225
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unveiling the applications of membrane proteins from oil bodies: leading the way in artificial oil body technology and other biotechnological advancements

, , , , , & show all

References

  • Alameldin, H., A. Izadi-Darbandi, S. A. Smith, V. Balan, A. D. Jones, G. Ebru Orhun, and M. Sticklen. 2017. Metabolic engineering to increase the corn seed storage lipid quantity and change its compositional quality. Crop Science 57 (4):1854–64. doi: 10.2135/cropsci2016.06.0513.
  • Alexander, L. G., R. B. Sessions, A. R. Clarke, A. S. Tatham, P. R. Shewry, and J. A. Napier. 2002. Characterization and modelling of the hydrophobic domain of a sunflower oleosin. Planta 214 (4):546–51. doi: 10.1007/s004250100655.
  • Aziz, U., N. Saleem, T. Tang, and M. Zhang. 2020. Genomic analysis and expression investigation of steroleosin gene family in arabidopsis thaliana. Journal of Animal and Plant Sciences 30 (1):133–46.
  • Bai, F., W. Yan, S. Zhang, D. Yu, and L. Bai. 2014. Immobilized lipase of reconstructed oil bodies and its potential application in biodiesel production. Fuel 128:340–6. doi: 10.1016/j.fuel.2014.03.033.
  • Bajec, M. R, and Pickering, G. J. 2008. Thermal taste, prop responsiveness, and perception of oral sensations. Physiology & Behavior 95 (4):581–90. doi: 10.1016/j.physbeh.2008.08.009.
  • Baud, S., and L. Lepiniec. 2010. Physiological and developmental regulation of seed oil production. Progress in Lipid Research 49 (3):235–49. doi: 10.1016/j.plipres.2010.01.001.
  • Beisson, F., N. Ferte, and G. Noat. 1996. Oil-bodies from sunflower (helianthus annuus l.) seeds. The Biochemical Journal 317 (Pt 3) (Pt 3):955–6. doi: 10.1042/bj3170955.
  • Bettini, S., D. Vergara, S. Bonsegna, L. Giotta, C. Toto, M. Chieppa, M. Maffia, G. Giovinazzo, L. Valli, and A. Santino. 2013. Efficient stabilization of natural curcuminoids mediated by oil body encapsulation. RSC Advances 3 (16):5422–9. doi: 10.1039/c3ra40552d.
  • Bhatla, S. C., V. Kaushik, and M. K. Yadav. 2010. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnology Advances 28 (3):293–300. doi: 10.1016/j.biotechadv.2010.01.001.
  • Board, A. J., J. M. Crowther, A. Acevedo-Fani, C. N. Meisrimler, G. B. Jameson, and R. C. J. Dobson. 2022. How plants solubilise seed fats: Revisiting oleosin structure and function to inform commercial applications. Biophysical Reviews 14 (1):257–66. doi: 10.1007/s12551-021-00923-5.
  • Brunetti, S., M. Arseneault, J. Wright, Z. Wang, M. Ehdaeivand, M. Lowden, J. Rivoal, H. Khalil, G. Garg, and P. Gulick. 2021. The stress induced caleosin, rd20/clo3, acts as a negative regulator of gpa1 in arabidopsis. Plant Molecular Biology 107 (3):159–75. doi: 10.1074/jbc.M109.065243.
  • Cao, Y., L. Zhao, Y. Ying, X. Kong, Y. Hua, and Y. Chen. 2015. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline ph on them. Food Chemistry 177 (15):288–94. doi: 10.1016/j.foodchem.2015.01.052.
  • Capuano, F., F. Beaudoin, J. A. Napier, and P. R. Shewry. 2007. Properties and exploitation of oleosins. Biotechnology Advances 25 (2):203–6. doi: 10.1016/j.biotechadv.2006.11.006.
  • Chang, M. T., T. R. Tsai, C. Y. Lee, Y. S. Wei, Y. J. Chen, C. R. Chen, and J. T. Tzen. 2013. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies. Journal of Agricultural and Food Chemistry 61 (40):9666–71. doi: 10.1021/jf4019195.
  • Chattaraj, R., C. Y. Kim, D. Lee, and D. A. Hammer. 2022. Recombinant protein micelles to block transduction by SARS-CoV-2 pseudovirus. ACS Nano 16 (10):17466–77. doi: 10.1021/acsnano.2c09015.
  • Chen, B., D. J. McClements, D. A. Gray, and E. A. Decker. 2010. Stabilization of soybean oil bodies by enzyme (laccase) cross-linking of adsorbed beet pectin coatings. Journal of Agricultural and Food Chemistry 58 (16):9259–65. doi: 10.1021/jf102082u.
  • Chen, J. C. F., and J. T. C. Tzen. 2001. An in vitro system to examine the effective phospholipids and structural domain for protein targeting to seed oil bodies. Plant & Cell Physiology 42 (11):1245–52. doi: 10.1093/pcp/pce160.
  • Chen, J. C. F., C. C. Y. Tsai, and J. T. C. Tzen. 1999. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant & Cell Physiology 40 (10):1079–86. doi: 10.1093/oxfordjournals.pcp.a029490.
  • Chen, J. C. F., R. H. Lin, H. C. Huang, and J. T. C. Tzen. 1997. Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. Journal of Biochemistry 122 (4):819–24. doi: 10.1093/oxfordjournals.jbchem.a021828.
  • Chen, K., Y. Yin, S. Liu, Z. Guo, K. Zhang, Y. Liang, L. Zhang, W. Zhao, H. Chao, and M. Li. 2019. Genome-wide identification and functional analysis of oleosin genes in brassica napus l. BMC Plant Biology 19 (1):294. doi: 10.1186/s12870-019-1891-y.
  • Chen, M. C. M., C. L. Chyan, T. T. T. Lee, S. H. Huang, and J. T. C. Tzen. 2004. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin. Journal of Agricultural and Food Chemistry 52 (12):3982–7. doi: 10.1021/jf035533g.
  • Chen, M. C. M., J. L. Wang, and J. T. C. Tzen. 2005. Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin. Biotechnology Progress 21 (4):1297–301. doi: 10.1021/bp050030b.
  • Chen, W., Q. Zhang, B. L. F. Kaplan, G. L. Baker, and N. E. Kaminski. 2014. Induced t cell cytokine production is enhanced by engineered nanoparticles. Nanotoxicology 8 Suppl 1 (sup1):11–23. doi: 10.3109/17435390.2013.848302.
  • Chen, Y., and T. Ono. 2010. Simple extraction method of non-allergenic intact soybean oil bodies that are thermally stable in an aqueous medium. Journal of Agricultural and Food Chemistry 58 (12):7402–7. doi: 10.1021/jf1006159.
  • Chen, Y., L. Zhao, Y. Cao, X. Kong, and Y. Hua. 2014. Oleosins (24 and 18 kda) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination. Journal of Agricultural and Food Chemistry 62 (4):956–65. doi: 10.1021/jf405382w.
  • Chiang, C. J., C. J. Chen, P. J. Liou, and Y. P. Chao. 2019. Selective delivery of curcumin to HER2/neu-overexpressing tumor cells using nanoscale oil body. Journal of the Taiwan Institute of Chemical Engineers 99:38–44. doi: 10.1016/j.jtice.2019.03.013.
  • Chiang, C. J., H. C. Chen, H. F. Kuo, Y. P. Chao, and J. T. Tzen. 2006. A simple and effective method to prepare immobilized enzymes using artificial oil bodies. Enzyme and Microbial Technology 39 (5):1152–8. doi: 10.1016/j.enzmictec.2006.02.024.
  • Chiang, C. J., L. J. Lin, T. Y. Yang, and Y. P. Chao. 2016. Artificial oil body as a potential oral administration system in zebrafish. Journal of the Taiwan Institute of Chemical Engineers 61:46–53. doi: 10.1016/j.jtice.2015.12.013.
  • Chiang, C. J., P. T. Chen, C. Y. Yeh, and Y. P. Chao. 2013. Statistical optimization of one-step immobilization process for recombinant endoglucanase from clostridium thermocellum. Process Biochemistry 48 (12):1886–92. doi: 10.1016/j.procbio.2013.08.022.
  • Chiang, C. J., P. T. Chen, C. Y. Yeh, Z. W. Wang, and Y. P. Chao. 2013. A useful method integrating production and immobilization of recombinant cellulase. Applied Microbiology and Biotechnology 97 (20):9185–92. doi: 10.1007/s00253-013-5238-6.
  • Chiang, C.-J., H.-C. Chen, Y.-P. Chao, and J. T. C. Tzen. 2005. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. Journal of Agricultural and Food Chemistry 53 (12):4799–804. doi: 10.1021/jf050264a.
  • Chiang, C.-J., L.-J. Lin, and C.-J. Chen. 2011. Caleosin-based nanoscale oil bodies for targeted delivery of hydrophobic anticancer drugs. Journal of Nanoparticle Research 13 (12):7127–37. doi: 10.1007/s11051-011-0630-6.
  • Chmielewska, A., M. Kozłowska, D. Rachwał, P. Wnukowski, R. Amarowicz, E. Nebesny, and J. Rosicka-Kaczmarek. 2021. Canola/rapeseed protein - nutritional value, functionality and food application: A review. Critical Reviews in Food Science and Nutrition 61 (22):3836–56. doi: 10.1080/10408398.2020.1809342.
  • Cho, H. Y., T. Lee, J. Yoon, Z. Han, H. Rabie, K. B. Lee, W. W. Su, and J. W. Choi. 2018. Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Applied Materials & Interfaces 10 (11):9301–9. doi: 10.1021/acsami.7b19255.
  • Chuang, R. L. C., J. C. F. Chen, J. Chu, and J. T. C. Tzen. 1996. Characterization of seed oil bodies and their surface oleosin isoforms from rice embryos. Journal of Biochemistry 120 (1):74–81. doi: 10.1093/oxfordjournals.jbchem.a021396.
  • Dautel, D. R., and J. A. Champion. 2020. Protein vesicles self-assembled from functional globular proteins with different charge and size. Biomacromolecules 22 (1):116–25. doi: 10.1021/acs.biomac.0c00671.
  • Decker, E. A., and P. Villeneuve. 2023. Impact of processing on the oxidative stability of oil bodies. Critical Reviews in Food Science and Nutrition 1–15. doi: 10.1080/10408398.2022.2160963.
  • Deleu, M., G. Vaca-Medina, J.-F. Fabre, J. Roïz, R. Valentin, and Z. Mouloungui. 2010. Interfacial properties of oleosins and phospholipids from rapeseed fo the stability of oil bodies in aqueous medium. Colloids and Surfaces. B, Biointerfaces 80 (2):125–32. doi: 10.1016/j.colsurfb.2010.05.036.
  • Dickinson, E. 2008. Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 4 (5):932–42. doi: 10.1039/b718319d.
  • Ding, J., Y. Dong, G. Huang, Y. Zhang, L. Jiang, and X. Sui. 2021. Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food & Function 12 (21):10875–86. doi: 10.1039/D1FO01462E.
  • Duan, X., M. Zhang, and F. Chen. 2021. Prediction and analysis of antimicrobial peptides from rapeseed protein using in silico approach. Journal of Food Biochemistry 45 (4):e13598. doi: 10.1111/jfbc.13598.
  • Fernandez, A. M., K. Van Derpoorten, L. Dasnois, K. Lebtahi, V. Dubois, T. J. Lobl, S. Gangwar, C. Oliyai, E. R. Lewis, D. Shochat, et al. 2001. N-succinyl-(beta-alanyl-l-leucyl-l-alanyl-l-leucyl)doxorubicin: An extracellularly tumor-activated prodrug devoid of intravenous acute toxicity. Journal of Medicinal Chemistry 44 (22):3750–3. doi: 10.1021/jm0108754.
  • Ferro, M., D. Seigneurin-Berny, N. Rolland, A. Chapel, D. Salvi, J. Garin, and J. Joyard. 2015. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21 (16):3517–26. doi: 10.1002/1522-2683(20001001)21:16<3517::AID-ELPS3517>3.0.CO;2-H.
  • Fisk, I. D., and D. A. Gray. 2011. Soybean (Glycine max) oil bodies and their associated phytochemicals. Journal of Food Science 76 (9):C1349–C1354. doi: 10.1111/j.1750-3841.2011.02428.x.
  • Fisk, I. D., D. A. White, M. Lad, and D. A. Gray. 2008. Oxidative stability of sunflower oil bodies. European Journal of Lipid Science and Technology 110 (10):962–8. doi: 10.1002/ejlt.200800051.
  • François, N., C. Guyot-Declerck, B. Hug, D. Callemien, B. Govaerts, and S. Collin. 2006. Beer astringency assessed by time-intensity and quantitative descriptive analysis: Influence of ph and accelerated aging. Food Quality and Preference 17 (6):445–52. doi: 10.1016/j.foodqual.2005.05.008.
  • Frandsen, G. I., J. Mundy, and J. T. C. Tzen. 2001. Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarum 112 (3):301–7. doi: 10.1034/j.1399-3054.2001.1120301.x.
  • Frandsen, G., F. Müller-Uri, M. Nielsen, J. Mundy, and K. Skriver. 1996. Novel plant ca2+-binding protein expressed in response to abscisic acid and osmotic stress. The Journal of Biological Chemistry 271 (1):343–8. doi: 10.1074/jbc.271.1.343.
  • Furse, S., S. Liddell, C. A. Ortori, H. Williams, D. C. Neylon, D. J. Scott, D. A. Barrett, and D. A. Gray. 2013. The lipidome and proteome of oil bodies from helianthus annuus (common sunflower). Journal of Chemical Biology 6 (2):63–76. doi: 10.1007/s12154-012-0090-1.
  • Gallier, S., K. C. Gordon, and H. Singh. 2012. Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chemistry 132 (4):1996–2006. doi: 10.1016/j.foodchem.2011.12.038.
  • Gao, C., K. B. Vargo, and D. A. Hammer. 2016. Protease-triggered, integrin-targeted cellular uptake of recombinant protein micelles. Macromolecular Bioscience 16 (9):1398–406. doi: 10.1002/mabi.201600032.
  • Gao, C., V. Lee, and D. A. Hammer. 2019. Enhanced cell killing by paclitaxel-loaded recombinant protein micelles bearing integrin-binding and cell-penetrating peptides. Bioconjugate Chemistry. doi: 10.1021/acs.bioconjchem.8b00748.
  • Gohon, Y., J. D. Vindigni, A. Pallier, F. Wien, H. Celia, A. Giuliani, C. Tribet, C. Chardot, and P. Briozzo. 2011. High water solubility and fold in amphipols of proteins with large hydrophobic regions: Oleosins and caleosin from seed lipid bodies. Biochimica et Biophysica Acta 1808 (3):706–16. doi: 10.1016/j.bbamem.2010.12.002.
  • Guo, Y., Y. Li, Q. Wu, X. Lan, G. Chu, W. Qiang, M. Noman, T. Gao, J. Guo, L. Han, et al. 2021. Optimization of the extraction conditions and dermal toxicity of oil body fused with acidic fibroblast growth factor (OLAF). Cutaneous and Ocular Toxicology 40 (3):221–31. doi: 10.1080/15569527.2021.1931876.
  • Hanano, A., E. Blée, and D. J. Murphy. 2023. Caleosin/Peroxygenases: Multifunctional proteins in plants. Annals of Botany 131 (3):387–409. doi: 10.1093/aob/mcad001.
  • Hao, J., Q. Wang, X. Li, and D. Xu. 2023. Extraction of structurally intact and well-stabilized rice bran oil bodies as natural pre-emulsified O/W emulsions and investigation of their rheological properties and components interaction. Food Research International (Ottawa, Ont.) 164:112457. doi: 10.1016/j.foodres.2023.112457.
  • Hao, J., X. Li, Q. Wang, W. Lv, W. Zhang, and D. Xu. 2022. Recent developments and prospects in the extraction, composition, stability, food applications, and in vitro digestion of plant oil bodies. Journal of the American Oil Chemists’ Society 99 (8):635–53. doi: 10.22541/au.162844018.83758344/v1.
  • Homaei, A. 2015. Enzyme immobilization and its application in the food industry. Advances in food biotechnology. doi: 10.1002/9781118864463.ch09.
  • Hou, J., X. Feng, M. Jiang, Q. Wang, C. Cui, C. Sun, M. A. Hussain, L. Jiang, Z. Jiang, and A. Li. 2019. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops. Lwt 113:108263. doi: 10.1016/j.lwt.2019.108263.
  • Hou, R. C. W., M. Y. Lin, M. M. C. Wang, and J. T. C. Tzen. 2003. Increase of viability of entrapped cells of lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. Journal of Dairy Science 86 (2):424–8. doi: 10.3168/jds.S0022-0302(03)73620-0.
  • Hu, M., X. Du, G. Liu, Z. Tan, S. Zhang, B. Qi, and Y. Li. 2022. Investigation of structure–stability correlations of reconstructed oil bodies. Lwt 165:113740. doi: 10.1016/j.lwt.2022.113740.
  • Hu, Z., X. Wang, G. Zhan, G. Liu, W. Hua, and H. Wang. 2009. Unusually large oilbodies are highly correlated with lower oil content in brassica napus. Plant Cell Reports 28 (4):541–9. doi: 10.1007/s00299-008-0654-2.
  • Huang, A. H. C. 1992. Oil bodies and oleosins in seeds. Annual Review of Plant Physiology and Plant Molecular Biology 43 (1):177–200. doi: 10.1146/annurev.pp.43.060192.001141.
  • Huang, A. H. C. 1996. Oleosins and oil bodies in seeds and other organs. Plant Physiology 110 (4):1055–61. doi: 10.1104/pp.110.4.1055.
  • Huang, and Anthony, H. C. 1994. Structure of plant seed oil bodies. Current Opinion in Structural Biology 4 (4):493–8. doi: 10.1016/S0959-440X(94)90210-0.
  • Huang, C. Y., and A. H. Huang. 2017. Unique motifs and length of hairpin in oleosin target the cytosolic side of endoplasmic reticulum and budding lipid droplet. Plant Physiology 174 (4):2248–60. doi: 10.1104/pp.17.00366.
  • Huang, Z. W., X. H. Wu, X. H. Lan, and B. Zhang. 2023. Camellia oleifera oil body as a delivery system for curcumin: encapsulation, physical, and in vitro digestion properties. Food Biophysics 18 (4):596–605. doi: 10.1007/s11483-023-09801-x.
  • Hung, Y. J., C. C. Peng, J. T. Tzen, M. J. Chen, and J. R. Liu. 2008. Immobilization of Neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity. Bioresource Technology 99 (18):8662–6. doi: 10.1016/j.biortech.2008.04.017.
  • Hyun, T. K., D. Kumar, Y. Y. Cho, H. N. Hyun, and J. S. Kim. 2013. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax - sciencedirect. Gene 515 (2):454–60. doi: 10.1016/j.gene.2012.11.065.
  • Izadi-Darbandi, A., M. Younessi-Hamzekhanlu, and M. Sticklen. 2020. Metabolically engineered rice biomass and grain using genes associated with lipid pathway show high level of oil content. Molecular Biology Reports 47 (10):7917–27. doi: 10.1007/s11033-020-05837-1.
  • Ji, D., C. C. Udenigwe, and D. Agyei. 2019. Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment. Food Science and Human Wellness 8 (3):306–14. doi: 10.1016/j.fshw.2019.08.002.
  • Jiang, P. L., and J. T. C. Tzen. 2014. Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies. Plant Signaling & Behavior 5 (4):447–9. doi: 10.4161/psb.5.4.10874.
  • Jiang, P. L., J. C. F. Chen, S. T. Chiu, and J. T. C. Tzen. 2009. Stable oil bodies sheltered by a unique caleosin in cycad megagametophytes. Plant Physiology and Biochemistry: PPB 47 (11-12):1009–16. doi: 10.1016/j.plaphy.2009.07.004.
  • Kaukonen, O., T. Sontag-Strohm, H. Salovaara, A. M. Lampi, J. Sibakov, and J. Loponen. 2011. Foaming of differently processed oats: Role of nonpolar lipids and tryptophanin proteins. Cereal Chemistry 88 (3):239–44. doi: 10.1094/CCHEM-11-10-0154.
  • Kim, T. K., H. I. Yong, Y. B. Kim, S. Jung, H. W. Kim, and Y. S. Choi. 2021. Effects of organic solvent on functional properties of defatted proteins extracted from Protaetia brevitarsis larvae. Food Chemistry 336:127679. doi: 10.1016/j.foodchem.2020.127679.
  • Kim, Y. Y., K. W. Jung, K. S. Yoo, J. U. Jeung, and J. S. Shin. 2011. A stress-responsive caleosin-like protein, atclo4, acts as a negative regulator of aba responses in arabidopsis. Plant & Cell Physiology 52 (5):874–84. doi: 10.1093/pcp/pcr039.
  • Lai, S. M., Y. C. Chiou, G. F. Chen, M. Y. Liao, J. T. Tzen, and P. S. Lai. 2016. Enhanced nuclear localization of photosensitizer using artificial oil bodies for photodynamic therapy. Smart Science 4 (4):167–72. doi: 10.1080/23080477.2016.1255293.
  • Leng, S. H., C. E. Yang, and S. L. Tsai. 2016. Designer oleosomes as efficient biocatalysts for enhanced degradation of organophosphate nerve agents. Chemical Engineering Journal 287:568–74. doi: 10.1016/j.cej.2015.11.087.
  • Li, H., J. Yang, Y. Chen, L. Guan, L. Du, Y. Guo, W. Wang, L. Wang, H. Li, C. Jiang, et al. 2014. Expression of a functional recombinant oleosin-human hyaluronidase hPH-20 fusion in Arabidopsis thaliana. Protein Expression and Purification 103:23–7. doi: 10.1016/j.pep.2014.03.007.
  • Li, M., D. J. Murphy, K. H. K. Lee, R. Wilson, L. J. Smith, D. C. Clark, and J. Y. Sung. 2002. Purification and structural characterization of the central hydrophobic domain of oleosin. The Journal of Biological Chemistry 277 (40):37888–95. doi: 10.1074/jbc.M202721200.
  • Li, M., J. S. Keddie, L. J. Smith, D. C. Clark, and D. J. Murphy. 1993. Expression and characterization of the n-terminal domain of an oleosin protein from sunflower. Journal of Biological Chemistry 268 (23):17504–12. doi: 10.1111/j.1432-1033.1993.tb18151.x.
  • Li, N., and A. L. Girard. 2023. Impact of pH and temperature on whey protein-proanthocyanidin interactions and foaming properties. Food Hydrocolloids 134:108100. doi: 10.1016/j.foodhyd.2022.108100.
  • Li, Y., X. Liu, H. Liu, and L. Zhu. 2023. Interfacial adsorption behavior and interaction mechanism in saponin–protein composite systems: A review. Food Hydrocolloids 136:108295. doi: 10.1016/j.foodhyd.2022.108295.
  • Liao, Y., Y. Sun, X. Peng, B. Qi, and Y. Li. 2023. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocolloids 135:108230. doi: 10.1016/j.foodhyd.2022.108230.
  • Liao, Y., Y. Sun, Z. Wang, M. Zhong, R. Li, S. Yan, B. Qi, and Y. Li. 2022. Structure, rheology, and functionality of emulsion-filled gels: Effect of various oil body concentrations and interfacial compositions. Food Chemistry: X 16:100509. doi: 10.1016/j.fochx.2022.100509.
  • Lin, L. J., and J. T. Tzen. 2004. Two distinct steroleosins are present in seed oil bodies. Plant Physiology and Biochemistry: PPB 42 (7–8):601–8. doi: 10.1016/j.plaphy.2004.06.006.
  • Lin, L.-J., S. S. K. Tai, C.-C. Peng, and J. T. C. Tzen. 2002. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiology 128 (4):1200–11. doi: 10.2307/4280399.
  • Ling, H. 2007. Oleosin fusion expression systems for the production of recombinant proteins. Biologia 62 (2):119–23. doi: 10.2478/s11756-007-0041-4.
  • Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46 (1–3):3–26. doi: 10.1016/j.addr.2012.09.019.
  • Liu, C.-T., and J. T. C. Tzen. 2022. Exploring the relative astringency of tea catechins and distinct astringent sensation of catechins and flavonol glycosides via an in vitro assay composed of artificial oil bodies. Molecules (Basel, Switzerland) 27 (17). doi: 10.3390/molecules27175679.
  • Liu, J. R., C. H. Duan, X. Zhao, J. T. C. Tzen, K. J. Cheng, and C. K. Pai. 2008. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Applied Microbiology and Biotechnology 79 (2):225–33. doi: 10.1007/s00253-008-1418-1.
  • Liu, J., L. Hu, Y. Chen, Y. Xiao, M. Zheng, Z. Yu, Y. Liu, and Y. Zhou. 2022. Effects and mechanism of camellia saponin on the physicochemical and oxidative stability of camellia oil body-based emulsions. Lwt 165:113773. doi: 10.1016/j.lwt.2022.113773.
  • Liu, T., C. Chyan, F. Li, Y. Chen, and J. T. C. Tzen. 2011. Engineering lysine-rich caleosins as carrier proteins to render biotin as a hapten on artificial oil bodies for antibody production. Biotechnology Progress 27 (6):1760–7. doi: 10.1002/btpr.684.
  • Liu, W. X., H. L. Liu, and L. Q. Qu. 2013. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 126 (9):2289–97. doi: 10.1007/s00122-013-2135-4.
  • Mahmoodi, S., M. Pourhassan-Moghaddam, D. W. Wood, H. Majdi, and N. Zarghami. 2019. Current affinity approaches for purification of recombinant proteins. Cogent Biology 5 (1):1665406. doi: 10.1080/23312025.2019.1665406.
  • Matsakidou, A., C. G. Biliaderis, and V. Kiosseoglou. 2013. Preparation and characterization of composite sodium caseinate edible films incorporating naturally emulsified oil bodies. Food Hydrocolloids 30 (1):232–40. doi: 10.1016/j.foodhyd.2012.05.025.
  • Maurer, S., Waschatko, G., Schach, D., Zielbauer, B. I., Dahl, J., Weidner, T., Bonn, M., and Vilgis, T. A. 2013. The role of intact oleosin for stabilization and function of oleosomes. The Journal of Physical Chemistry. B 117 (44):13872–83. doi: 10.1021/jp403893n.
  • Mcclements, D. J., and E. A. Decker. 2000. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science 65 (8):1270–82. doi: 10.1111/j.1365-2621.2000.tb10596.x.
  • Meng, Y., Z. Wei, and C. Xue. 2022. Protein fibrils from different food sources: A review of fibrillation conditions, properties, applications and research trends. Trends in Food Science & Technology 121:59–75. doi: 10.1016/j.tifs.2022.01.031.
  • Miklaszewska, M., K. Zienkiewicz, E. Klugier-Borowska, M. Rygielski, I. Feussner, and A. Zienkiewicz. 2023. Caleosin 1 contributes to seed lipid droplet degradation by interaction with autophagy-related protein ATG8.bioRxiv 2023-04. doi: 10.1101/2023.04.04.535563.
  • Millichip, M., A. S. Tatham, F. Jackson, G. Griffiths, P. R. Shewry, and A. K. Stobart. 1996. Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledons of sunflower (helianthus annuus l.). The Biochemical Journal 314 (Pt 1) (Pt 1):333–7. doi: 10.1002/anie.200906896.
  • Mitropoulos, V., A. Mütze, and P. Fischer. 2014. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: A comparison in light of the thermodynamical stability of proteins. Advances in Colloid and Interface Science 206 (1):195–206. doi: 10.1016/j.cis.2013.11.004.
  • Moloney, M. M., and G. V. Rooijen. 2004. Jun 22. inventor; SemBioSys Genetics Ins., assignee. Preparation of heterologous proteins on oil bodies. United States patent US 6,753167 B2.
  • Mundo, J. L. M., H. Zhou, Y. Tan, J. Liu, and D. J. McClements. 2021. Enhancing emulsion functionality using multilayer technology: Coating lipid droplets with saponin-polypeptide-polysaccharide layers by electrostatic deposition. Food Research International (Ottawa, Ont.) 140:109864. doi: 10.1016/j.foodres.2020.109864.
  • Murphy, D. J., and I. Cummins. 1989. Seed oil-bodies: Isolation, composition and role of oil-body apolipoproteins. Phytochemistry 28 (8):2063–9. doi: 10.1016/S0031-9422(00)97921-4.
  • Murphy, D. J., and J. Vance. 1999. Mechanisms of lipid-body formation. Trends in Biochemical Sciences 24 (3):109–15. doi: 10.1016/s0968-0004(98)01349-8.
  • Murphy, D. J., I. Hernendez-Pinzon, K. Patel, R. G. Hope, and J. Mclauchlan. 2000. New insights into the mechanisms of lipid-body biogenesis in plants and other organisms. Biochemical Society Transactions 28 (6):710–1. doi: 10.1042/bst0280710.
  • Nikiforidis, C. V. 2019. Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science 274:102039. doi: 10.1016/j.cis.2019.102039.
  • Nikiforidis, C. V., and V. Kiosseoglou. 2009. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface − xanthan gum interactions. Journal of Agricultural and Food Chemistry 58 (1):527–32. doi: 10.1021/jf902544j.
  • Nikiforidis, C. V., and V. Kiosseoglou. 2011. Competitive displacement of oil body surface proteins by tween 80 – effect on physical stability. Food Hydrocolloids 25 (5):1063–8. doi: 10.1016/j.foodhyd.2010.10.002.
  • Nikiforidis, C. V., C. Ampatzidis, S. Lalou, E. Scholten, T. D. Karapantsios, and V. Kiosseoglou. 2013. Purified oleosins at air–water interfaces. Soft Matter 9 (4):1354–63. doi: 10.1039/C2SM27118D.
  • Nikiforidis, C. V., O. A. Karkani, and V. Kiosseoglou. 2011. Exploitation of maize germ for the preparation of a stable oil-body nanoemulsion using a combined aqueous extraction–ultrafiltration method. Food Hydrocolloids 25 (5):1122–7. doi: 10.1016/j.foodhyd.2010.10.009.
  • Nikiforidis, C. V., S. Donsouzi, and V. Kiosseoglou. 2016. The interplay between diverse oil body extracts and exogenous biopolymers or surfactants. Food Research International 83:14–24. doi: 10.1016/j.foodres.2016.02.007.
  • Nikiforidis, C. V., V. Kiosseoglou, and E. Scholten. 2013. Oil bodies: An insight on their microstructure—maize germ vs sunflower seed. Food Research International 52 (1):136–41. doi: 10.1016/j.foodres.2013.02.052.
  • Nishinari, K., