacillus scindens gen. nov., sp. nov., a C-deglycosylating human intestinal representative of the Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology 68 (10):3356–61. doi: 10.1099/ijsem.0.003001.
  • Braune, A., W. Engst, and M. Blaut. 2016. Identification and functional expression of genes encoding flavonoid O‐ and C‐ glycosidases in intestinal bacteria. Environmental Microbiology 18 (7):2117–29. doi: 10.1111/1462-2920.12864.
  • Chang, H. Y., Y. B. Lee, H. A. Bae, J. Y. Huh, S. H. Nam, H. S. Sohn, H. J. Lee, and S. B. Lee. 2011. Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chemistry 124 (1):234–41. doi: 10.1016/j.foodchem.2010.06.024.
  • Chen, L., H. Cao, Q. Huang, J. Xiao, and H. Teng. 2022. Absorption, metabolism and bioavailability of flavonoids: A review. Critical Reviews in Food Science and Nutrition 62 (28):7730–42. doi: 10.1080/10408398.2021.1917508.
  • Chen, Q., Y. Zhu, Y. Liu, Y. Liu, C. Dong, Z. Lin, and J. Teng. 2022. Black tea aroma formation during the fermentation period. Food Chemistry 374:131640. doi: 10.1016/j.foodchem.2021.131640.
  • Cheng, L., H. Zhang, H. Cui, J. Cheng, W. Wang, B. Wei, F. Liu, H. Liang, X. Shen, and Q. Yuan. 2022. A novel α-L-rhamnosidase renders efficient and clean production of icaritin. Journal of Cleaner Production 341:130903. doi: 10.1016/j.jclepro.2022.130903.
  • Chien, P. J., F. Sheu, and Y. T. Shyu. 2020. Monitoring enzymatic debittering in grapefruit juice by high performance liquid chromatography. Journal of Food and Drug Analysis 9 (2):115–120. doi: 10.38212/2224-6614.2802.
  • Coscueta, E. R., D. A. Campos, H. Osório, B. B. Nerli, and M. Pintado. 2019. Enzymatic soy protein hydrolysis: A tool for biofunctional food ingredient production. Food Chemistry: X 1:100006. doi: 10.1016/j.fochx.2019.100006.
  • Delgado, L., C. M. Heckmann, F. Di Pisa, L. Gourlay, and F. Paradisi. 2021. Release of soybean isoflavones by using a β‐glucosidase from Alicyclobacillus herbarius. Chembiochem: A European Journal of Chemical Biology 22 (7):1223–31. doi: 10.1002/cbic.202000688.
  • Ellnain-Wojtaszek, M., Z. Kruczyński, and J. Kasprzak. 2003. Investigation of the free radical scavenging activity of Ginkgo biloba L. leaves. Fitoterapia 74 (1-2):1–6. doi: 10.1016/S0367-326X(02)00306-4.
  • Fu, H., Y. Liang, X. Zhong, Z. Pan, L. Huang, H. Zhang, Y. Xu, W. Zhou, and Z. Liu. 2020. Codon optimization with deep learning to enhance protein expression. Scientific Reports 10 (1):17617. doi: 10.1038/s41598-020-74091-z.
  • Fujita, K., K. Hara, H. Hashimoto, and S. Kitahata. 1990. Purification and some properties of β-fructofuranosidase I from Arthrobacter sp. K-1. Agricultural and Biological Chemistry 54 (4):913–9. doi: 10.1080/00021369.1990.10870051.
  • Garron, M. L., and B. Henrissat. 2019. The continuing expansion of CAZymes and their families. Current Opinion in Chemical Biology 53:82–7. doi: 10.1016/j.cbpa.2019.08.004.
  • Genovés, S., J. V. Gil, S. Vallés, J. A. Casas, and P. Manzanares. 2005. Assessment of the aromatic potential of Palomino Fino grape must using glycosidases. American Journal of Enology and Viticulture 56 (2):188–91. doi: 10.5344/ajev.2005.56.2.188.
