552
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits

, , , , , & show all

References

  • Admassu, H., M. A. A. Gasmalla, R. Yang, and W. Zhao. 2018. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). Journal of Agricultural and Food Chemistry 66 (19):4872–82. doi:10.1021/acs.jafc.8b00960.
  • Aimutis, W. R. 2022. Plant-based proteins: The good, bad, and ugly. Annual Review of Food Science and Technology 13 (1):1–17. doi:10.1146/annurev-food-092221-041723.
  • Akharume, F., D. Santra, and A. Adedeji. 2020. Physicochemical and functional properties of proso millet storage protein fractions. Food Hydrocolloids. 108:105497. doi:10.1016/j.foodhyd.2019.105497.
  • Alrosan, M., T. C. Tan, A. M. Easa, S. Gammoh, M. H. Alu’datt, G. M. Aleid, M. N. Alhamad, and S. Maghaydah. 2023. Evaluation of quality and protein structure of natural water kefir-fermented quinoa protein concentrates. Food Chemistry 404 (Pt B):134614. doi:10.1016/j.foodchem.2022.134614.
  • Amagliani, L., J. V. C. Silva, M. Saffon, and J. Dombrowski. 2021. On the foaming properties of plant proteins: Current status and future opportunities. Trends in Food Science & Technology 118:261–72. doi:10.1016/j.tifs.2021.10.001.
  • Aschemann-Witzel, J., R. F. Gantriis, P. Fraga, and F. J. A. Perez-Cueto. 2021. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition 61 (18):3119–28. doi:10.1080/10408398.2020.1793730.
  • Azeez, S. O., C. E. Chinma, S. O. Bassey, U. R. Eze, A. F. Makinde, A. A. Sakariyah, S. S. Okubanjo, N. Danbaba, and O. A. Adebo. 2022. Impact of germination alone or in combination with solid-state fermentation on the physicochemical, antioxidant, in vitro digestibility, functional and thermal properties of brown finger millet flours. LWT 154:112734. doi:10.1016/j.lwt.2021.112734.
  • Bähr, M., A. Fechner, J. Krämer, M. Kiehntopf, and G. Jahreis. 2013. Lupin protein positively affects plasma LDL cholesterol and LDL:HDL cholesterol ratio in hypercholesterolemic adults after four weeks of supplementation: A randomized, controlled crossover study. Nutrition Journal 12:107. doi:10.1186/1475-2891-12-107.
  • Barbana, C., and J. I. Boye. 2013. In vitro protein digestibility and physico-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris). Food & Function 4 (2):310–21. doi:10.1039/c2fo30204g.
  • Batista, A. P., A. Niccolai, P. Fradinho, S. Fragoso, I. Bursic, L. Rodolfi, N. Biondi, M. R. Tredici, I. Sousa, and A. Raymundo. 2017. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research 26:161–71. doi:10.1016/j.algal.2017.07.017.
  • Bejosano, F. P., and H. Corke. 1999. Properties of protein concentrates and hydrolysates from Amaranthus and Buckwheat. Industrial Crops and Products 10 (3):175–83. doi:10.1016/s0926-6690(99)00021-7.
  • Benelhadj, S., A. Gharsallaoui, P. Degraeve, H. Attia, and D. Ghorbel. 2016. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry 194:1056–63. doi:10.1016/j.foodchem.2015.08.133.
  • Bertsch, P., L. Böcker, A. Mathys, and P. Fischer. 2021. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends in Food Science & Technology 108:326–42. doi:10.1016/j.tifs.2020.12.014.
  • Bhatia, S., K. Sharma, A. G. Namdeo, B. B. Chaugule, M. Kavale, and S. Nanda. 2010. Broad-spectrum sun-protective action of Porphyra-334 derived from Porphyra vietnamensis. Pharmacognosy Research 2 (1):45–9. doi:10.4103/0974-8490.60578.
  • Biancarosa, I., M. Espe, C. G. Bruckner, S. Heesch, N. Liland, R. Waagbø, B. Torstensen, and E. J. Lock. 2016. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. Journal of Applied Phycology 29 (2):1001–9. doi:10.1007/s10811-016-0984-3.
  • Bouyer, E., G. Mekhloufi, I. Le Potier, T. F. de Kerdaniel, J.-L. Grossiord, V. Rosilio, and F. Agnely. 2011. Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic. Journal of Colloid and Interface Science 354 (2):467–77. doi:10.1016/j.jcis.2010.11.019.
  • Boye, J. I., S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, and S. H. Rajamohamed. 2010. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International 43 (2):537–46. doi:10.1016/j.foodres.2009.07.021.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi:10.1038/s41596-018-0119-1.
  • Buchmann, L., P. Bertsch, L. Böcker, U. Krähenmann, P. Fischer, and A. Mathys. 2019. Adsorption kinetics and foaming properties of soluble microalgae fractions at the air/water interface. Food Hydrocolloids 97:105182. doi:10.1016/j.foodhyd.2019.105182.
  • Bueno, D. B., S. I. da Silva Júnior, A. B. Seriani Chiarotto, T. M. Cardoso, J. A. Neto, G. C. Lopes dos Reis, M. B. A. Glória, and O. L. Tavano. 2020. The germination of soybeans increases the water-soluble components and could generate innovations in soy-based foods. LWT 117:108599. doi:10.1016/j.lwt.2019.108599.
  • Cao, D., X. Lv, X. Xu, H. Yu, X. Sun, and N. Xu. 2017. Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate. European Food Research and Technology 243 (10):1829–37. doi:10.1007/s00217-017-2886-2.
  • Carbonaro, M., P. Maselli, and A. Nucara. 2012. Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: A Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 43 (2):911–21. doi:10.1007/s00726-011-1151-4.
  • Chang, L., Y. Lan, N. Bandillo, J.-B. Ohm, B. Chen, and J. Rao. 2022. Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocolloids 123:107165. doi:10.1016/j.foodhyd.2021.107165.
  • Chang, Y.-W., I. Alli, A. T. Molina, Y. Konishi, and J. I. Boye. 2012. Isolation and characterization of chickpea (Cicer arietinum L.) seed protein fractions. Food and Bioprocess Technology 5 (2):618–25. doi:10.1007/s11947-009-0303-y.
  • Chaves, R. P., S. R. Silva, L. G. Nascimento Neto, R. F. Carneiro, A. L. C. Silva, A. H. Sampaio, B. L. Sousa, M. G. Cabral, P. A. Videira, E. H. Teixeira, et al. 2018. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kutzing) PW Gabrielson and their anticancer effect on MCF-7 breast cancer cells. International Journal of Biological Macromolecules 107 (Pt A):1320–9. doi:10.1016/j.ijbiomac.2017.09.116.
  • Chen, D., D. Rocha-Mendoza, S. Shan, Z. Smith, I. García-Cano, J. Prost, R. Jimenez-Flores, and O. Campanella. 2022. Characterization and cellular uptake of peptides derived from in vitro digestion of meat analogues produced by a sustainable extrusion process. Journal of Agricultural and Food Chemistry 70 (26):8124–33. doi:10.1021/acs.jafc.2c01711.
  • Choi, S.-M., and C.-Y. Ma. 2006. Extraction, purification and characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Research International 39 (9):974–81. doi:10.1016/j.foodres.2006.06.004.
  • Dash, D. R., S. K. Singh, and P. Singha. 2022. Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review. Critical Reviews in Food Science and Nutrition:1–16. doi:10.1080/10408398.2022.2130161.
  • Day, L., J. A. Cakebread, and S. M. Loveday. 2022. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology 119:428–42. doi:10.1016/j.tifs.2021.12.020.
  • De Bhowmick, G., and M. Hayes. 2022. In vitro protein digestibility of selected seaweeds. Foods 11 (3):289. doi:10.3390/foods11030289.
  • Demarco, M., J. Oliveira de Moraes, Â. P. Matos, R. B. Derner, F. de Farias Neves, and G. Tribuzi. 2022. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends in Food Science & Technology 121:114–28. doi:10.1016/j.tifs.2022.02.004.
  • Derbyshire, E., D. J. Wright, and D. Boulter. 1976. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 15 (1):3–24. doi:10.1016/s0031-9422(00)89046-9.
  • Diaz-Amigo, C., and B. Popping. 2013. Accuracy of ELISA detection methods for gluten and reference materials: A Realistic assessment. Journal of Agricultural and Food Chemistry 61 (24):5681–8. doi:10.1021/jf3046736.
  • Doust, A. B., K. E. Wilk, P. M. G. Curmi, and G. D. Scholes. 2006. The photophysics of cryptophyte light-harvesting. Journal of Photochemistry and Photobiology A 184 (1–2):1–17. doi:10.1016/j.jphotochem.2006.06.006.
  • Drzewiecki, J., E. Delgado-Licon, R. Haruenkit, E. Pawelzik, O. Martin-Belloso, Y. S. Park, S. T. Jung, S. Trakhtenberg, and S. Gorinstein. 2003. Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. Journal of Agricultural and Food Chemistry 51 (26):7798–804. doi:10.1021/jf030322x.
  • Duranti, M., and A. Scarafoni. 1999. Modification of storage protein content and quality in legume seeds. Journal of New Seeds 1 (1):17–35. doi:10.1300/J153v01n01_03.
  • Elsohaimy, S. A., T. M. Refaay, and M. A. M. Zaytoun. 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences 60 (2):297–305. doi:10.1016/j.aoas.2015.10.007.
  • Fadimu, G. J., C. Y. Gan, O. A. Olalere, A. Farahnaky, H. Gill, and T. Truong. 2023. Novel antihypertensive peptides from lupin protein hydrolysate: An in-silico identification and molecular docking studies. Food Chemistry 407:135082. doi:10.1016/j.foodchem.2022.135082.
  • Fan, X., H. Guo, C. Teng, X. Yang, P. Qin, A. Richel, L. Zhang, C. Blecker, and G. Ren. 2023. Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice. Food Chemistry 408:135196. doi:10.1016/j.foodchem.2022.135196.
  • Fan, X., H. M. Guo, C. Teng, B. Zhang, C. Blecker, and G. X. Ren. 2022. Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in Caco-2 cells. Foods (Basel, Switzerland) 11 (2):194. doi:10.3390/foods11020194.
  • Ford, K. L., J. Arends, P. J. Atherton, M. P. K. J. Engelen, T. J. M. Gonçalves, A. Laviano, D. N. Lobo, S. M. Phillips, P. Ravasco, N. E. P. Deutz, et al. 2022. The importance of protein sources to support muscle anabolism in cancer: An expert group opinion. Clinical Nutrition 41 (1):192–201. doi:10.1016/j.clnu.2021.11.032.
  • Fu, Q., J. Zhao, S. Rong, Y. Han, F. Liu, Q. Chu, S. Wang, and S. Chen. 2023. Research advances in plant protein-based products: Protein sources, processing technology, and food applications. Journal of Agricultural and Food Chemistry 71 (42):15429–44. doi:10.1021/acs.jafc.3c02224.
  • Fukuda, S., Y. Kawasaki, and S. Izawa. 2019. Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans. Journal of Bioscience and Bioengineering 128 (1):28–32. doi:10.1016/j.jbiosc.2018.12.008.
  • Gharibzahedi, S. M. T., B. Smith, and Z. Altintas. 2022. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: A review. Critical Reviews in Food Science and Nutrition:1–31. doi:10.1080/10408398.2022.2124399.
  • Ghumman, A., S. Mudgal, N. Singh, B. Ranjan, A. Kaur, and J. C. Rana. 2021. Physicochemical, functional and structural characteristics of grains, flour and protein isolates of Indian quinoa lines. Food Research International 140:109982. doi:10.1016/j.foodres.2020.109982.
  • Gilbert, J. A., N. T. Bendsen, A. Tremblay, and A. Astrup. 2011. Effect of proteins from different sources on body composition. Nutrition, Metabolism, and Cardiovascular Diseases 21 (Suppl 2):B16–B31. doi:10.1016/j.numecd.2010.12.008.
  • Godfray, H. C. J., P. Aveyard, T. Garnett, J. W. Hall, T. J. Key, J. Lorimer, R. T. Pierrehumbert, P. Scarborough, M. Springmann, and S. A. Jebb. 2018. Meat consumption, health, and the environment. Science 361 (6399):eaam5324. doi:10.1126/science.aam5324.
  • Gong, X., X. Hui, G. Wu, J. D. Morton, M. A. Brennan, and C. S. Brennan. 2022. In vitro digestion characteristics of cereal protein concentrates as assessed using a pepsin-pancreatin digestion model. Food Research International 152:110715. doi:10.1016/j.foodres.2021.110715.
  • González-Montoya, M., B. Hernández-Ledesma, J. M. Silván, R. Mora-Escobedo, and C. Martínez-Villaluenga. 2018. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry 242:75–82. doi:10.1016/j.foodchem.2017.09.035.
  • Gouveia Gomes, M. H., and L. E. Kurozawa. 2020. Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. Journal of Food Engineering 267:109761. doi:10.1016/j.jfoodeng.2019.109761.
  • Gueguen, J. 1983. Legume seed protein extraction, processing, and end product characteristics. Qualitas Plantarum Plant Foods for Human Nutrition 32 (3–4):267–303. doi:10.1007/BF01091191.
  • Helmick, H., T. Tonner, D. Hauersperger, S. Ettestad, C. Hartanto, M. Okos, A. Liceaga, A. K. Bhunia, and J. L. Kokini. 2023. Physicochemical characterization of changes in pea protein as the result of cold extrusion. Food Chemistry 423:136240. doi:10.1016/j.foodchem.2023.136240.
  • Hoehnel, A., E. Zannini, and E. K. Arendt. 2022. Targeted formulation of plant-based protein-foods: Supporting the food system’s transformation in the context of human health, environmental sustainability and consumer trends. Trends in Food Science & Technology 128:238–52. doi:10.1016/j.tifs.2022.08.007.
  • Hsieh, C.-C., B. Hernández-Ledesma, H. J. Jeong, J. H. Park, and B. O. de Lumen. 2010. Complementary roles in cancer prevention: Protease inhibitor makes the cancer preventive peptide Lunasin bioavailable. PLOS One 5 (1):e8890. doi:10.1371/journal.pone.0008890.
  • Hu, S., J. Yuan, J. Gao, Y. Wu, X. Meng, P. Tong, and H. Chen. 2020. Antioxidant and anti-inflammatory potential of peptides derived from in vitro gastrointestinal digestion of germinated and heat-treated foxtail millet (setaria italica) proteins. Journal of Agricultural and Food Chemistry 68 (35):9415–26. doi:10.1021/acs.jafc.0c03732.
  • Jiménez-Munoz, L., A. Brodkorb, L. G. Gómez-Mascaraque, and M. Corredig. 2021. Effect of heat treatment on the digestion behavior of pea and rice protein dispersions and their blends, studied using the semi-dynamic INFOGEST digestion method. Food & Function 12 (18):8747–59. doi:10.1039/d1fo01223a.
  • Jin, J., I. C. Ohanenye, and C. C. Udenigwe. 2022. Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Critical Reviews in Food Science and Nutrition 62 (7):1752–64. doi:10.1080/10408398.2020.1847027.
  • Jin, J., O. D. Okagu, A. E. A. Yagoub, and C. C. Udenigwe. 2021. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry 70:105348. doi:10.1016/j.ultsonch.2020.105348.
  • Ju, Z. Y., N. S. Hettiarachchy, and N. Rath. 2001. Extraction, denaturation and hydrophobic properties of rice flour proteins. Journal of Food Science 66 (2):229–32. doi:10.1111/j.1365-2621.2001.tb11322.x.
  • Kazir, M., Y. Abuhassira, A. Robin, O. Nahor, J. Luo, A. Israel, A. Golberg, and Y. D. Livney. 2019. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids 87:194–203. doi:10.1016/j.foodhyd.2018.07.047.
  • Kheto, A., A. Mallik, R. Sehrawat, K. Gul, and W. Routray. 2023. Atmospheric cold plasma induced nutritional & anti-nutritional, molecular modifications and in-vitro protein digestibility of guar seed (Cyamopsis tetragonoloba L.) flour. Food Research International 168:112790. doi:10.1016/j.foodres.2023.112790.
  • Kierulf, A., J. Whaley, W. Liu, M. Enayati, C. Tan, M. Perez-Herrera, Z. You, and A. Abbaspourrad. 2020. Protein content of amaranth and quinoa starch plays a key role in their ability as Pickering emulsifiers. Food Chemistry 315:126246. doi:10.1016/j.foodchem.2020.126246.
  • Kimura, A., T. Fukuda, M. Zhang, S. Motoyama, N. Maruyama, and S. Utsumi. 2008. Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and French bean with those of soybean-French bean 7S globulin exhibits excellent properties. Journal of Agricultural and Food Chemistry 56 (21):10273–9. doi:10.1021/jf801721b.
  • Klose, C., and E. K. Arendt. 2012. Proteins in oats; their synthesis and changes during germination: A Review. Critical Reviews in Food Science and Nutrition 52 (7):629–39. doi:10.1080/10408398.2010.504902.
  • Ko, S.-C., D. Kim, and Y.-J. Jeon. 2012. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology 50 (7):2294–302. doi:10.1016/j.fct.2012.04.022.
  • Komatsu, Y., M. Tsuda, Y. Wada, T. Shibasaki, H. Nakamura, and K. Miyaji. 2023. Nutritional evaluation of milk-, plant-, and insect-based protein materials by protein digestibility using the INFOGEST digestion method. Journal of Agricultural and Food Chemistry 71 (5):2503–13. doi:10.1021/acs.jafc.2c07273.
  • König, D., K. Muser, A. Berg, and P. Deibert. 2012. Fuel selection and appetite-regulating hormones after intake of a soy protein-based meal replacement. Nutrition 28 (1):35–9. doi:10.1016/j.nut.2011.02.008.
  • Koziol, M. J. 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis 5 (1):35–68. doi:10.1016/0889-1575(92)90006-6.
  • Kumar, L., R. Sehrawat, and Y. Kong. 2021. Oat proteins: A perspective on functional properties. LWT 152:112307. doi:10.1016/j.lwt.2021.112307.
  • Law, H.-Y., S.-M. Choi, and C.-Y. Ma. 2008. Study of conformation of vicilin from Dolichos lablab and Phaseolus calcaratus by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Food Research International 41 (7):720–9. doi:10.1016/j.foodres.2008.05.004.
  • Le Roux, L., O. Ménard, R. Chacon, D. Dupont, R. Jeantet, A. Deglaire, and F. Nau. 2020. Are faba bean and pea proteins potential whey protein substitutes in infant formulas? An in vitro dynamic digestion approach. Foods 9 (3):362. doi:10.3390/foods9030362.
  • Legrand, J., J. Guéguen, S. Berot, Y. Popineau, and L. Nouri. 1997. Acetylation of pea isolate in a torus microreactor. Biotechnology and Bioengineering 53 (4):409–14.
  • Li, D., L. Zhu, G. Wu, and H. Zhang. 2023. The interaction mechanisms, biological activities and digestive properties between Tartary buckwheat protein and phenolic extract under pH-driven methods. Food Chemistry 419:135758. doi:10.1016/j.foodchem.2023.135758.
  • Li, H., H. He, Z. Wang, J. Cai, B. Sun, Q. Wu, Y. Zhang, G. Zhou, and L. Yang. 2016. Rice protein suppresses ROS generation and stimulates antioxidant gene expression via Nrf2 activation in adult rats. Gene 585 (2):256–64. doi:10.1016/j.gene.2016.03.052.
  • Li, L., C. Baima, J. Jiang, Z. Liu, J. Wang, X. D. Chen, and P. Wu. 2022. In vitro gastric digestion and emptying of tsampa under simulated elderly and young adult digestive conditions using a dynamic stomach system. Journal of Food Engineering 327:111054. doi:10.1016/j.jfoodeng.2022.111054.
  • Liu, G., J. Li, K. Shi, S. Wang, J. Chen, Y. Liu, and Q. Huang. 2009. Composition, secondary structure, and self-assembly of oat protein isolate. Journal of Agricultural and Food Chemistry 57 (11):4552–8. doi:10.1021/jf900135e.
  • Liu, X., Y.-Q. Huang, X.-W. Chen, Z.-Y. Deng, and X.-Q. Yang. 2019. Whole cereal protein-based Pickering emulsions prepared by zein-gliadin complex particles. Journal of Cereal Science 87:46–51. doi:10.1016/j.jcs.2019.02.004.
  • Liu, Y., S. Zhu, Y. Li, F. Sun, D. Huang, and X. Chen. 2023. Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International 165:112453. doi:10.1016/j.foodres.2022.112453.
  • Longo, V. D., and R. M. Anderson. 2022. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 185 (9):1455–70. doi:10.1016/j.cell.2022.04.002.
  • Lumbessy, S., S. Andayani, H. Nursyam, and M. Firdaus. 2019. Biochemical study of amino acid profile of Kappaphycus alvarezii and Gracilaria salicornia seaweeds from Gerupuk Waters, West Nusa Tenggara (NTB). EurAsian Journal of BioSciences 13 (1):303–7.
  • Lupatini Menegotto, A. L., L. E. Silva de Souza, L. M. Colla, J. A. Vieira Costa, E. Sehn, P. R. Stival Bittencourt, E. L. de Moraes Flores, C. Canan, and E. Colla. 2019. Investigation of techno-functional and physicochemical properties of Spirulina platensis protein concentrate for food enrichment. LWT 114:108267. doi:10.1016/j.lwt.2019.108267.
  • Lv, R., N. Sun, C. Mao, Z. Zheng, and S. Lin. 2023. Prevention and potential repair of colitis: Beneficial effects and regulatory mechanisms of food-derived anti-inflammatory peptides. Critical Reviews in Food Science and Nutrition:1–19. doi:10.1080/10408398.2023.2197068.
  • Ma, C. Y., and V. R. Harwalkar. 1984. Chemical characterization and functionality assessment of oat protein fractions. Journal of Agricultural and Food Chemistry 32 (1):144–9. doi:10.1021/jf00121a035.
  • Malik, V. S., Y. Li, D. K. Tobias, A. Pan, and F. B. Hu. 2016. Dietary protein intake and risk of type 2 diabetes in US men and women. American Journal of Epidemiology 183 (8):715–28. doi:10.1093/aje/kwv268.
  • Mazloum-Ravasan, S., M. Mohammadi, E. M. Hiagh, A. Ebrahimi, J. H. Hong, H. Hamishehkar, and K. H. Kim. 2022. Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Delivery 29 (1):1049–59. doi:10.1080/10717544.2022.2057618.
  • Meng, G. T., and C. Y. Ma. 2001. Fourier-transform infrared spectroscopic study of globulin from Phaseolus angularis (red bean). International Journal of Biological Macromolecules 29 (4–5):287–94. doi:10.1016/s0141-8130(01)00178-7.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function 5 (6):1113–24. doi:10.1039/c3fo60702j.
  • Mir, N. A., C. S. Riar, and S. Singh. 2018. Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology 75:170–80. doi:10.1016/j.tifs.2018.03.016.
  • Mollakhalili-Meybodi, N., M. Yousefi, A. Nematollahi, and N. Khorshidian. 2021. Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. European Food Research and Technology 247 (7):1579–94. doi:10.1007/s00217-021-03750-w.
  • Mossé, J., and J. Baudet. 1983. Crude protein content and amino acid composition of seeds: Variability and correlations. Qualitas Plantarum Plant Foods for Human Nutrition 32 (3-4):225–45. doi:10.1007/BF01091188.
  • Mulet-Cabero, A.-I., L. Egger, R. Portmann, O. Ménard, S. Marze, M. Minekus, S. Le Feunteun, A. Sarkar, M. M.-L. Grundy, F. Carrière, et al. 2020. A standardised semi-dynamic in vitro digestion method suitable for food - an international consensus. Food & Function 11 (2):1702–20. doi:10.1039/c9fo01293a.
  • Munialo, C. D., D. Stewart, L. Campbell, and S. R. Euston. 2022. Extraction, characterisation and functional applications of sustainable alternative protein sources for future foods: A review. Future Foods 6:100152. doi:10.1016/j.fufo.2022.100152.
  • Nadeesha Dilrukshi, H. N., D. D. Torrico, M. A. Brennan, and C. S. Brennan. 2022. Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chemistry 389:133107. doi:10.1016/j.foodchem.2022.133107.
  • Nasrabadi, M. N., A. S. Doost, and R. Mezzenga. 2021. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids 118:106789. doi:10.1016/j.foodhyd.2021.106789.
  • Ndife, J., L. O. Abdulraheem, and U. M. Zakari. 2011. Evaluation of the nutritional and sensory quality of functional breads produced from whole wheat and soya bean flour blends. African Journal of Food Science 5 (8):466–72.
  • Nwachukwu, I. D., and R. E. Aluko. 2019. A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chemistry 270:25–31. doi:10.1016/j.foodchem.2018.07.054.
  • Ohanenye, I. C., F. C. Ekezie, R. A. Sarteshnizi, R. T. Boachie, C. U. Emenike, X. Sun, I. D. Nwachukwu, and C. C. Udenigwe. 2022. Legume seed protein digestibility as influenced by traditional and emerging physical processing technologies. Foods 11 (15):2299. doi:10.3390/foods11152299.
  • Olagunju, A. I., O. S. Omoba, V. N. Enujiugha, A. M. Alashi, and R. E. Aluko. 2018. Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. LWT 97:269–78. doi:10.1016/j.lwt.2018.07.003.
  • Olatunde, O. O., A. Hewage, T. Dissanayake, R. E. Aluko, A. C. Karaca, N. Shang, and N. Bandara. 2023. Cold atmospheric plasma-induced protein modification: Novel nonthermal processing technology to improve protein quality, functionality, and allergenicity reduction. Comprehensive Reviews in Food Science and Food Safety 22 (3):2197–234. doi:10.1111/1541-4337.13144.
  • Olatunde, O. O., K. A. Shiekh, and S. Benjakul. 2021. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends in Food Science & Technology 111:617–27. doi:10.1016/j.tifs.2021.03.026.
  • Orlien, V., K. Aalaei, M. M. Poojary, D. S. Nielsen, L. Ahrné, and J. R. Carrascal. 2023. Effect of processing on in vitro digestibility (IVPD) of food proteins. Critical Reviews in Food Science and Nutrition 63 (16):2790–839. doi:10.1080/10408398.2021.1980763.
  • Qamar, S., Y. J. Manrique, H. Parekh, and J. R. Falconer. 2020. Nuts, cereals, seeds and legumes proteins derived emulsifiers as a source of plant protein beverages: A review. Critical Reviews in Food Science and Nutrition 60 (16):2742–62. doi:10.1080/10408398.2019.1657062.
  • Rahate, K. A., M. Madhumita, and P. K. Prabhakar. 2021. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT 138:110796. doi:10.1016/j.lwt.2020.110796.
  • Raikos, V., M. Neacsu, W. Russell, and G. Duthie. 2014. Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH. Food Science & Nutrition 2 (6):802–10. doi:10.1002/fsn3.143.
  • Ralla, T., H. Salminen, M. Edelmann, C. Dawid, T. Hofmann, and J. Weiss. 2018. Oat bran extract (Avena sativa L.) from food by-product streams as new natural emulsifier. Food Hydrocolloids 81:253–62. doi:10.1016/j.foodhyd.2018.02.035.
  • Rieder, A., N. K. Afseth, U. Böcker, S. H. Knutsen, B. Kirkhus, H. K. Mæhre, S. Ballance, and S. G. Wubshet. 2021. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chemistry 358:129830. doi:10.1016/j.foodchem.2021.129830.
  • Rivera Del Rio, A., A. C. Möller, R. M. Boom, and A. E. M. Janssen. 2022. In vitro gastro-small intestinal digestion of conventional and mildly processed pea protein ingredients. Food Chemistry 387:132894. doi:10.1016/j.foodchem.2022.132894.
  • Rui, X., J. I. Boye, S. Ribereau, B. K. Simpson, and S. O. Prasher. 2011. Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Research International 44 (8):2497–504. doi:10.1016/j.foodres.2011.01.008.
  • Safdar, L. B., M. J. Foulkes, F. H. Kleiner, I. R. Searle, R. A. Bhosale, I. D. Fisk, and S. A. Boden. 2023. Challenges facing sustainable protein production: Opportunities for cereals. Plant Communications 4 (6):100716. doi:10.1016/j.xplc.2023.100716.
  • Samarathunga, J., I. Wijesekara, and M. Jayasinghe. 2022. Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. Food Reviews International 39 (7):4236–61. doi:10.1080/87559129.2021.2023564.
  • Sandoval-Sicairos, E. S., A. K. Milán-Noris, D. A. Luna-Vital, J. Milán-Carrillo, and A. Montoya-Rodríguez. 2021. Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chemistry 343:128394. doi:10.1016/j.foodchem.2020.128394.
  • Santos-Hernández, M., F. Alfieri, V. Gallo, B. Miralles, P. Masi, A. Romano, P. Ferranti, and I. Recio. 2020. Compared digestibility of plant protein isolates by using the INFOGEST digestion protocol. Food Research International 137:109708. doi:10.1016/j.foodres.2020.109708.
  • Santos-Sanchez, G., I. Cruz-Chamorro, A. I. Álvarez-Ríos, N. Álvarez-Sánchez, B. Rodríguez-Ortiz, A. I. Álvarez-López, M.-S. Fernández-Pachón, J. Pedroche, F. Millán, M. D. C. Millán-Linares, et al. 2022. Bioactive peptides from lupin (lupinus angustifolius) prevent the early stages of atherosclerosis in western diet-fed ApoE(−/−) mice. Journal of Agricultural and Food Chemistry 70 (27):8243–53. doi:10.1021/acs.jafc.2c00809.
  • Schwenzfeier, A., F. Lech, P. A. Wierenga, M. H. M. Eppink, and H. Gruppen. 2013. Foam properties of algae soluble protein isolate: Effect of pH and ionic strength. Food Hydrocolloids 33 (1):111–7. doi:10.1016/j.foodhyd.2013.03.002.
  • Shaghaghian, S., D. J. McClements, M. Khalesi, M. Garcia-Vaquero, and A. Mirzapour-Kouhdasht. 2022. Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A review. Trends in Food Science & Technology 129:646–56. doi:10.1016/j.tifs.2022.11.016.
  • Sharif, H. R., P. A. Williams, M. K. Sharif, S. Abbas, H. Majeed, K. G. Masamba, W. Safdar, and F. Zhong. 2018. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants-A review. Food Hydrocolloids. 76:2–16. doi:10.1016/j.foodhyd.2017.01.002.
  • Sharma, R., S. Sharma, and B. Singh. 2022. Modulation in the bio-functional & technological characteristics, in vitro digestibility, structural and molecular interactions during bioprocessing of proso millet (Panicum miliaceum L.). Journal of Food Composition and Analysis 107:104372. doi:10.1016/j.jfca.2021.104372.
  • Sheih, I. C., T. J. Fang, T.-K. Wu, and P.-H. Lin. 2010. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agricultural and Food Chemistry 58 (2):1202–7. doi:10.1021/jf903089m.
  • Shen, P., F. Zhou, Y. Zhang, D. Yuan, Q. Zhao, and M. Zhao. 2020. Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis. Food Hydrocolloids 105:105844. doi:10.1016/j.foodhyd.2020.105844.
  • Shewry, P. R., A. S. Tatham, J. Forde, M. Kreis, and B. J. Miflin. 1986. The classification and nomenclature of wheat gluten proteins: A reassessment. Journal of Cereal Science 4 (2):97–106. doi:10.1016/S0733-5210(86)80012-1.
  • Shi, Z., B. Dun, Z. Wei, C. Liu, J. Tian, G. Ren, and Y. Yao. 2021. Peptides released from extruded adzuki bean protein through simulated gastrointestinal digestion exhibit anti-inflammatory activity. Journal of Agricultural and Food Chemistry 69 (25):7028–36. doi:10.1021/acs.jafc.1c01712.
  • Singh, A. K., J. Rehal, A. Kaur, and G. Jyot. 2015. Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition 55 (11):1575–89. doi:10.1080/10408398.2012.706661.
  • Singh, D. K., A. S. Rao, R. Singh, and R. Jambunathan. 1988. Amino acid composition of storage proteins of a promising chickpea (Cicer arietinum L.) cultivar. Journal of the Science of Food and Agriculture 43 (4):373–9. doi:10.1002/jsfa.2740430410.
  • Sofi, S. A., S. Rafiq, J. Singh, S. A. Mir, S. Sharma, P. Bakshi, D. J. McClements, A. Mousavi Khaneghah, and B. N. Dar. 2023. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chemistry 405 (Pt B):135011. doi:10.1016/j.foodchem.2022.135011.
  • Song, H., Q. Wang, Z. Shao, X. Wang, H. Cao, K. Huang, Q. Sun, Z. Sun, and X. Guan. 2023. In vitro gastrointestinal digestion of buckwheat (Fagopyrum esculentum Moench) protein: Release and structural characteristics of novel bioactive peptides stimulating gut cholecystokinin secretion. Food & Function 14 (16):7469–77. doi:10.1039/d3fo01951a.
  • Sousa, R., R. Portmann, S. Dubois, I. Recio, and L. Egger. 2020. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Research International 130:108996. doi:10.1016/j.foodres.2020.108996.
  • Suárez, S., and M. C. Añón. 2019. Amaranth proteins emulsions as delivery system of Angiotensin-I converting enzyme inhibitory peptides. Food Hydrocolloids 90:154–61. doi:10.1016/j.foodhyd.2018.11.046.
  • Sun, H., P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B. B. Duncan, C. Stein, A. Basit, J. C. N. Chan, J. C. Mbanya, et al. 2022. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice 183:109119. doi:10.1016/j.diabres.2021.109119.
  • Sun, W., J. He, H. Wang, Q. Zhang, W. Li, and X. Rui. 2023. Solid-state fermentation alters the fate of red kidney bean protein during buccal and gastrointestinal digestion: Relationship with cotyledon cell wall integrity. Food Chemistry 410:135370. doi:10.1016/j.foodchem.2022.135370.
  • Sun, X., I. C. Ohanenye, T. Ahmed, and C. C. Udenigwe. 2020. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: Elucidation of underlying mechanisms. Food Chemistry 329:127196. doi:10.1016/j.foodchem.2020.127196.
  • Tang, J., H. J. Wichers, and K. A. Hettinga. 2022. Heat-induced unfolding facilitates plant protein digestibility during in vitro static infant digestion. Food Chemistry 375:131878. doi:10.1016/j.foodchem.2021.131878.
  • Tapia-Hernández, J. A., C. L. Del-Toro-Sánchez, F. J. Cinco-Moroyoqui, J. E. Juárez-Onofre, S. Ruiz-Cruz, E. Carvajal-Millan, G. A. López-Ahumada, D. D. Castro-Enriquez, C. G. Barreras-Urbina, and F. Rodríguez-Felix. 2019. Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends in Food Science & Technology 90:111–32. doi:10.1016/j.tifs.2019.06.005.
  • Taylor, J., S. R. Bean, B. P. Ioerger, and J. R. Taylor. 2007. Preferential binding of sorghum tannins with γ-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. Journal of Cereal Science 46 (1):22–31. doi:10.1016/j.jcs.2006.11.001.
  • Thakur, P., K. Kumar, N. Ahmed, D. Chauhan, Q. U. Eain Hyder Rizvi, S. Jan, T. P. Singh, and H. S. Dhaliwal. 2021. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science 4:917–25. doi:10.1016/j.crfs.2021.11.019.
  • Tyagi, A., R. Chelliah, E. Banan-Mwine Daliri, G. Sultan, I. H. Madar, N. Kim, U. Shabbir, and D. H. Oh. 2023. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chemistry 404 (Pt B):134747. doi:10.1016/j.foodchem.2022.134747.
  • Tyl, C., A. Marti, and B. P. Ismail. 2020. Changes in protein structural characteristics upon processing of gluten-free millet pasta. Food Chemistry 327:127052. doi:10.1016/j.foodchem.2020.127052.
  • Usman, M., P. J. Patil, A. Mehmood, A. Rehman, H. Shah, J. Haider, K. Xu, C. Zhang, and X. Li. 2022. Comparative evaluation of pseudocereal peptides: A review of their nutritional contribution. Trends in Food Science & Technology 122:287–313. doi:10.1016/j.tifs.2022.02.009.
  • Uzlasir, T., O. Isik, L. H. Uslu, S. Selli, and H. Kelebek. 2023. Impact of different salt concentrations on growth, biochemical composition and nutrition quality of Phaeodactylum tricornutum and Spirulina platensis. Food Chemistry 429:136843. doi:10.1016/j.foodchem.2023.136843.
  • Valadez-Vega, C., O. Lugo-Magaña, C. Figueroa-Hernández, M. Bautista, G. Betanzos-Cabrera, A. Bernardino-Nicanor, R. M. González-Amaro, R. Alonso-Villegas, J. A. Morales-González, and L. González-Cruz. 2022. Effects of germination and popping on the anti-nutritional compounds and the digestibility of Amaranthus hypochondriacus seeds. Foods 11 (14):2075. doi:10.3390/foods11142075.
  • Valenzuela Zamudio, F., and M. R. Segura Campos. 2022. Amaranth, quinoa and chia bioactive peptides: A comprehensive review on three ancient grains and their potential role in management and prevention of type 2 diabetes. Critical Reviews in Food Science and Nutrition 62 (10):2707–21. doi:10.1080/10408398.2020.1857683.
  • Valenzuela Zamudio, F., S. N. Hidalgo-Figueroa, R. R. Ortíz Andrade, A. J. Hernández Álvarez, and M. R. Segura Campos. 2022. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chemistry 394:133479. doi:10.1016/j.foodchem.2022.133479.
  • Vallath, A., A. Shanmugam, and A. Rawson. 2022. Prospects of future pulse milk variants from other healthier pulses - As an alternative to soy milk. Trends in Food Science & Technology 124:51–62. doi:10.1016/j.tifs.2022.03.028.
  • Van De Walle, S., K. Broucke, M.-C. Baune, N. Terjung, G. Van Royen, and F. Boukid. 2023. Microalgae protein digestibility: How to crack open the black box? Critical Reviews in Food Science and Nutrition :1–23. doi:10.1080/10408398.2023.2181754.
  • Vanga, S. K., J. Wang, and V. Raghavan. 2020. Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT 131:109708. doi:10.1016/j.lwt.2020.109708.
  • Wang, C., F. Xu, D. Li, and M. Zhang. 2015. Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech Journal of Food Sciences 33 (3):283–91. doi:10.17221/462/2014-CJFS.
  • Wang, C., F. Zhao, Y. Bai, C. Li, X. Xu, K. Kristiansen, and G. Zhou. 2022. Effect of gastrointestinal alterations mimicking elderly conditions on in vitro digestion of meat and soy proteins. Food Chemistry 383:132465. doi:10.1016/j.foodchem.2022.132465.
  • Wang, F., G. Yu, Y. Zhang, B. Zhang, and J. Fan. 2015. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum vulgare trifurcatum (L.) Trofim) proteins. Journal of Agricultural and Food Chemistry 63 (43):9543–9. doi:10.1021/acs.jafc.5b04016.
  • Wang, H., Y. Fu, Q. Zhao, Z. Liu, C. Wang, Y. Xue, and Q. Shen. 2023. Effects of heat-treated starch and protein from foxtail millet (Setaria italica) on type 2 diabetic mice. Food Chemistry 404 (Pt B):134735. doi:10.1016/j.foodchem.2022.134735.
  • Wang, X., and X. Zhang. 2013. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnology Progress 29 (3):681–7. doi:10.1002/btpr.1725.
  • Wijesekara, I., M. Lang, C. Marty, M.-P. Gemin, R. Boulho, P. Douzenel, I. Wickramasinghe, G. Bedoux, and N. Bourgougnon. 2017. Different extraction procedures and analysis of protein from Ulva sp in Brittany, France. Journal of Applied Phycology 29 (5):2503–11. doi:10.1007/s10811-017-1239-7.
  • Wijngaard, H. H., and E. K. Arendt. 2006. Buckwheat. Cereal Chemistry 83 (4):391–401. doi:10.1094/CC-83-0391.
  • Wu, Q., Q.-F. Cai, A. Yoshida, L.-C. Sun, Y.-X. Liu, G.-M. Liu, W.-J. Su, and M.-J. Cao. 2017. Purification and characterization of two novel angiotensin I-converting enzyme inhibitory peptides derived from R-phycoerythrin of red algae (Bangia fusco-purpurea). European Food Research and Technology 243 (5):779–89. doi:10.1007/s00217-016-2792-z.
  • Xu, X., J. Tao, Q. Wang, J. Ge, J. Li, F. Gao, S. Gao, Q. Yang, B. Feng, and J. Gao. 2023. A comparative study: Functional, thermal and digestive properties of cereal and leguminous proteins in ten crop varieties. LWT 187:115288. doi:10.1016/j.lwt.2023.115288.
  • Yakubu, C. M., R. Sharma, and S. Sharma. 2022. Fermentation of locust bean (Parkia biglobosa): Modulation in the anti-nutrient composition, bioactive profile, in vitro nutrient digestibility, functional and morphological characteristics. International Journal of Food Science & Technology 57 (2):753–62. doi:10.1111/ijfs.15288.
  • Yang, C., Y. Wang, and L. Chen. 2017. Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids. 62:21–34. doi:10.1016/j.foodhyd.2016.07.023.
  • Yao, M., F. Xu, Y. Yao, H. Wang, X. Ju, and L. Wang. 2022. Assessment of novel oligopeptides from rapeseed napin (Brassica napus) in protecting HepG2 cells from insulin resistance and oxidative stress. Journal of Agricultural and Food Chemistry 70 (39):12418–29. doi:10.1021/acs.jafc.2c03718.
  • Yesil, S., and H. Levent. 2022. The influence of fermented buckwheat, quinoa and amaranth flour on gluten-free bread quality. LWT 160:113301. doi:10.1016/j.lwt.2022.113301.
  • Yin, Z., R. Yan, Y. Jiang, S. Feng, H. Sun, J. Sun, D. Zhao, H. Li, B. Wang, and N. Zhang. 2022. Identification of peptides in Qingke baijiu and evaluation of its angiotensin converting enzyme (ACE) inhibitory activity and stability. Food Chemistry 395:133551. doi:10.1016/j.foodchem.2022.133551.
  • Zahir, M., V. Fogliano, and E. Capuano. 2021. Soybean germination limits the role of cell wall integrity in controlling protein physicochemical changes during cooking and improves protein digestibility. Food Research International 143:110254. doi:10.1016/j.foodres.2021.110254.
  • Zhang, J., J. Wang, M. Li, S. Guo, and Y. Lv. 2022. Effects of heat treatment on protein molecular structure and in vitro digestion in whole soybeans with different moisture content. Food Research International 155:111115. doi:10.1016/j.foodres.2022.111115.
  • Zhang, L., J. Miao, J. Guo, J. Liu, Z. Xia, B. Chen, F. Ma, and Y. Cao. 2023. Two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from rice (Oryza sativa L.) bran protein. Journal of Agricultural and Food Chemistry 71 (9):4153–62. doi:10.1021/acs.jafc.2c07270.
  • Zhang, M., L. Zhu, G. Wu, T. Liu, X. Qi, and H. Zhang. 2022. Rapid screening of novel dipeptidyl peptidase-4 inhibitory peptides from pea (Pisum sativum L.) protein using peptidomics and molecular docking. Journal of Agricultural and Food Chemistry 70 (33):10221–8. doi:10.1021/acs.jafc.2c03949.
  • Zhang, S., J. Hu, Y. Sun, H. Ji, F. Liu, X. Peng, Y. Zhong, F. Geng, and S. Nie. 2022. In vitro digestion of eight types of wholegrains and their dietary recommendations for different populations. Food Chemistry 370:131069. doi:10.1016/j.foodchem.2021.131069.
  • Zhang, Y., Z. Dai, X. Zhao, C. Chen, S. Li, Y. Meng, Z. Suonan, Y. Sun, Q. Shen, L. Wang, et al. 2023. Deep learning drives efficient discovery of novel antihypertensive peptides from soybean protein isolate. Food Chemistry 404 (Pt B):134690. doi:10.1016/j.foodchem.2022.134690.
  • Zhao, J., G. Su, M. Zhao, and W. Sun. 2019. Physicochemical changes and in vitro gastric digestion of modified soybean protein induced by lipoxygenase catalyzed linoleic acid oxidation. Journal of Agricultural and Food Chemistry 67 (50):13978–85. doi:10.1021/acs.jafc.9b05843.
  • Zhao, Q., C. Selomulya, H. Xiong, X. D. Chen, X. Ruan, S. Wang, J. Xie, H. Peng, W. Sun, and Q. Zhou. 2012. Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice. Journal of Cereal Science 56 (3):568–75. doi:10.1016/j.jcs.2012.08.012.
  • Zhou, H., Y. Hu, Y. Tan, Z. Zhang, and D. J. McClements. 2021. Digestibility and gastrointestinal fate of meat versus plant-based meat analogs: An in vitro comparison. Food Chemistry 364:130439. doi:10.1016/j.foodchem.2021.130439.
  • Zhou, H., Y. Tan, and D. J. McClements. 2023. Applications of the INFOGEST in vitro digestion model to foods: A review. Annual Review of Food Science and Technology 14 (1):135–56. doi:10.1146/annurev-food-060721-012235.
  • Zou, L., A. Xie, Y. Zhu, and D. J. McClements. 2019. Cereal proteins in nanotechnology: Formulation of encapsulation and delivery systems. Current Opinion in Food Science 25:28–34. doi:10.1016/j.cofs.2019.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.