292
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Raman spectroscopy coupled with chemometrics for identification of adulteration and fraud in muscle foods: a review

, , , , , , , , , , , , , , , & show all

References

  • Afseth, N. K., M. Bloomfield, J. P. Wold, and P. Matousek. 2014. A novel approach for subsurface through-skin analysis of salmon using spatially offset Raman spectroscopy (SORS). Applied Spectroscopy 68 (2):255–62. doi:10.1366/13-07215.
  • Afseth, N. K., K. Dankel, P. V. Andersen, G. F. Difford, S. S. Horn, A. Sonesson, B. Hillestad, J. P. Wold, and E. Tengstrand. 2022. Raman and near infrared spectroscopy for quantification of fatty acids in muscle tissue—a salmon case study. Foods 11 (7):962. doi:10.3390/foods11070962.
  • Al-Sarayreh, M., M. M. Reis, W. Q. Yan, and R. Klette. 2018. Detection of adulteration in red meat species using hyperspectral imaging. In Proceedings of the image and Video Technology: 8th Pacific Rim Symposium PSIVT 2017, Wuhan. doi:10.1007/978-3-319-75786-5_16.
  • Alamprese, C., M. Casale, N. Sinelli, S. Lanteri, and E. Casiraghi. 2013. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT – Food Science and Technology 53 (1):225–32. doi:10.1016/j.lwt.2013.01.027.
  • Aleixandre-Tudo, J. L., L. Castello-Cogollos, J. L. Aleixandre, and R. Aleixandre-Benavent. 2022. Chemometrics in food science and technology: A bibliometric study. Chemometrics and Intelligent Laboratory Systems 222:104514. doi:10.1016/j.chemolab.2022.104514.
  • Almeida, M. R., C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi. 2013. Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation. Talanta 117:305–11. doi:10.1016/j.talanta.2013.09.025.
  • Andersen, P. V., J. P. Wold, and N. K. Afseth. 2021. Assessment of bulk composition of heterogeneous food matrices using Raman spectroscopy. Applied Spectroscopy 75 (10):1278–87. doi:10.1177/00037028211006150.
  • Aslam, R., S. R. Sharma, J. Kaur, A. S. Panayampadan, and O. I. Dar. 2023. A systematic account of food adulteration and recent trends in the non-destructive analysis of food fraud detection. Journal of Food Measurement and Characterization 17 (3):3094–114. doi:10.1007/s11694-023-01846-3.
  • Avian, C., J. S. Leu, S. W. Prakosa, and M. Faisal. 2022. An improved classification of pork adulteration in beef based on electronic nose using modified deep extreme learning with principal component analysis as feature learning. Food Analytical Methods 15 (11):3020–31. doi:10.1007/s12161-022-02361-9.
  • Awad, M., and R. Khanna. 2015. Support vector machines for classification. In: Efficient Learning Machines. Berkeley, CA: Apress. doi:10.1007/978-1-4302-5990-9_3.
  • Barbosa, I. B., A. M. Barbosa-Dekker, R. F. H. Dekker, A. G. Bezerra, H. Santana, and A. Orsato. 2021. Polysaccharide-based substrate for surface-enhanced Raman spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 249:119255. doi:10.1016/j.saa.2020.119255.
  • Barton, S., S. Alakkari, K. O’Dwyer, T. Ward, and B. Hennelly. 2021. Convolution network with custom loss function for the denoising of low SNR Raman spectra. Sensors 21 (14):4623. doi:10.3390/s21144623.
  • Beattie, R. J., S. J. Bell, L. J. Farmer, B. W. Moss, and D. Patterson. 2004. Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Science 66 (4):903–13. doi:10.1016/j.meatsci.2003.08.012.
  • Beganović, A., L. M. Hawthorne, K. Bach, and C. W. Huck. 2019. Critical review on the utilization of handheld and portable Raman spectrometry in meat science. Foods 8 (2):49. doi:10.3390/foods8020049.
  • Bilge, G., H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci. 2016. Identification of meat species by using laser-induced breakdown spectroscopy. Meat Science 119:118–22. doi:10.1016/j.meatsci.2016.04.035.
  • Boyacı, İ H., H. T. Temiz, R. S. Uysal, H. M. Velioğlu, R. J. Yadegari, and M. M. Rishkan. 2014. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chemistry 148:37–41. doi:10.1016/j.foodchem.2013.10.006.
  • Boyaci, İ H., R. S. Uysal, T. Temiz, E. G. Shendi, R. J. Yadegari, M. M. Rishkan, H. M. Velioglu, U. Tamer, D. S. Ozay, and H. Vural. 2014. A rapid method for determination of the origin of meat and meat products based on the extracted fat spectra by using of Raman spectroscopy and chemometric method. European Food Research and Technology 238 (5):845–52. doi:10.1007/s00217-014-2168-1.
  • Broadhurst, C. L., F. S. Walter, K. N. Julie, Q. Jianwei, C, and S. K. Moon. 2018. Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids: applications for fish and meat lipids and rendered meat source identification. Proc. SPIE 10665, Sensing for Agriculture and Food Quality and Safety X, 1066504 (15 May 2018). doi: 10.1117/12.2307528.
  • Cai, W., Y. Li, and X. Shao. 2008. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems 90 (2):188–94. doi:10.1016/j.chemolab.2007.10.001.
  • Campos, N. D., K. S. Oliveira, M. R. Almeida, R. Stephani, and L. F. De Oliveira. 2014. Classification of frankfurters by FT-Raman spectroscopy and chemometric methods. Molecules 19 (11):18980–92. doi:10.3390/molecules191118980.
  • Cao, M., J. Wang, A. Cao, D. Shiuan, R. Guan, L. Cai, and Y. Wang. 2019. The impact of recrystallisation on the freeze-thaw cycles of red seabream (Pagrus major) fillets. International Journal of Food Science & Technology 54 (5):1642–50. doi:10.1111/ijfs.14039.
  • Casale, M., P. Zunin, M. E. Cosulich, E. Pistarino, P. Perego, and S. Lanteri. 2010. Characterisation of table olive cultivar by NIR spectroscopy. Food Chemistry 122 (4):1261–5. doi:10.1016/j.foodchem.2010.03.080.
  • Chao, K. L., S. Dhakal, J. W. Qin, M. Kim, and Y. K. Peng. 2018. A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation. Applied Sciences 8 (3):431. doi:10.3390/app8030431.
  • Chase, D. B. 1986. Fourier transform Raman spectroscopy. Journal of the American Chemical Society 108 (24):7485–8. doi:10.1021/ja00284a007.
  • Chen, Q., J. Zhao, M. Liu, J. Cai, and J. Liu. 2008. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Journal of Pharmaceutical and Biomedical Analysis 46 (3):568–73. doi:10.1016/j.jpba.2007.10.031.
  • Chen, Z. L., T. Wu, C. Xiang, X. Y. Xu, and X. G. Tian. 2019. Rapid identification of rainbow trout adulteration in Atlantic salmon by Raman spectroscopy combined with machine learning. Molecules 24 (15):2851. doi:10.3390/molecules24152851.
  • Cheng, J. H., and D. W. Sun. 2015. Recent applications of spectroscopic and hyperspectral imaging techniques with chemometric analysis for rapid inspection of microbial spoilage in muscle foods. Comprehensive Reviews in Food Science and Food Safety 14 (4):478–90. doi:10.1111/1541-4337.12141.
  • Cho, H. H., Y. J. Kim, Y. S. Jo, K. Kitagawa, N. Arai, and Y. I. Lee. 2001. Application of laser-induced breakdown spectrometry for direct determination of trace elements in starch-based flours. Journal of Analytical Atomic Spectrometry 16 (6):622–7. doi:10.1039/B100754H.
  • Chu, X., Y. Huang, Y. H. Yun, and X. Bian. 2022. Chemometric methods in analytical spectroscopy technology. Analytical and Bioanalytical Chemistry 415:2147–9. doi:10.1007/s00216-023-04642-6.
  • Coombs, C. E. O., R. R. Liddle, and L. A. González. 2021. Portable vibrational spectroscopic methods can discriminate between grass-fed and grain-fed beef. Journal of near Infrared Spectroscopy 29 (6):321–9. doi:10.1177/09670335211049506.
  • Craig, A. P., A. S. Franca, and J. Irudayaraj. 2013. Surface-enhanced Raman spectroscopy applied to food safety. Annual Review of Food Science and Technology 4 (1):369–80. doi:10.1146/annurev-food-022811-101227.
  • Cuadros-Rodríguez, L., E. Pérez-Castaño, and C. Ruiz-Samblás. 2016. Quality performance metrics in multivariate classification methods for qualitative analysis. TrAC Trends in Analytical Chemistry 80:612–24. doi:10.1016/j.trac.2016.04.021.
  • Das, R. S., and Y. K. Agrawal. 2011. Raman spectroscopy: Recent advancements, techniques and applications. Vibrational Spectroscopy 57 (2):163–76. doi:10.1016/j.vibspec.2011.08.003.
  • De Biasio, M., P. Stampfer, R. Leitner, C. Huck, V. Wiedemair, and D. Balthasar. 2015. Micro-Raman spectroscopy for meat type detection. Proc. SPIE 9482, Next-Generation Spectroscopic Technologies VIII, 94821J. doi:10.1117/12.2176321.
  • Deng, B. C., Y. H. Yun, D. S. Cao, Y. L. Yin, W. T. Wang, H. M. Lu, Q. Y. Luo, and Y. Z. Liang. 2016. A bootstrapping soft shrinkage approach for variable selection in chemical modeling. Analytica Chimica Acta 908:63–74. doi:10.1016/j.aca.2016.01.001.
  • Deng, B. C., Y. H. Yun, Y. Z. Liang, and L. Z. Yi. 2014. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling. The Analyst 139 (19):4836–45. doi:10.1039/C4AN00730A.
  • Deng, B. C., Y. H. Yun, P. Ma, C. C. Lin, D. B. Ren, and Y. Z. Liang. 2015. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals. The Analyst 140 (6):1876–85. doi:10.1039/c4an02123a.
  • Deniz, E., E. Güneş Altuntaş, B. Ayhan, N. İğci, D. Özel Demiralp, and K. Candoğan. 2018. Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. Journal of Food Processing and Preservation 42 (10):e13767. doi:10.1111/jfpp.13767.
  • Devarajan, K. 2008. Nonnegative matrix factorization: An analytical and interpretive tool in computational biology. PLOS Computational Biology 4 (7):e1000029. doi:10.1371/journal.pcbi.1000029.
  • Ding, S., H. Zhao, Y. Zhang, X. Xu, and R. Nie. 2015. Extreme learning machine: Algorithm, theory and applications. Artificial Intelligence Review 44 (1):103–15. doi:10.1007/s10462-013-9405-z.
  • Dong, X. H., F. W. Yang, H. Yu, W. R. Yao, and Y. F. Xie. 2022. Papid detection of zilpaterol residues in pork by surface-enhanced Raman spectroscopy. Spectroscopy and Spectral Analysis 42 (9):2843–7. doi:10.3964/j.issn.1000-0593(2022)09-2843-05.
  • Dörfer, T., T. Bocklitz, N. Tarcea, M. Schmitt, and J. Popp. 2011. Checking and improving calibration of Raman spectra using chemometric approaches. Zeitschrift für Physikalische Chemie 225 (6–7):753–64. doi:10.1524/zpch.2011.0077.
  • Efremov, E. V., J. B. Buijs, C. Gooijer, and F. Ariese. 2007. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera. Applied Spectroscopy 61 (6):571–8. doi:10.1366/000370207781269873.
  • Eliasson, C., N. A. Macleod, and P. Matousek. 2007. Noninvasive detection of concealed liquid explosives using Raman spectroscopy. Analytical Chemistry 79 (21):8185–9. doi:10.1021/ac071383n.
