553
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Starch-based particles as stabilizers for Pickering emulsions: modification, characteristics, stabilization, and applications

, , , &

References

  • Abdul Hadi, N., A. Marefati, M. Matos, B. Wiege, and M. Rayner. 2020. Characterization and stability of short-chain fatty acids modified starch Pickering emulsions. Carbohydrate Polymers 240:116264. doi: 10.1016/J.CARBPOL.2020.116264.
  • Agama-Acevedo, E., and L. A. Bello-Perez. 2017. Starch as an emulsions stability: The case of octenyl succinic anhydride (OSA) starch. Current Opinion in Food Science 13:78–83. doi: 10.1016/j.cofs.2017.02.014.
  • Albert, C., M. Beladjine, N. Tsapis, E. Fattal, F. Agnely, and N. Huang. 2019. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release 309:302–32. doi: 10.1016/J.JCONREL.2019.07.003.
  • Alexandri, M., V. Kachrimanidou, H. Papapostolou, A. Papadaki, and N. Kopsahelis. 2022. Sustainable food systems: The case of functional compounds towards the development of clean label food products. Foods 11 (18):2796. doi: 10.3390/FOODS11182796.
  • Apostolidis, E., and I. Mandala. 2020. Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids. 103:105677. doi: 10.1016/j.foodhyd.2020.105677.
  • Apostolidis, E., G. N. Stoforos, and I. Mandala. 2023. Starch physical treatment, emulsion formation, stability, and their applications. Carbohydrate Polymers 305:120554. doi: 10.1016/J.CARBPOL.2023.120554.
  • Aveyard, R., B. P. Binks, and J. H. Clint. 2003. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 100-102:503–46. doi: 10.1016/S0001-8686(02)00069-6.
  • Azfaralariff, A., F. F. Fazial, R. S. Sontanosamy, M. F. Nazar, and A. M. Lazim. 2020. Food-grade particle stabilized pickering emulsion using modified sago (Metroxylon sagu) starch nanocrystal. Journal of Food Engineering 280:109974. doi: 10.1016/j.jfoodeng.2020.109974.
  • Bansil, R., and B. S. Turner. 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science 11 (2-3):164–70. doi: 10.1016/j.cocis.2005.11.001.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International 120:130–40. doi: 10.1016/J.FOODRES.2019.02.024.
  • Bertoft, E. 2017. Understanding starch structure: Recent progress. Agronomy 7 (3):56. doi: 10.3390/agronomy7030056.
  • Bi, H., G. Zhao, and F. Fan. 2023. Preparation and characteristics of starch-based pickering emulsions: Effects of rosin acid and starch size. Starch 75 (1-2):2200108. doi: 10.1002/star.202200108.
  • Binks, B. P. 2002. Particles as surfactants – Similarities and differences. Current Opinion in Colloid & Interface Science 7 (1-2):21–41. doi: 10.1016/S1359-0294(02)00008-0.
  • Bist, Y., Y. Kumar, and D. C. Saxena. 2022. Enhancing the storage stability of Pickering emulsion using esterified buckwheat starch with improved structure and morphology. LWT 161:113329. doi: 10.1016/j.lwt.2022.113329.
  • Bollhorst, T., K. Rezwan, and M. Maas. 2017. Colloidal capsules: Nano- and microcapsules with colloidal particle shells. Chemical Society Reviews 46 (8):2091–126. doi: 10.1039/C6CS00632A.
  • Boostani, S., S. M. H. Hosseini, M. T. Golmakani, A. Marefati, N. B. Abdul Hadi, and M. Rayner. 2020. The influence of emulsion parameters on physical stability and rheological properties of Pickering emulsions stabilized by hordein nanoparticles. Food Hydrocolloids. 101:105520. doi: 10.1016/j.foodhyd.2019.105520.
  • Boufi, S., S. Bel Haaj, A. Magnin, F. Pignon, M. Impéror-Clerc, and G. Mortha. 2018. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry 41:327–36. doi: 10.1016/J.ULTSONCH.2017.09.033.
  • Chandrapala, J., C. Oliver, S. Kentish, and M. Ashokkumar. 2012. Ultrasonics in food processing. Ultrasonics Sonochemistry 19 (5):975–83. doi: 10.1016/J.ULTSONCH.2012.01.010.
  • Chatterjee, P., G. A. Sowiak, and P. T. Underhill. 2017. Effect of phase change on the rheology and stability of paraffin wax-in-water Pickering emulsions. Rheologica Acta 56 (7-8):601–13. doi: 10.1007/s00397-017-1021-4.
  • Chen, L., F. Ao, X. Ge, and W. Shen. 2020. Food-grade pickering emulsions: Preparation, stabilization and applications. Molecules 25 (14):3202. doi: 10.3390/molecules25143202.
  • Chevalier, Y., and M. A. Bolzinger. 2013. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A 439:23–34. doi: 10.1016/j.colsurfa.2013.02.054.
  • Chutia, H., and C. L. Mahanta. 2021. Properties of starch nanoparticle obtained by ultrasonication and high pressure homogenization for developing carotenoids-enriched powder and Pickering nanoemulsion. Innovative Food Science & Emerging Technologies 74:102822. doi: 10.1016/j.ifset.2021.102822.
  • Colivet, J., V. A. S. Garcia, R. V. Lourenço, C. M. P. Yoshida, A. L. Oliveira, F. M. Vanin, and R. A. Carvalho. 2022. Characterization of films produced with cross-linked cassava starch and emulsions of watermelon seed oils. Foods 11 (23):3803. doi: 10.3390/FOODS11233803.
  • Dong, H., Q. Zhang, J. Gao, L. Chen, and T. Vasanthan. 2021. Comparison of morphology and rheology of starch nanoparticles prepared from pulse and cereal starches by rapid antisolvent nanoprecipitation. Food Hydrocolloids. 119:106828. doi: 10.1016/j.foodhyd.2021.106828.
  • Estrada-Fernández, A. G., G. Dorantes-Bautista, A. Román-Guerrero, R. G. Campos-Montiel, J. P. Hernández-Uribe, and R. Jiménez-Alvarado. 2021. Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade pickering emulsions. Journal of Food Science and Technology 58 (8):2896–905. doi: 10.1007/S13197-020-04790-Y/METRICS.
  • French, D. J., A. T. Brown, A. B. Schofield, J. Fowler, P. Taylor, and P. S. Clegg. 2016. The secret life of Pickering emulsions: Particle exchange revealed using two colours of particle. Scientific Reports 6 (1):31401. doi: 10.1038/srep31401.
  • French, D. J., P. Taylor, J. Fowler, and P. S. Clegg. 2015. Making and breaking bridges in a Pickering emulsion. Journal of Colloid and Interface Science 441:30–8. doi: 10.1016/j.jcis.2014.11.032.
  • Gauthier, G., and I. Capron. 2021. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. JCIS Open 4:100036. doi: 10.1016/j.jciso.2021.100036.
  • Gazolu-Rusanova, D., I. Lesov, S. Tcholakova, N. Denkov, and B. Ahtchi. 2020. Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocolloids. 102:105579. doi: 10.1016/j.foodhyd.2019.105579.
  • Ge, S., L. Xiong, M. Li, J. Liu, J. Yang, R. Chang, C. Liang, and Q. Sun. 2017. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food Chemistry 234:339–47. doi: 10.1016/J.FOODCHEM.2017.04.150.
  • Gong, H., S. Lin, H. Ren, X. Song, and Q. Zhao. 2022. Pickering emulsion stabilised by double-modified starch particles and its delivery property for curcumin. International Journal of Food Science & Technology 57 (12):7751–62. doi: 10.1111/ijfs.16135.
  • Gonzalez Ortiz, D., C. Pochat-Bohatier, J. Cambedouzou, M. Bechelany, and P. Miele. 2020. Current trends in pickering emulsions: particle morphology and applications. Engineering 6 (4):468–82. doi: 10.1016/j.eng.2019.08.017.
  • Guida, C., A. C. Aguiar, and R. L. Cunha. 2021. Green techniques for starch modification to stabilize Pickering emulsions : a current review and future perspectives. Current Opinion in Food Science 38:52–61. doi: 10.1016/j.cofs.2020.10.017.
  • Guo, B., C. Liu, L. Grossmann, and J. Weiss. 2022. Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. Journal of Colloid and Interface Science 612:525–35. doi: 10.1016/J.JCIS.2021.12.185.
  • Harman, C. L. G., M. A. Patel, S. Guldin, and G. L. Davies. 2019. Recent developments in Pickering emulsions for biomedical applications. Current Opinion in Colloid & Interface Science 39:173–89. doi: 10.1016/j.cocis.2019.01.017.
  • Jia, Y., L. Kong, B. Zhang, X. Fu, and Q. Huang. 2022. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles. International Journal of Biological Macromolecules 207:791–800. doi: 10.1016/J.IJBIOMAC.2022.03.142.
  • Jo, M., C. Ban, K. K. T. Goh, and Y. J. Choi. 2018. Gastrointestinal digestion and stability of submicron-sized emulsions stabilized using waxy maize starch crystals. Food Hydrocolloids. 84:343–52. doi: 10.1016/j.foodhyd.2018.06.026.
  • John, T. P., J. S. Panesar, A. Kowalski, T. L. Rodgers, and C. P. Fonte. 2019. Linking power and flow in rotor-stator mixers. Chemical Engineering Science 207:504–15. doi: 10.1016/j.ces.2019.06.039.
  • Juárez, J. A., and C. P. Whitby. 2012. Oil-in-water Pickering emulsion destabilisation at low particle concentrations. Journal of Colloid and Interface Science 368 (1):319–25. doi: 10.1016/J.JCIS.2011.11.029.
  • Kamwilaisak, K., K. Rittiwut, P. Jutakridsada, W. Iamamorphanth, N. Pimsawat, J. T. N. Knijnenburg, and S. Theerakulpisut. 2022. Rheology, stability, antioxidant properties, and curcumin release of oil-in-water Pickering emulsions stabilized by rice starch nanoparticles. International Journal of Biological Macromolecules 214:370–80. doi: 10.1016/j.ijbiomac.2022.06.032.
  • Kempin, M. V., M. Kraume, and A. Drews. 2020. W/O Pickering emulsion preparation using a batch rotor-stator mixer – Influence on rheology, drop size distribution and filtration behavior. Journal of Colloid and Interface Science 573:135–49. doi: 10.1016/J.JCIS.2020.03.103.
  • Ko, E. B., and J. Y. Kim. 2021. Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability. Food Hydrocolloids. 120:106984. doi: 10.1016/j.foodhyd.2021.106984.
  • Li, Q., Y. Huang, Y. Du, Y. Chen, Y. Wu, K. Zhong, Y. Huang, and H. Gao. 2022. Food-grade olive oil Pickering emulsions stabilized by starch/β-cyclodextrin complex nanoparticles : Improved storage stability and regulatory effects on gut microbiota. LWT 155:112950. doi: 10.1016/j.lwt.2021.112950.
  • Li, S., B. Zhang, C. Li, X. Fu, and Q. Huang. 2020. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chemistry 305:125476. doi: 10.1016/j.foodchem.2019.125476.
  • Li, S., B. Zhang, C. P. Tan, C. Li, X. Fu, and Q. Huang. 2019. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism. Food Hydrocolloids. 91:40–4. doi: 10.1016/j.foodhyd.2019.01.001.
  • Li, X. M., X. Li, Z. Wu, Y. Wang, J. S. Cheng, T. Wang, and B. Zhang. 2020. Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chemistry 315:126288. doi: 10.1016/J.FOODCHEM.2020.126288.
  • Liang, R., Y. Jiang, W. Yokoyama, C. Yang, G. Cao, and F. Zhong. 2016. Preparation of Pickering emulsions with short, medium and long chain triacylglycerols stabilized by starch nanocrystals and their in vitro digestion properties. RSC Advances 6 (101):99496–508. doi: 10.1039/C6RA18468E.
  • Lin, X., S. Li, J. Yin, F. Chang, C. Wang, X. He, Q. Huang, and B. Zhang. 2019. Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: Preparation, stability and in vitro gastrointestinal digestion. International Journal of Biological Macromolecules 152:1233–41. doi: 10.1016/j.ijbiomac.2019.10.220.
  • Liu, D., S. Dang, L. Zhang, K. Munsop, and X. Li. 2021. Corn starch/polyvinyl alcohol based films incorporated with curcumin-loaded Pickering emulsion for application in intelligent packaging. International Journal of Biological Macromolecules 188:974–82. doi: 10.1016/j.ijbiomac.2021.08.080.
  • López-Hernández, R. E., S. E. García-Solís, I. Monroy-Rodríguez, M. Cornejo-Mazón, G. Calderón-Domínguez, L. Alamilla-Beltrán, H. Hernández-Sánchez, and G. F. Gutiérrez-López. 2022. Preparation and characterization of canola oil-in-water Pickering emulsions stabilized by barley starch nanocrystals. Journal of Food Engineering 326:111037. doi: 10.1016/j.jfoodeng.2022.111037.
  • López-Pedrouso, M., J. M. Lorenzo, R. Moreira, and D. Franco. 2022. Potential applications of Pickering emulsions and high internal-phase emulsions (HIPEs) stabilized by starch particles. Current Opinion in Food Science 46:100866. doi: 10.1016/j.cofs.2022.100866.
  • Low, L. E., S. P. Siva, Y. K. Ho, E. S. Chan, and B. T. Tey. 2020. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science 277:102117. doi: 10.1016/J.CIS.2020.102117.
  • Lu, X., and Q. Huang. 2019. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions: Role of fatty acid complexation and heat treatment. Food & Function 10 (9):5969–80. doi: 10.1039/C9FO01541H.
  • Lu, X., H. Liu, and Q. Huang. 2020. Fabrication and characterization of resistant starch stabilized Pickering emulsions. Food Hydrocolloids. 103:105703. doi: 10.1016/j.foodhyd.2020.105703.
  • Lu, X., J. Xiao, and Q. Huang. 2018. Pickering emulsions stabilized by media-milled starch particles. Food Research International (Ottawa, Ont.) 105:140–9. doi: 10.1016/J.FOODRES.2017.11.006.
  • Lv, S., H. Zhou, L. Bai, O. J. Rojas, and D. J. McClements. 2021. Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocolloids. 113:106451. doi: 10.1016/j.foodhyd.2020.106451.
  • Lv, X., C. Guo, Y. Ma, and B. Liu. 2022. Effect of citric acid esterification on the structure and physicochemical properties of tigernut starch. International Journal of Biological Macromolecules 222 (Pt B):2833–42. doi: 10.1016/J.IJBIOMAC.2022.10.062.
  • Marefati, A., M. Bertrand, M. Sjöö, P. Dejmek, and M. Rayner. 2017. Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocolloids. 63:309–20. doi: 10.1016/j.foodhyd.2016.08.043.
  • Matos, M., A. Marefati, P. Barrero, M. Rayner, and G. Gutiérrez. 2021. Resveratrol loaded Pickering emulsions stabilized by OSA modified rice starch granules. Food Research International (Ottawa, Ont.) 139:109837. doi: 10.1016/J.FOODRES.2020.109837.
  • McClements, D. J. 2018. The biophysics of digestion: Lipids. Current Opinion in Food Science 21:1–6. doi: 10.1016/j.cofs.2018.03.009.
  • McClements, D. J., and E. Decker. 2018. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. Journal of Agricultural and Food Chemistry 66 (1):20–35. doi: 10.1021/ACS.JAFC.7B05066.
  • McGorty, R., J. Fung, D. Kaz, and V. N. Manoharan. 2010. Colloidal self-assembly at an interface. Materials Today 13 (6):34–42. doi: 10.1016/S1369-7021(10)70107-3.
  • Mosca, A. C., and J. Chen. 2017. Food-saliva interactions: Mechanisms and implications. Trends in Food Science & Technology 66:125–34. doi: 10.1016/j.tifs.2017.06.005.
  • Muhammad, Z., R. Ramzan, R. Zhang, D. Zhao, N. Khalid, M. Deng, L. Dong, M. Aziz, R. Batool, and M. Zhang. 2022. Enhanced bioaccessibility of microencapsulated puerarin delivered by pickering emulsions stabilized with OSA-modified hydrolyzed Pueraria montana starch: In Vitro release, storage stability, and physicochemical properties. Foods 11 (22):3591. doi: 10.3390/FOODS11223591.
  • Muijlwijk, K., C. Berton-Carabin, and K. Schroën. 2016. Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science & Technology 49:51–63. doi: 10.1016/j.tifs.2016.01.004.
  • Nishihora, R. K., L. Luhede, U. Fritsching, M. G. Novy Quadri, D. Hotza, K. Rezwan, and M. Wilhelm. 2020. Premix membrane emulsification using flat microfiltration inorganic membranes with tailored structure and composition. Journal of Membrane Science 608:118124. doi: 10.1016/j.memsci.2020.118124.
  • Noor, N., A. Gani, F. Jhan, M. Ashraf Shah, and Z. Ul Ashraf. 2022. Ferulic acid loaded pickering emulsions stabilized by resistant starch nanoparticles using ultrasonication: Characterization, in vitro release and nutraceutical potential. Ultrasonics Sonochemistry 84:105967. doi: 10.1016/J.ULTSONCH.2022.105967.
  • Ribeiro, A., J. C. B. Lopes, M. M. Dias, and M. F. Barreiro. 2023. Pickering emulsions based in inorganic solid particles: From product development to food applications. Molecules 28 (6):2504. doi: 10.3390/MOLECULES28062504.
  • Saari, H., C. Fuentes, M. Sjöö, M. Rayner, and M. Wahlgren. 2017. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydrate Polymers 157:558–66. doi: 10.1016/J.CARBPOL.2016.10.003.
  • Saari, H., K. Heravifar, M. Rayner, M. Wahlgren, and M. Sjöö. 2016. Preparation and characterization of starch particles for use in Pickering emulsions. Cereal Chemistry 93 (2):116–24. doi: 10.1094/CCHEM-05-15-0107-R.
  • Sarkar, A., A. Ye, and H. Singh. 2017. Oral processing of emulsion systems from a colloidal perspective. Food & Function 8 (2):511–21. doi: 10.1039/C6FO01171C.
  • Sarkar, A., S. Zhang, M. Holmes, and R. Ettelaie. 2019. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Advances in Colloid and Interface Science 263:195–211. doi: 10.1016/j.cis.2018.10.002.
  • Sathyan, S., and P. Nisha. 2022. Optimization and characterization of porous starch from corn starch and application studies in emulsion stabilization. Food and Bioprocess Technology 15 (9):2084–99. doi: 10.1007/s11947-022-02843-y.
  • Schroën, K., O. Bliznyuk, K. Muijlwijk, S. Sahin, and C. C. Berton-Carabin. 2015. Microfluidic emulsification devices: From micrometer insights to large-scale food emulsion production. Current Opinion in Food Science 3:33–40. doi: 10.1016/j.cofs.2014.11.009.
  • Sharkawy, A., M. F. Barreiro, and A. E. Rodrigues. 2020. Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers 250:116885. doi: 10.1016/J.CARBPOL.2020.116885.
  • Shweta, Y., Kumar, and D. C., Saxena. (2021). Valorization of unpopped Foxnut starch in stabilizing Pickering emulsion using OSA modification. International Journal of Biological Macromolecules, 191, 657–667. doi: 10.1016/J.IJBIOMAC.2021.09.148.
  • Singla, M., and N. Sit. 2021. Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry 73:105506. doi: 10.1016/J.ULTSONCH.2021.105506.
  • Song, X., H. Gong, W. Zhu, J. Wang, Y. Zhai, and S. Lin. 2022. Pickering emulsion stabilized by composite-modified waxy corn starch particles. International Journal of Biological Macromolecules 205:66–75. doi: 10.1016/J.IJBIOMAC.2022.02.044.
  • Song, X., F. Ma, F. Zheng, H. Ren, and H. Gong. 2020. Comparative study of Pickering emulsions stabilised by starch particles from different botanical origins. International Journal of Food Science & Technology 55 (6):2408–18. doi: 10.1111/ijfs.14490.
  • Sun, H., S. Li, S. Chen, C. Wang, D. Liu, and X. Li. 2020. International Journal of Biological Macromolecules Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules 159:696–703. doi: 10.1016/j.ijbiomac.2020.05.118.
  • Tavernier, I., W. Wijaya, P. Van der Meeren, K. Dewettinck, and A. R. Patel. 2016. Food-grade particles for emulsion stabilization. Trends in Food Science & Technology 50:159–74. doi: 10.1016/j.tifs.2016.01.023.
  • Thickett, S. C., and P. B. Zetterlund. 2015. Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: Influence of oil phase polarity. Journal of Colloid and Interface Science 442:67–74. doi: 10.1016/J.JCIS.2014.11.047.
  • Troise, A. D., V. Fogliano, and A. Madadlou. 2020. Tailor it up! How we are rolling towards designing the functionality of emulsions in the mouth and gastrointestinal tract. Current Opinion in Food Science 31:126–35. doi: 10.1016/j.cofs.2020.06.002.
  • Tsabet, È., and L. Fradette. 2015. Effect of the properties of oil, particles, and water on the production of Pickering emulsions. Chemical Engineering Research and Design 97:9–17. doi: 10.1016/j.cherd.2015.02.016.
  • Wang, H., V. Singh, and S. H. Behrens. 2012. Image charge effects on the formation of Pickering emulsions. The Journal of Physical Chemistry Letters 3 (20):2986–90. doi: 10.1021/JZ300909Z.
  • Wang, J., Y. Li, X. Wang, J. Wang, H. Tian, P. Zhao, Y. Tian, Y. Gu, L. Wang, and C. Wang. 2017. Droplet microfluidics for the production of microparticles and nanoparticles. Micromachines 8 (1):22. doi: 10.3390/mi8010022.
  • Wang, R., and J. Zhou. 2022. Waxy maize starch nanoparticles incorporated tea polyphenols to stabilize Pickering emulsion and inhibit oil oxidation. Carbohydrate Polymers 296:119991. doi: 10.1016/j.carbpol.2022.119991.
  • Wang, Y., B. Li, L. Zhu, P. Wang, F. Xu, and Y. Zhang. 2022. Octenyl succinic acid starch-stabilized vanilla essential oil pickering emulsion: preparation, characterization, antioxidant activity, and storage stability. Foods 11 (7):987. doi: 10.3390/FOODS11070987.
  • Xiao, J., Y. Li, and Q. Huang. 2016. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science & Technology 55:48–60. doi: 10.1016/j.tifs.2016.05.010.
  • Xu, T., C. Jiang, Z. Huang, Z. Gu, L. Cheng, and Y. Hong. 2023. Formation, stability and the application of Pickering emulsions stabilized with OSA starch/chitosan complexes. Carbohydrate Polymers 299:120149. doi: 10.1016/j.carbpol.2022.120149.
  • Xu, T., J. Yang, S. Hua, Y. Hong, Z. Gu, L. Cheng, Z. Li, and C. Li. 2020. Characteristics of starch-based Pickering emulsions from the interface perspective. Trends in Food Science & Technology 105:334–46. doi: 10.1016/j.tifs.2020.09.026.
  • Yan, C., D. J. McClements, Y. Zhu, L. Zou, W. Zhou, and W. Liu. 2019. Fabrication of OSA starch/chitosan polysaccharide-based high internal phase emulsion via altering interfacial behaviors. Journal of Agricultural and Food Chemistry 67 (39):10937–46. doi: 10.1021/ACS.JAFC.9B04009/ASSET/IMAGES/MEDIUM/JF9B04009_0009.GIF.
  • Yan, X., M. Diao, C. Li, C. Lu, P. Zhao, and T. Zhang. 2022. Formation and properties of starch-palmitic acid complex nanoparticles and their influence on Pickering emulsions. International Journal of Biological Macromolecules 204:685–91. doi: 10.1016/J.IJBIOMAC.2022.01.170.
  • Yang, Y., Z. Fang, X. Chen, W. Zhang, Y. Xie, Y. Chen, Z. Liu, and W. Yuan. 2017. An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications. Frontiers in Pharmacology 8:287. doi: 10.3389/fphar.2017.00287.
  • Yao, X., R. Lin, Y. Liang, S. Jiao, and L. Zhong. 2023. Characterization of acetylated starch nanoparticles for potential use as an emulsion stabilizer. Food Chemistry 400:133873. doi: 10.1016/j.foodchem.2022.133873.
  • Yuan, D. B., Y. Q. Hu, T. Zeng, S. W. Yin, C. H. Tang, and X. Q. Yang. 2017. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles. Food & Function 8 (6):2220–30. doi: 10.1039/C7FO00418D.
  • Yuan, Q., N. Aryanti, G. Gutiérrez, and R. A. Williams. 2009. Enhancing the throughput of membrane emulsification techniques to manufacture functional particles. Industrial & Engineering Chemistry Research 48 (19):8872–80. doi: 10.1021/ie801929s.
  • Zhang, L., D. L. Chen, X. F. Wang, L. Xu, J. Y. Qian, and X. D. He. 2022. Enzymatically modified quinoa starch based Pickering emulsion as carrier for curcumin: Rheological properties, protection effect and in vitro digestion study. Food Bioscience 49:101933. doi: 10.1016/j.fbio.2022.101933.
  • Zheng, W., L. Ren, W. Hao, L. Wang, C. Liu, and L. Zheng. 2022. Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch : Preparation, characterization and storage stability properties. Food Chemistry 386:132846. doi: 10.1016/j.foodchem.2022.132846.
  • Zhou, F., M. Dong, J. Huang, G. Lin, J. Liang, S. Deng, C. Gu, and Q. Yang. 2023. Preparation and physico-chemical characterization of OSA-modified starches from different botanical origins and study on the properties of Pickering emulsions stabilized by these starches. Polymers 15 (3):706. doi: 10.3390/POLYM15030706.
  • Zhou, L., J. Zhang, L. Xing, and W. Zhang. 2021. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends in Food Science & Technology 110:493–512. doi: 10.1016/j.tifs.2021.02.008.
  • Zhu, F. 2019. Starch based Pickering emulsions: Fabrication, properties, and applications. Trends in Food Science & Technology 85:129–37. doi: 10.1016/j.tifs.2019.01.012.
  • Zia-Ud-Din, H., Xiong, and P., Fei. (2017). Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2691–2705. doi: 10.1080/10408398.2015.1087379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.