  • Gold, V. 2019. The IUPAC compendium of chemical terminology: The gold book. 4th ed. NC, USA: International Union of Pure and Applied Chemistry. doi: 10.1351/goldbook.
  • Gu, Q., G. Duan, and X. Yu. 2019. Bioconversion of flavonoid glycosides from Hippophae rhamnoides leaves into flavonoid aglycones by Eurotium amstelodami. Microorganisms 7 (5):122. doi: 10.3390/microorganisms7050122.
  • He, J., X. Feng, J. Wang, W. Shi, H. Li, S. Danilchenko, A. Kalinkevich, and M. Zhovner. 2018. Icariin prevents bone loss by inhibiting bone resorption and stabilizing bone biological apatite in a hindlimb suspension rodent model. Acta Pharmacologica Sinica 39 (11):1760–7. doi: 10.1038/s41401-018-0040-8.
  • Hostetler, G. L., R. A. Ralston, and S. J. Schwartz. 2017. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition 8 (3):423–35. doi: 10.3945/an.116.012948.
  • Hu, K., Y. Qin, Y. S. Tao, X. L. Zhu, C. T. Peng, and N. Ullah. 2016. Potential of glycosidase from non-Saccharomyces isolates for enhancement of wine aroma. Journal of Food Science 81 (4):M935–M943. doi: 10.1111/1750-3841.13253.
  • Hu, T., Z. Q. Gao, J. M. Hou, S. K. Tian, Z. X. Zhang, L. Yang, and Y. Liu. 2020. Identification of biosynthetic pathways involved in flavonoid production in licorice by RNA-seq based transcriptome analysis. Plant Growth Regulation 92 (1):15–28. doi: 10.1007/s10725-020-00616-1.
  • Ishikawa, M., M. Kawasaki, Y. Shiono, and T. Koseki. 2018. A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids. Applied Microbiology and Biotechnology 102 (7):3193–201. doi: 10.1007/s00253-018-8840-9.
  • Kim, M., J. Lee, and J. Han. 2015. Deglycosylation of isoflavone C‐glycosides by newly isolated human intestinal bacteria. Journal of the Science of Food and Agriculture 95 (9):1925–31. doi: 10.1002/jsfa.6900.
  • Levasseur, A., E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat. 2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels 6 (1):41. doi: 10.1186/1754-6834-6-41.
  • Li, S., X. Du, L. Feng, G. Mu, and Y. Tuo. 2021. The microbial community, biogenic amines content of soybean paste, and the degradation of biogenic amines by Lactobacillus plantarum HM24. Food Science & Nutrition 9 (12):6458–70. doi: 10.1002/fsn3.2528.
  • Liang, S., Y. Gao, Y. Q. Fu, J. X. Chen, J. F. Yin, and Y. Q. Xu. 2022. Innovative technologies in tea-beverage processing for quality improvement. Current Opinion in Food Science 47:100870. doi: 10.1016/j.cofs.2022.100870.
  • Lin, Y., W. Chen, B. Ding, M. Guo, M. Liang, H. Pang, Y. Wei, R. Huang, and L. Du. 2023. Highly efficient bioconversion of icariin to icaritin by whole-cell catalysis. Microbial Cell Factories 22 (1):64. doi: 10.1186/s12934-023-02068-4.
  • Liu, C., R. Li, J. Peng, D. Qu, M. Huang, and Y. Chen. 2019. Enhanced hydrolysis and antitumor efficacy of epimedium flavonoids mediated by immobilized snailase on silica. Process Biochemistry 86:80–88. doi: 10.1016/j.procbio.2019.06.020.
  • Liu, X., L. Cao, J. Zeng, Y. Liu, and W. Xie. 2019. Improving the cellobiose-hydrolysis activity and glucose-tolerance of a thermostable β-glucosidase through rational design. International Journal of Biological Macromolecules 136:1052–9. doi: 10.1016/j.ijbiomac.2019.06.029.
  • Lyu, Y., W. Zeng, G. Du, J. Chen, and J. Zhou. 2019. Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans. Bioresource Technology 289:121612. doi: 10.1016/j.biortech.2019.121612.
  • Mai, Z., L. Wang, and Q. Zeng. 2021. Characterization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from mangrove soil metagenomic library. Biochemical and Biophysical Research Communications 569:61–65. doi: 10.1016/j.bbrc.2021.06.086.
  • Manzanares, P., M. Orejas, E. Ibañez, S. Vallés, and D. Ramón. 2000. Purification and characterization of an α-L-rhamnosidase from Aspergillus nidulans. Letters in Applied Microbiology 31 (3):198–202. doi: 10.1046/j.1365-2672.2000.00788.x.
  • Mazzaferro, L., L. Piñuel, M. Minig, and J. D. Breccia. 2010. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Archives of Microbiology 192 (5):383–93. doi: 10.1007/s00203-010-0567-7.
  • Mazzaferro, L. S., and J. D. Breccia. 2011. Functional and biotechnological insights into diglycosidases*. Biocatalysis and Biotransformation 29 (4):103–12. doi: 10.3109/10242422.2011.594882.
  • Miladinović, J., V. Đorđević, S. Balešević-Tubić, K. Petrović, M. Ćeran, J. Cvejić, M. Bursać, and D. Miladinović. 2019. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Scientific Reports 9 (1):10341. doi: 10.1038/s41598-019-46817-1.
  • Murota, K., Y. Nakamura, and M. Uehara. 2018. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Bioscience, Biotechnology, and Biochemistry 82 (4):600–10. doi: 10.1080/09168451.2018.1444467.
  • Nam, H. K., S. H. Hong, K. C. Shin, and D. K. Oh. 2012. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus. Biotechnology Letters 34 (3):483–9. doi: 10.1007/s10529-011-0786-2.
  • Narikawa, T., H. Shinoyama, and T. Fujii. 2000. A β-rutinosidase from Penicillium rugulosum IFO 7242 that is a peculiar flavonoid glycosidase. Bioscience, Biotechnology, and Biochemistry 64 (6):1317–9. doi: 10.1271/bbb.64.1317.
  • Neher, B. D., L. S. Mazzaferro, M. Kotik, J. Oyhenart, P. Halada, V. Křen, and J. D. Breccia. 2016. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids. Applied Microbiology and Biotechnology 100 (7):3061–70. doi: 10.1007/s00253-015-7088-x.
  • Peng, C., R. Li, H. Ni, L. J. Li, and Q. B. Li. 2021. The effects of α‐L‐rhamnosidase, β‐D‐glucosidase, and their combination on the quality of orange juice. Journal of Food Processing and Preservation 45 (7):e15604. doi: 10.1111/jfpp.15604.
  • Phukan, K., and D. Kardong. 2020. Isolation of naringinase producing soil bacteria from Psidium guajava L. and Terminalia chebula Retz and its enzymatic activity. AIMS Molecular Science 7 (3):292–304. doi: 10.3934/molsci.2020014.
  • Prasain, J. K., S. Barnes, and J. M. Wyss. 2021. Kudzu isoflavone C-glycosides: Analysis, biological activities, and metabolism. Food Frontiers 2 (3):383–9. doi: 10.1002/fft2.105.
  • Purewal, S. S., and K. S. Sandhu. 2021. Debittering of citrus juice by different processing methods: A novel approach for food industry and agro-industrial sector. Scientia Horticulturae 276:109750. doi: 10.1016/j.scienta.2020.109750.
  • Qin, W., Y. Yang, Y. Wang, X. Zhang, and X. Liu. 2022. Transcriptomic and metabolomic analysis reveals the difference between large and small flower taxa of Herba epimedii during flavonoid accumulation. Scientific Reports 12 (1):2762. doi: 10.1038/s41598-022-06761-z.
  • Qin, Y., J. P. Chen, C. Y. Li, L. J. Zhu, X. Zhang, J. H. Wang, and X. S. Yao. 2021. Flavonoid glycosides from the fruits of Embelia ribes and their anti-oxidant and α-glucosidase inhibitory activities. Journal of Asian Natural Products Research 23 (8):724–30. doi: 10.1080/10286020.2020.1776266.
  • Qu, L. L., C. Y. Huang, H. X. Li, X. B. Yang, Y. C. Sun, and X. Hu. 2020. Chemical markers of four species of Epimedium used in drug Yin-Yang-Huo. Biochemical Systematics and Ecology 88:103983. doi: 10.1016/j.bse.2019.103983.
  • Sanugul, K., T. Akao, Y. Li, N. Kakiuchi, N. Nakamura, and M. Hattori. 2005. Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biological & Pharmaceutical Bulletin 28 (9):1672–8. doi: 10.1248/bpb.28.1672.
  • Scharbert, S., and T. Hofmann. 2005. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural and Food Chemistry 53 (13):5377–84. doi: 10.1021/jf050294d.
  • Schneider, H., and M. Blaut. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Archives of Microbiology 173 (1):71–5. doi: 10.1007/s002030050010.
  • Sengupta, S., M. Datta, and S. Datta. 2023. β-Glucosidase: Structure, function and industrial applications. In A., Goyal & K., Sharma (eds) Glycoside hydrolases, 97–120. Netherlands: Elsevier. doi: 10.1016/B978-0-323-91805-3.00004-6.
  • Shen, Y., M. Wang, Y. Chen, L. Xu, Y. Lu, Y. Zhou, J. Tam, F. Han, H. Yang, and X. Jia. 2019. Convenient preparation of sagittatoside B, a rare bioactive secondary flavonol glycoside, by recyclable and integrated biphase enzymatic hydrolysis. Enzyme and Microbial Technology 121:51–58. doi: 10.1016/j.enzmictec.2018.12.002.
  • Shin, K. C., H. K. Nam, and D. K. Oh. 2013. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. Journal of Agricultural and Food Chemistry 61 (47):11532–40. doi: 10.1021/jf403332e.
  • Si, X., Z. Yu, X. Ren, L. Huang, and Y. Feng. 2022. Efficacy and safety of standardized Ginkgo biloba L. leaves extract as an adjuvant therapy for sudden sensorineural hearing loss: A systematic review and meta-analysis. Journal of Ethnopharmacology 282:114587. doi: 10.1016/j.jep.2021.114587.
  • Šimčíková, D., M. Kotik, L. Weignerová, P. Halada, H. Pelantová, K. Adamcová, and V. Křen. 2015. α L-Rhamnosyl-β-D-glucosidase (Rutinosidase) from Aspergillus niger : Characterization and synthetic potential of a novel diglycosidase. Advanced Synthesis & Catalysis 357 (1):107–17. doi: 10.1002/adsc.201400566.
  • Singhania, R. R., A. K. Patel, A. Pandey, and E. Ganansounou. 2017. Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresource Technology 245 (Pt B):1352–61. doi: 10.1016/j.biortech.2017.05.126.
  • Srivastava, N., R. Rathour, S. Jha, K. Pandey, M. Srivastava, V. K. Thakur, R. S. Sengar, V. K. Gupta, P. B. Mazumder, A. F. Khan, et al. 2019. Microbial beta glucosidase enzymes: Recent advances in biomass conversation for biofuels application. Biomolecules 9 (6):220. doi: 10.3390/biom9060220.
  • Su, E., T. Xia, L. Gao, Q. Dai, and Z. Zhang. 2010. Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing 88 (2-3):83–89. doi: 10.1016/j.fbp.2009.04.001.
  • Sun, M., L. Chai, F. Lu, Y. Zhao, Q. Li, B. Cui, R. Gao, and Y. Liu. 2018. Efficacy and safety of ginkgo biloba pills for coronary heart disease with impaired glucose regulation: Study protocol for a series of N-of-1 randomized, double-blind, placebo-controlled trials. Evidence-Based Complementary and Alternative Medicine: ECAM 2018:7571629. doi: 10.1155/2018/7571629.
  • Sun, Y., Q. Xu, W. Peng, Y. Xue, and P. Sun. 2021. Synergistic effects of ultrasound and β-D-glucosidase in aroma of orange juice. Journal of Food Science 86 (6):2374–86. doi: 10.1111/1750-3841.15671.
  • Tan, Z., J. Deng, Q. Ye, and Z. Zhang. 2022. The antibacterial activity of natural-derived flavonoids. Current Topics in Medicinal Chemistry 22 (12):1009–19. doi: 10.2174/1568026622666220221110506.
  • Tao, Y., S. Zhan, Y. Wang, G. Zhou, H. Liang, X. Chen, and H. Shen. 2018. Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Scientific Reports 8 (1):14477. doi: 10.1038/s41598-018-32734-2.
  • Tu, J., D. Shi, L. Wen, Y. Jiang, Y. Zhao, J. Yang, H. Liu, G. Liu, and B. Yang. 2019. Identification of moracin N in mulberry leaf and evaluation of antioxidant activity. Food and Chemical Toxicology 132:110730. doi: 10.1016/j.fct.2019.110730.
  • Wang, C., P. X. Chen, Q. Xiao, J. Chen, F. Q. Chen, Q. M. Yang, H. F. Weng, B. S. Fang, Y. H. Zhang, and A. F. Xiao. 2022. Artificial naringinase system for cooperative enzymatic synthesis of naringenin. Biochemical Engineering Journal 178:108277. doi: 10.1016/j.bej.2021.108277.
  • Wang, R., Z. Pu, J. J. Janke, Y.-C. Zheng, X.-D. Kong, T. Niu, S. Zhao, L. Yang, Z. Wang, and J.-H. Xu. 2023. Engineered glycosidase for significantly improved production of naturally rare vina-ginsenoside R7. Journal of Agricultural and Food Chemistry 71 (8):3852–61. doi: 10.1021/acs.jafc.2c09115.
  • Wang, R., K. Thakur, J. Y. Feng, Y. Y. Zhu, F. Zhang, P. Russo, G. Spano, J. G. Zhang, and Z. J. Wei. 2022. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B2 bio-enrichment and improved in vitro digestion. Food Chemistry 387:132947. doi: 10.1016/j.foodchem.2022.132947.
  • Wei, B., Y.-K. Wang, W.-H. Qiu, S.-J. Wang, Y.-H. Wu, X.-W. Xu, and H. Wang. 2020. Discovery and mechanism of intestinal bacteria in enzymatic cleavage of C-C glycosidic bonds. Applied Microbiology and Biotechnology 104 (5):1883–90. doi: 10.1007/s00253-019-10333-z.
  • Wen, L., Y. Yuan, Y. Jiang, B. Xiong, and B. Yang. 2023. The estrogen receptor modulatory activity and neuroprotective activity of novel prenylated flavonoids and their structure-activity relationship. Food Safety and Health 1 (2):184–201. doi: 10.1002/fsh3.12018.
  • Wu, Y. Z., S. Q. Li, X. G. Zu, J. Du, and F. F. Wang. 2008. Ginkgo biloba extract improves coronary artery circulation in patients with coronary artery disease: Contribution of plasma nitric oxide and endothelin-1. Phytotherapy Research: PTR 22 (6):734–9. doi: 10.1002/ptr.2335.
  • Xiao, J. 2015. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Critical Reviews in Food Science and Nutrition 57 (9):1874–905. doi: 10.1080/10408398.2015.1032400.
  • Yang, B., J. Yang, Y. Zhao, H. Liu, and Y. Jiang. 2016. The plant resources, structure characteristics, biological activities and synthesis of pyranoflavonoids. Current Medicinal Chemistry 23 (27):3078–115. doi: 10.2174/0929867323666160510123147.
  • Yang, B., H. Liu, J. Yang, V. K. Gupta, and Y. Jiang. 2018. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends in Food Science & Technology 79:116–24. doi: 10.1016/j.tifs.2018.07.006.
  • Yang, H., S.-H. Lee, H. Ji, J.-E. Kim, R. Yoo, J. H. Kim, S. Suk, C. S. Huh, J. H. Y. Park, Y.-S. Heo, et al. 2019. Orobol, an enzyme-convertible product of genistein, exerts anti-obesity effects by targeting Casein Kinase 1 epsilon. Scientific Reports 9 (1):8942. doi: 10.1038/s41598-019-43950-9.
  • Yang, J., L. Wen, Y. Jiang, and B. Yang. 2019. Natural estrogen receptor modulators and their heterologous biosynthesis. Trends in Endocrinology and Metabolism: TEM 30 (1):66–76. doi: 10.1016/j.tem.2018.11.002.
  • Yang, S., L. Wang, Q. Yan, Z. Jiang, and L. Li. 2009. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chemistry 115 (4):1247–52. doi: 10.1016/j.foodchem.2009.01.038.
  • Yeom, S. J., B. N. Kim, Y. S. Kim, and D. K. Oh. 2012. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. Journal of Agricultural and Food Chemistry 60 (6):1535–41. doi: 10.1021/jf204432g.
  • Zang, X., M. Liu, Y. Fan, J. Xu, X. Xu, and H. Li. 2018. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnology for Biofuels 11 (1):51. doi: 10.1186/s13068-018-1045-8.
  • Zhang, L., Q. Fu, W. Li, B. Wang, X. Yin, S. Liu, Z. Xu, and Q. Niu. 2017. Identification and characterization of a novel β-glucosidase via metagenomic analysis of Bursaphelenchus xylophilus and its microbial flora. Scientific Reports 7 (1):14850. doi: 10.1038/s41598-017-14073-w.
  • Zhang, L., Z. Zeng, G. Ye, C. Zhao, X. Lu, and G. Xu. 2014. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatograph-mass spectrometry and liquid chromatography-mass spectrometry. Se pu = Chinese Journal of Chromatography 32 (8):804–16. doi: 10.3724/sp.j.1123.2014.04029.
  • Zhang, L. B., Y. Yan, J. He, P. P. Wang, X. Chen, T. Y. Lan, Y. X. Guo, J. P. Wang, J. Luo, Z. R. Yan, et al. 2022. Epimedii herba: An ancient Chinese herbal medicine in the prevention and treatment of rheumatoid arthritis. Frontiers in Chemistry 10:1023779. doi: 10.3389/fchem.2022.1023779.
  • Zhang, X., Y. Zhou, M. S. Cheong, H. Khan, C. C. Ruan, M. Fu, J. Xiao, and W. S. Cheang. 2022. Citri reticulatae Pericarpium extract and flavonoids reduce inflammation in RAW 264.7 macrophages by inactivation of MAPK and NF-κB pathways. Food Frontiers 3 (4):785–95. doi: 10.1002/fft2.169.
  • Zhang, Y. Q., M. Zhang, Z. L. Wang, X. Qiao, and M. Ye. 2022. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnology Advances 60:108030. doi: 10.1016/j.biotechadv.2022.108030.
  • Zhang, Z., C. Song, J. Zhao, E. Xia, W. Wen, L. Zeng, and V. A. Benedito. 2023. Editorial: Secondary metabolites and metabolism in tea plants. Frontiers in Plant Science 14:1143022. doi: 10.3389/fpls.2023.1143022.
  • Zhou, J., K. Zou, S. Fu, Z. Duan, G. Zhang, X. Wu, J. Huang, S. Li, X. Liu, S. Zhang, et al. 2023. Flavonoid synthesis by Deinococcus sp. 43 isolated from the Ginkgo rhizosphere. Microorganisms 11 (7):1848. doi: 10.3390/microorganisms11071848.
  • Zhu, H., R. Zhang, Z. Huang, and J. Zhou. 2023. Progress in the conversion of ginsenoside Rb1 into minor ginsenosides using β-glucosidases. Foods 12 (2):397. doi: 10.3390/foods12020397.
  • Zhu, J., X. Yu, and M. Mi. 2006. Genistein inhibits expression of vascular endothelial growth factor in HER-2/neu transfected human breast cancer MCF-7 cells. Chinese Journal of Cancer Research 18 (2):83–7. doi: 10.1007/s11670-006-0083-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.