  • Esmonde-White, K. A., M. Cuellar, C. Uerpmann, B. Lenain, and I. R. Lewis. 2017. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Analytical and Bioanalytical Chemistry 409 (3):637–49. doi:10.1007/s00216-016-9824-1.
  • Fang, S., Y. Zhao, Y. Wang, J. Li, F. Zhu, and K. Yu. 2022. Surface-enhanced Raman scattering spectroscopy combined with chemical imaging analysis for detecting apple Valsa canker at an early stage. Frontiers in Plant Science 13:802761. doi:10.3389/fpls.2022.802761.
  • Fearn, T., C. Riccioli, A. Garrido-Varo, and J. E. Guerrero-Ginel. 2009. On the geometry of SNV and MSC. Chemometrics and Intelligent Laboratory Systems 96 (1):22–6. doi:10.1016/j.chemolab.2008.11.006.
  • Feng, C. H., H. Arai, and F. J. Rodríguez-Pulido. 2023. Hyperspectral imaging combined with chemometrics analysis for monitoring the textural properties of modified casing sausages with differentiated additions of orange extracts. Foods 12 (5):1069. doi:10.3390/foods12051069.
  • Fiorino, G. M., C. Garino, M. Arlorio, A. F. Logrieco, I. Losito, and L. Monaci. 2018. Overview on untargeted methods to combat food frauds: A focus on fishery products. Journal of Food Quality 2018:1–13. doi:10.1155/2018/1581746.
  • Gan, J., T. Liu, L. Li, and J. Zhang. 2021. Non-negative matrix factorization: A survey. The Computer Journal 64 (7):1080–92. doi:10.1093/comjnl/bxab103.
  • Gecaj, R. M., S. Muji, F. C. Ajazi, B. Berisha, A. Kryeziu, and M. Ismaili. 2021. Investigation of pork meat in chicken- and beef-based commercial products by ELISA and real-time PCR sold at retail in Kosovo. Czech Journal of Food Sciences 39 (5):368–75. doi:10.17221/164/2020-CJFS.
  • Geng, X-R., L-Y Ji, and K. Sun. 2016. Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data. Frontiers of Information Technology & Electronic Engineering 17 (5):403–12. doi:10.1631/FITEE.1600028.
  • Granato, D., P. Putnik, D. B. Kovačević, J. S. Santos, V. Calado, R. S. Rocha, A. G. D. Cruz, B. Jarvis, O. Y. Rodionova, and A. Pomerantsev. 2018. Trends in chemometrics: Food authentication, microbiology, and effects of processing. Comprehensive Reviews in Food Science and Food Safety 17 (3):663–77. doi:10.1111/1541-4337.12341.
  • Gu, S., X. Deng, Y. Shi, Y. Cai, Y. Huo, D. Guo, and F. Han. 2020. Identification of peptide biomarkers for authentication of Atlantic salmon and rainbow trout with untargeted and targeted proteomics approaches and quantitative detection of adulteration. Journal of Chromatography-B, Analytical Technologies in the Biomedical and Life Sciences 1155:122194. doi:10.1016/j.jchromb.2020.122194.
  • Guo, Q. H., Y. K. Peng, X. L. Zhao, and Y. H. Chen. 2022. Rapid detection of clenbuterol residues in pork using enhanced Raman spectroscopy. Biosensors 12 (10):859. doi:10.3390/bios12100859.
  • Gussow, K. E., and A. Mariët. 2022. The scope of food fraud revisited. Crime, Law and Social Change 78 (5):621–42. doi:10.1007/s10611-022-10055-w.
  • Hamdan, M. N., W. Mansor, A. R. M. Radzol, and A. R. Mahmud. 2022. Surface-enhanced Raman spectroscopy analysis of goat, lamb and pork fats. IEEE Symposium on Wireless Technology & Applications (ISWTA), Kuala Lumpur, Malaysia, pp. 68–71.
  • Han, F., X. Huang, J. H. Aheto, D. Zhang, and F. Feng. 2020. Detection of beef adulterated with pork using a low-cost electronic nose based on colorimetric sensors. Foods 9 (2):193. doi:10.3390/foods9020193.
  • Hanrahan, G., F. Udeh, and D. G. Patil. 2005. Chemometrics and statistics-multivariate calibration techniques. In Encyclopedia of Analytical Science. 27–32. doi:10.1016/B0-12-369397-7/00077-7.
  • He, Y., X. Bai, Q. Xiao, F. Liu, L. Zhou, and C. Zhang. 2021. Detection of adulteration in food based on nondestructive analysis techniques: A review. Critical Reviews in Food Science and Nutrition 61 (14):2351–71. doi:10.1080/10408398.2020.1777526.
  • Herrero, A. M., P. Carmona, and M. Careche. 2004. Raman spectroscopic study of structural changes in Hake (Merluccius merluccius L.) muscle proteins during frozen storage. Journal of Agricultural and Food Chemistry 52 (8):2147–53. doi:10.1021/jf034301e.
  • Holze, R. 2007. E. Smith and G. Dent. 2005. Modern Raman spectroscopy—a practical approach, Wiley, Chichester, United Kingdom. Journal of Solid State Electrochemistry 11 (4):558. doi:10.1007/s10008-005-0062-2.
  • Hossain, M. A. M., S. M. K. Uddin, S. Sultana, Y. A. Wahab, S. Sagadevan, M. R. Johan, and M. E. Ali. 2022. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Critical Reviews in Food Science and Nutrition 62 (2):285–310. doi:10.1080/10408398.2020.1814691.
  • Huang, C. C. 2016. Applications of Raman spectroscopy in herbal medicine. Applied Spectroscopy Reviews 51 (1):1–11. doi:10.1080/05704928.2015.1092154.
  • Huang, C. Q., and Y. Gu. 2022. A machine learning method for the quantitative detection of adulterated meat using a MOS-based E-nose. Foods 11 (4):602. doi:10.3390/foods11040602.
  • Huang, S., J. Tang, J. Dai, and Y. Wang. 2019. Signal status recognition based on 1DCNN and its feature extraction mechanism analysis. Sensors 19 (9):2018. doi:10.3390/s19092018.
  • Huang, S. H., X. L. Dong, Y. L. Zhang, M. Huang, and Y. D. Zheng. 2022. Effects of oxidation and precursors (lysine, glyoxal and Schiff base) on the formation of N-epsilon-carboxymethyl-lysine in aged, stored and thermally treated chicken meat. Food Science and Human Wellness 11 (5):1252–8. doi:10.1016/j.fshw.2022.04.022.
  • Huang, X., N. Zhang, Z. Li, J. Shi, H. E. Tahir, Y. Sun, Y. Zhang, X. Zhang, M. Holmes, and X. Zou. 2022. Rapid detection of carbendazim residue in apple using surface-enhanced Raman scattering and coupled chemometric algorithm. Foods 11 (9):1287. doi:10.3390/foods11091287.
  • Igor, V. E., R. E. Maia, and G. Werner. 2006. Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy. Proc. SPIE 6078, Photonic Therapeutics and Diagnostics II, 607835. doi:10.1117/12.644783.
  • Jaafreh, S., R. Breuch, K. Günther, J. Kreyenschmidt, and P. Kaul. 2018. Rapid poultry spoilage evaluation using portable fiber-optic Raman spectrometer. Food Analytical Methods 11 (8):2320–8. doi:10.1007/s12161-018-1223-0.
  • Jaafreh, S., O. Valler, J. Kreyenschmidt, K. Günther, and P. Kaul. 2019. In vitro discrimination and classification of microbial flora of poultry using two dispersive Raman spectrometers (microscope and portable fiber-optic systems) in tandem with chemometric analysis. Talanta 202:411–25. doi:10.1016/j.talanta.2019.04.082.
  • Jiang, J.-H., R. J. Berry, H. W. Siesler, and Y. Ozaki. 2002. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical Chemistry 74 (14):3555–65. doi:10.1021/ac011177u.
  • Jin, H., Q. Lu, X. Chen, H. Ding, H. Gao, and S. Jin. 2016. The use of Raman spectroscopy in food processes: A review. Applied Spectroscopy Reviews 51 (1):12–22. doi:10.1080/05704928.2015.1087404.
  • Jing, X., B. Bai, C. Zhang, W. Wu, L. Du, H. Liu, and G. Yao. 2015. Rapid and sensitive determination of clenbuterol in porcine muscle and swine urine using a fluorescent probe. Spectrochimica Acta-Part A, Molecular and Biomolecular Spectroscopy 136 Pt B:714–8. doi:10.1016/j.saa.2014.09.086.
  • Kacem, H. H., K. Ramachandran, G. T. Mani, S. Columbus, K. Daoudi, S. Chidambaram, B. Suleiman, M. A. E. Khakani, and M. Gaidi. 2023. Rapid screening of Turkey DNA fingerprint using highly sensitive label free plasmonic SERS biosensor. Surfaces and Interfaces 40:103141. doi:10.1016/j.surfin.2023.103141.
  • Kaffka, K. J., and Z. Seregély. 2002. PQS (polar qualification system) the new data reduction and product qualification method. Acta Alimentaria 31 (1):3–20. doi:10.1556/AAlim.31.2002.1.2.
  • Kalatzis, D., E. Spyratou, M. Karnachoriti, M. A. Kouri, I. Stathopoulos, N. Danias, N. Arkadopoulos, S. Orfanoudakis, I. Seimenis, A. G. Kontos, et al. 2023. Extended analysis of Raman spectra using artificial intelligence techniques for colorectal abnormality classification. Journal of Imaging 9 (12):261. doi:10.3390/jimaging9120261.
  • Kane, D. E., and R. S. Hellberg. 2016. Identification of species in ground meat products sold on the US commercial market using DNA-based methods. Food Control 59:158–63. doi:10.1016/j.foodcont.2015.05.020.
  • Katemala, S., A. Molee, K. Thumanu, and J. Yongsawatdigul. 2022. A comparative study of meat quality and vibrational spectroscopic properties of different chicken breeds. Poultry Science 101 (6):101829. doi:10.1016/j.psj.2022.101829.
  • Kirk, M. L., J. Lepluart, and J. Yang. 2022. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes. Journal of Inorganic Biochemistry 235:111907. doi:10.1016/j.jinorgbio.2022.111907.
  • Kunyaboon, S., K. Thumanu, J. W. Park, and J. Yongsawatdigul. 2019. Vibrational spectroscopy and biochemical changes in silver carp as related to quality of washed mince. Journal of the Science of Food and Agriculture 99 (14):6462–73. doi:10.1002/jsfa.9925.
  • Landry, J. D., P. J. Torley, and E. W. Blanch. 2020. Detection of biomarkers relating to quality and differentiation of some commercially significant whole fish using spatially off-set Raman spectroscopy. Molecules 25 (17):3776. doi:10.3390/molecules25173776.
  • Leardi, R. 2000. Application of genetic algorithm–PLS for feature selection in spectral data sets. Journal of Chemometrics 14 (5–6):643–55. doi:10.1002/1099-128X(200009/12)14:5/6.
  • Leardi, R. 2001. Genetic algorithms in chemometrics and chemistry: A review. Journal of Chemometrics 15 (7):559–69. doi:10.1002/cem.651.abs.
  • Lenhardt, L., R. Bro, I. Zeković, T. Dramićanin, and M. D. Dramićanin. 2015. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chemistry 175:284–91. doi:10.1016/j.foodchem.2014.11.162.
  • Lewis, E. N., V. F. Kalasinsky, and I. W. Levin. 1988. Near-infrared Fourier-transform Raman spectroscopy using fiber-optic assemblies. Analytical Chemistry 60 (24):2658–61. doi:10.1021/ac00175a002.
  • Li, H., S. A. Haruna, Y. Wang, M. Mehedi Hassan, W. Geng, X. Wu, M. Zuo, Q. Ouyang, and Q. Chen. 2022. Simultaneous quantification of deoxymyoglobin and oxymyoglobin in pork by Raman spectroscopy coupled with multivariate calibration. Food Chemistry 372:131146. doi:10.1016/j.foodchem.2021.131146.
  • Li, Z., D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang. 2013. Morphological weighted penalized least squares for background correction. The Analyst 138 (16):4483–92. doi:10.1039/C3AN00743J.
  • Lianou, A., M. Papakonstantinou, G. J. E. Nychas, J. Stoitsis, R. S. Hellberg, K. Everstine, and S. A. Sklare. 2021. Fraud in meat and poultry products. In Food fraud - a global threat with public health and economic consequences, ed. R. S. Hellberg, K. Everstine, and S. A. 85–108. Sklare: Elsevier Inc. doi:10.1016/B978-0-12-817242-1.00012-9.
  • Liaw, A., and M. Wiener. 2002. Classification and regression by random Forest. R news, 2 (3):18–22.
  • Lieber, C. A., and A. Mahadevan-Jansen. 2003. Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy 57 (11):1363–7. doi:10.1366/000370203322554518.
  • Liu, J. H., J. H. Chen, D. Wu, M. Q. Huang, J. Chen, R. Y. Pan, Y. N. Wu, and G. L. Li. 2021. CRISPR-/Cas12a-mediated liposome-amplified strategy for the surface-enhanced Raman scattering and naked-eye detection of nucleic acid and application to food authenticity screening. Analytical Chemistry 93 (29):10167–74. doi:10.1021/acs.analchem.1c01163.
  • Liu, Y. F., D. C. Pi, and Q. Y. Cheng. 2016. Ensemble kernel method: SVM classification based on game theory. Journal of Systems Engineering and Electronics 27 (1):251–9. doi:10.1109/JSEE.2016.00025.
  • Lohumi, S., S. Lee, H. Lee, and B. K. Cho. 2015. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology 46 (1):85–98. doi:10.1016/j.tifs.2015.08.003.
  • López-Peña, I., B. S. Leigh, D. E. Schlamadinger, and J. E. Kim. 2015. Insights into protein structure and dynamics by ultraviolet and visible resonance Raman spectroscopy. Biochemistry 54 (31):4770–83. doi:10.1021/acs.biochem.5b00514.
  • Lucà, F., M. Conforti, A. Castrignanò, G. Matteucci, and G. Buttafuoco. 2017. Effect of calibration set size on prediction at local scale of soil carbon by Vis-NIR spectroscopy. Geoderma 288:175–83. doi:10.1016/j.geoderma.2016.11.015.
  • Lucasius, C. B., M. L. M. Beckers, and G. Kateman. 1994. Genetic algorithms in wavelength selection: A comparative study. Analytica Chimica Acta 286 (2):135–53. doi:10.1016/0003-2670(94)80155-X.
  • Luna, A. S., A. P. da Silva, C. S. da Silva, I. C. A. Lima, and J. S. de Gois. 2019. Chemometric methods for classification of clonal varieties of green coffee using Raman spectroscopy and direct sample analysis. Journal of Food Composition and Analysis 76:44–50. doi:10.1016/j.jfca.2018.12.001.
  • Martens, H., M. Høy, B. M. Wise, R. Bro, and P. B. Brockhoff. 2003. Pre-whitening of data by covariance-weighted pre-processing. Journal of Chemometrics 17 (3):153–65. doi:10.1002/cem.780.
  • Martens, H., and E. Stark. 1991. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 9 (8):625–35. doi:10.1016/0731-7085(91)80188-F.
  • Martinez, I., I. Sánchez-Alonso, C. Piñeiro, M. Careche, and M. Carrera. 2020. Protein signatures to trace seafood contamination and processing. Foods 9 (12):1751. doi:10.3390/foods9121751.
  • Mathew, J.,C. K. Pang,M. Luo, andW. H. Leong. 2018. Classification of Imbalanced Data by Oversampling in Kernel Space of Support Vector Machines. IEEE Transactions on Neural Networks and Learning Systems 29 (9):4065–76. doi:10.1109/TNNLS.2017.275161229028213.
  • Matousek, P. 2006. Inverse spatially offset Raman spectroscopy for deep noninvasive probing of turbid media. Applied Spectroscopy 60 (11):1341–7. doi:10.1366/000370206778999102.
  • Matousek, P. 2018. Spatially offset Raman spectroscopy for non-invasive analysis of turbid samples. TrAC Trends in Analytical Chemistry 103:209–14. doi:10.1016/j.trac.2018.04.002.
  • Matousek, P., and N. Stone. 2016. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chemical Society Reviews 45 (7):1794–802. doi:10.1039/c5cs00466g.
  • Mendez, J., L. Mendoza, J. P. Cruz-Tirado, R. Quevedo, and R. Siche. 2019. Trends in application of NIR and hyperspectral imaging for food authentication. Scientia Agropecuaria 10 (1):143–61. doi:10.17268/sci.agropecu.2019.01.16.
  • Meza-Márquez, O. G., T. Gallardo-Velázquez, and G. Osorio-Revilla. 2010. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Science 86 (2):511–9. doi:10.1016/j.meatsci.2010.05.044.
  • Mohan, S., B. R. Buchanan, G. D. Wollenberg, B. Igne, J. K. Drennen, and C. A. Anderson. 2018. Variable selection optimization for multivariate models with polar qualification system. Chemometrics and Intelligent Laboratory Systems 180:1–14. doi:10.1016/j.chemolab.2018.06.002.
  • Mohd Salleh, N. A., and M. S. Hassan. 2019. Discrimination of lard and other edible fats after heating treatments using partial least square regression (PLSR), principal component regression (PCR) and linear support vector machine regression (SVMR). Journal of Physics: Conference Series 1366 (1):012114. doi:10.1088/1742-6596/1366/1/012114.
  • Nache, M., R. Scheier, H. Schmidt, and B. Hitzmann. 2015. Non-invasive lactate- and pH-monitoring in porcine meat using Raman spectroscopy and chemometrics. Chemometrics and Intelligent Laboratory Systems 142:197–205. doi:10.1016/j.chemolab.2015.02.002.
  • Nazari, Z., D. Kang, M. R. Asharif, Y. Sung, and S. Ogawa. 2015. A new hierarchical clustering algorithm. 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 2015, 148–152.
  • Ning, X., L. Mu-Hua, Y. Hai-Chao, H. Shuang-Gen, W. Xiao, Z. Jin-Hui, C. Jian, W. Ting, H. Wei, and S. Yi-Xin. 2020. Classification of sulfadimidine and sulfapyridine in duck meat by surface enhanced Raman spectroscopy combined with principal component analysis and support vector machine. Analytical Letters 53 (10):1513–24. doi:10.1080/00032719.2019.1710524.
  • Nørgaard, L., A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, and S. B. Engelsen. 2000. Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy 54 (3):413–9. doi:10.1366/0003702001949500.
  • Nunes, K. M., M. V. O. Andrade, M. R. Almeida, C. Fantini, and M. M. Sena. 2019. Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan. Microchemical Journal 147:582–9. doi:10.1016/j.microc.2019.03.076.
  • Nunes, K. M., M. V. O. Andrade, M. R. Almeida, and M. M. Sena. 2020. A soft discriminant model based on mid-infrared spectra of bovine meat purges to detect economic motivated adulteration by the addition of non-meat ingredients. Food Analytical Methods 13 (9):1699–709. doi:10.1007/s12161-020-01795-3.
  • Odongo, K. O., M. I. Kaniu, C. N. Ndung’u, and J. M. Wanjohi. 2023. Direct and rapid screening of calcium carbide in ripened bananas using chemometrics-assisted laser Raman spectroscopy. Applied Physics B 129 (6):84. doi:10.1007/s00340-023-08023-w.
  • Ostovar Pour, S., S. M. Fowler, D. L. Hopkins, P. J. Torley, H. Gill, and E. W. Blanch. 2019. Investigation of chemical composition of meat using spatially off-set Raman spectroscopy. The Analyst 144 (8):2618–27. doi:10.1039/C8AN01958D.
  • Paradkar, M. M., S. Sivakesava, and J. Irudayaraj. 2003. Discrimination and classification of adulterants in maple syrup with the use of infrared spectroscopic techniques. Journal of the Science of Food and Agriculture 83 (7):714–21. doi:10.1002/jsfa.1332.
  • Pomerantsev, A., and O. Rodionova. 2014. Concept and role of extreme objects in PCA/SIMCA. Journal of Chemometrics 28 (5):429–38. doi:10.1002/cem.2506.
  • Prochazka, D., M. Mazura, O. Samek, K. Rebrošová, P. Pořízka, J. Klus, P. Prochazková, J. Novotný, K. Novotný, and J. Kaiser. 2018. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria. Spectrochimica Acta Part B: Atomic Spectroscopy 139:6–12. doi:10.1016/j.sab.2017.11.004.
  • Raman, C. V., and K. S. Krishnan. 1928. A new type of secondary radiation. Nature 121 (3048):501–2. doi:10.1038/121501c0.
  • Robert, C., S. J. Fraser-Miller, W. T. Jessep, W. E. Bain, T. M. Hicks, J. F. Ward, C. R. Craigie, M. Loeffen, and K. C. Gordon. 2021. Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chemistry 343:128441. doi:10.1016/j.foodchem.2020.128441.
  • Robotti, E., M. H. Belay, E. Calà, A. Benedetto, S. Cerruti, M. Pezzolato, F. Pennisi, M. C. Abete, E. Marengo, and P. Brizio. 2023. Identification of illicit conservation treatments in fresh fish by micro-Raman spectroscopy and chemometric methods. Foods 12 (3):449. doi:10.3390/foods12030449.
  • Rodionova, O. Y., A. V. Titova, and A. L. Pomerantsev. 2016. Discriminant analysis is an inappropriate method of authentication. TrAC Trends in Analytical Chemistry 78:17–22. doi:10.1016/j.trac.2016.01.010.
  • Rohman, A., Sismindari, Y. Erwanto, and Y. B, Che Man. 2011. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science, 88(1):91–95. doi:10.1016/j.meatsci.2010.12.007.
  • Roobaert, D., G. Karakoulas, and N. V. Chawla. 2006. Information gain, correlation and support vector machines. Feature Extraction: Foundations and Applications. Studies in Fuzziness and Soft Computing, 207/2006, 463–70. doi:10.1007/978-3-540-35488-8_23.
  • Ryabchykov, O., S. Guo, and T. Bocklitz. 2019. Analyzing Raman spectroscopic data. Physical Sciences Reviews4 (2):20170043. doi:10.1515/psr-2017-0043.
  • Saxena, A., M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er, W. Ding, and C.-T. Lin. 2017. A review of clustering techniques and developments. Neurocomputing 267:664–81. doi:10.1016/j.neucom.2017.06.053.
  • Schulze, H. G., S. Rangan, M. W. Blades, J. M. Piret, and R. F. B. Turner. 2019. Smoothing Raman spectra with contiguous single-channel fitting of Voigt distributions: An automated, high-quality procedure. Applied Spectroscopy 73 (1):47–58. doi:10.1177/0003702818794957.
  • Segal, M. R. 2004. Machine learning benchmarks and random forest regression. UCSF: Center for Bioinformatics and Molecular Biostatistics. Retrieved from https://escholarship.org/uc/item/35x3v9t4
  • Sharma, N., R. Deo, R. Deo, P. Samui, and S. S. Roy. 2021. Wind speed forecasting in Nepal using self-organizing map-based online sequential extreme learning machine. In Predictive modelling for energy management and power systems engineering, 1, 437–84. Elsevier.
  • Shaw, A. D., N. Kaderbhai, A. Jones, A. M. Woodward, R. Goodacre, J. J. Rowland, and D. B. Kell. 1999. Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Applied Spectroscopy 53 (11):1419–28. doi:10.1366/0003702991945777.
  • Siebert, F., and P. Hildebrandt. 2008. Vibrational spectroscopy in life science. Berlin/Heidelberg, Germany: John Wiley & Sons.
  • Silalahi, D. D., H. Midi, J. Arasan, M. S. Mustafa, and J. P. Caliman. 2020. Robust wavelength selection using filter-wrapper method and input scaling on near infrared spectral data. Sensors 20 (17):5001. doi:10.3390/s20175001.
  • Siska, S., M. I. Jumadi, S. Abdullah, D. Ramadon, and A. Mun’im. 2023. ATR-FTIR and chemometric method for the detection of pig-based derivatives in food products-a review. International Food Research Journal, 30 (2):281–289. doi:10.47836/ifrj.30.2.01.
  • Sowoidnich, K., and H. D. Kronfeldt. 2012. In-situ identification of meat from different animal species by shifted excitation Raman difference spectroscopy. Proc. SPIE 8369, Sensing for agriculture and food quality and safety IV, 83690J, 134–141. doi:10.1117/12.918259.
  • Sowoidnich, K., and H. D. Kronfeldt. 2018. In-situ species authentication of frozen-thawed meat and meat juice using shifted excitation Raman difference spectroscopy. Proc. SPIE 10685, Biophotonics: Photonic solutions for better health care VI, 106850L, 84–95. doi:10.1117/12.2306659.
  • Sun, H. R., C. Song, X. M. Lin, and X. Gao. 2022. Identification of meat species by combined laser-induced breakdown and Raman spectroscopies. Spectrochimica Acta Part B: Atomic Spectroscopy 194:106456. doi:10.1016/j.sab.2022.106456.
  • Sun, Y., H. Zhang, T. Zhao, Z. Zou, B. Shen, and L. Yang. 2020. A new convolutional neural network with random forest method for hydrogen sensor fault diagnosis. IEEE Access. 8:85421–30. doi:10.1109/ACCESS.2020.2992231.
  • Supian, K. 2018. Cross-contamination in processing, packaging, storage, and transport in halal supply chain. Preparation and Processing of Religious and Cultural Foods, 309–321. Elsevier. doi:10.1016/B978-0-08-101892-7.00016-X.
  • Tao, F., and M. Ngadi. 2018. Recent advances in rapid and nondestructive determination of fat content and fatty acids composition of muscle foods. Critical Reviews in Food Science and Nutrition 58 (9):1565–93. doi:10.1080/10408398.2016.1261332.
  • Taylan, O., N. Cebi, M. Tahsin Yilmaz, O. Sagdic, and A. A. Bakhsh. 2020. Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chemistry 332:127344. doi:10.1016/j.foodchem.2020.127344.
  • Tian, X., Y. Xu, Y. Peng, X. Tang, and S. Ma. 2013. Application of VIS-SW-NIR spectroscopy for detecting adulteration in fresh minced beef. In 2013 American Society of Agricultural and Biological Engineers, Kansas City, Missouri, July 21–July 24, 2013, 1.
  • Todorovic, S., and D. H. Murgida. 2006. Surface-enhanced Raman scattering of biological materials. Encyclopedia of Analytical Chemistry, ed. R. A. Meyers, 1–29. doi:10.1002/9780470027318.a9574.
  • Todorovic, S., and M. Teixeira. 2018. Resonance Raman spectroscopy of Fe-S proteins and their redox properties. Journal of Biological Inorganic Chemistry 23 (4):663–4. doi:10.1007/s00775-018-1577-1.
  • Vitale, R., G. Spinaci, F. Marini, P. Marion, M. Delcroix, A. Vieillard, F. Coudon, O. Devos, and C. Ruckebusch. 2022. Hierarchical classification and matching of mid-infrared spectra of paint samples for forensic applications. Talanta 243:123360. doi:10.1016/j.talanta.2022.123360.
  • Wang, H. P., P. Chen, J. W. Dai, D. Liu, J. Y. Li, Y. P. Xu, and X. L. Chu. 2022. Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. TrAC Trends in Analytical Chemistry 153:116648. doi:10.1016/j.trac.2022.116648.
  • Wang, J., and F. Biljecki. 2022. Unsupervised machine learning in urban studies: A systematic review of applications. Cities 129:103925. doi:10.1016/j.cities.2022.103925.
  • Wang, K., D. W. Sun, H. Pu, and Q. Wei. 2017. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends in Food Science & Technology 67:207–19. doi:10.1016/j.tifs.2017.06.015.
  • Wang, T., M. H. Liu, S. G. Huang, H. C. Yuan, J. H. Zhao, and J. Chen. 2021. Surface-enhanced Raman spectroscopy method for classification of doxycycline hydrochloride and tylosin in duck meat using gold nanoparticles. Poultry Science 100 (6):101165. doi:10.1016/j.psj.2021.101165.
  • Wang, W., and J. Paliwal. 2007. Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety 1 (4):193–207. doi:10.1007/s11694-007-9022-0.
  • Wang, Y., S. Huang, J. Dai, and J. Tang. 2020. A novel bearing fault diagnosis methodology based on SVD and one-dimensional convolutional neural network. Shock and Vibration 2020:1–17. doi:10.1155/2020/1850286.
  • Wei, S. T., C. W. Tien, B. D. Liu, and J. F. Yang. 2011. Adaptive truncation algorithm for hadamard-transformed H.264/AVC lossless video coding. Transactions on Circuits and Systems for Video Technology 21 (5):538–49. doi:10.1109/TCSVT.2011.2129030.
  • Wilson, J. M., and T. A. E. Platts-Mills. 2018. Meat allergy and allergens. Molecular Immunology 100:107–12. doi:10.1016/j.molimm.2018.03.018.
  • Wold, S., M. Sjöström, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58 (2):109–30. doi:10.1016/S0169-7439(01)00155-1.
  • Wubshet, S. G., J. P. Wold, U. Böcker, K. W. Sanden, and N. K. Afseth. 2019. Raman spectroscopy for quantification of residual calcium and total ash in mechanically deboned chicken meat. Food Control. 95:267–73. doi:10.1016/j.foodcont.2018.08.017.
  • Xu, X., F. Ma, J. Zhou, and C. Du. 2022. Applying convolutional neural networks (CNN) for end-to-end soil analysis based on laser-induced breakdown spectroscopy (LIBS) with less spectral preprocessing. Computers and Electronics in Agriculture 199:107171. doi:10.1016/j.compag.2022.107171.
  • Xu, Y., P. Zhong, A. Jiang, X. Shen, X. Li, Z. Xu, Y. Shen, Y. Sun, and H. Lei. 2020. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends in Analytical Chemistry 131:116017. doi:10.1016/j.trac.2020.116017.
  • Xu, Y., S. Zomer, and R. G. Brereton. 2006. Support vector machines: A recent method for classification in chemometrics. Critical Reviews in Analytical Chemistry 36 (3–4):177–88. doi:10.1080/10408340600969486.
  • Yan, H., X. Z. Song, K. D. Tian, J. X. Gao, Q. Q. Li, Y. M. Xiong, and S. G. Min. 2019. A modification of the bootstrapping soft shrinkage approach for spectral variable selection in the issue of over-fitting, model accuracy and variable selection credibility. Spectrochimica Acta-Part A, Molecular and Biomolecular Spectroscopy 210:362–71. doi:10.1016/j.saa.2018.10.034.
  • Yang, D., and Y. Ying. 2011. Applications of Raman spectroscopy in agricultural products and food analysis: A review. Applied Spectroscopy Reviews 46 (7):539–60. doi:10.1080/05704928.2011.593216.
  • Yang, J., J. Xu, X. Zhang, C. Wu, T. Lin, and Y. Ying. 2019. Deep learning for vibrational spectral analysis: Recent progress and a practical guide. Analytica Chimica Acta 1081:6–17. doi:10.1016/j.aca.2019.06.012.
  • Yu, W., Y. Chen, Z. Wang, L. Qiao, R. Xie, J. Zhang, S. Bian, H. Li, Y. Zhang, and A. Chen. 2021. Multiple authentications of high-value milk by centrifugal microfluidic chip-based real-time fluorescent LAMP. Food Chemistry 351:129348. doi:10.1016/j.foodchem.2021.129348.
  • Yun, Y. H., J. Bin, D. L. Liu, L. Xu, T. L. Yan, D. S. Cao, and Q. S. Xu. 2019. A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration. Analytica Chimica Acta 1058:58–69. doi:10.1016/j.aca.2019.01.022.
  • Yun, Y. H., F. Liang, B. C. Deng, G. B. Lai, C. M. Vicente Gonçalves, H. M. Lu, J. Yan, X. Huang, L. Z. Yi, and Y. Z. Liang. 2015. Informative metabolites identification by variable importance analysis based on random variable combination. Metabolomics 11 (6):1539–51. doi:10.1007/s11306-015-0803-x.
  • Yun, Y. H., W. T. Wang, B. C. Deng, G. B. Lai, X. b Liu, D. B. Ren, Y. Z. Liang, W. Fan, and Q. S. Xu. 2015. Using variable combination population analysis for variable selection in multivariate calibration. Analytica Chimica Acta 862:14–23. doi:10.1016/j.aca.2014.12.048.
  • Yun, Y. H., W. T. Wang, M. L. Tan, Y. Z. Liang, H. D. Li, D. S. Cao, H. M. Lu, and Q. S. Xu. 2014. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration. Analytica Chimica Acta 807:36–43. doi:10.1016/j.aca.2013.11.032.
  • Zaukuu, J. L. Z., E. Benes, G. Bázár, Z. Kovács, and M. Fodor. 2022. Agricultural potentials of molecular spectroscopy and advances for food authentication: An overview. Processes 10 (2):214. doi:10.3390/pr10020214.
  • Zhang, H., H. Wang, Z. Dai, M. s Chen, and Z. Yuan. 2012. Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinformatics 13 (1):298. doi:10.1186/1471-2105-13-298.
  • Zhang, Z. M., S. Chen, and Y. Z. Liang. 2010. Baseline correction using adaptive iteratively reweighted penalized least squares. The Analyst 135 (5):1138–46. doi:10.1039/B922045C.
  • Zhao, M., G. Downey, and C. P. O’Donnell. 2015. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. Journal of Agricultural and Food Chemistry 63 (5):1433–41. doi:10.1021/jf5041959.
  • Zheng, Z. L. 2012. Research on optimization method of extreme learning machine. Applied Mechanics and Materials 263–266:1478–81. doi:10.4028/www.scientific.net/AMM.263-266.1478.
  • Zielinski, A. A. F., C. W. I. Haminiuk, C. A. Nunes, E. Schnitzler, S. M. van Ruth, and D. Granato. 2014. Chemical composition, sensory properties, provenance, and bioactivity of fruit juices as assessed by chemometrics: A critical review and guideline. Comprehensive Reviews in Food Science and Food Safety 13 (3):300–16. doi:10.1111/1541-4337.12060.
  • Zimba, C. G., V. M. Hallmark, J. D. Swalen, and J. F. Rabolt. 1987. Fourier transform Raman spectroscopy of long-chain molecules containing strongly absorbing chromophores. Applied Spectroscopy 41 (5):721–6. doi:10.1366/0003702874448094.
  • Zumelzu, E., A. Sanz, J. Medina, and F. Rull. 2018. Determination of processed salmon components sticking to polyethylene terephthalate coatings of containers by FT-IR and Raman vibrational spectroscopy. Journal of Spectroscopy 2018:1–6. doi:10.1155/2018/8798239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.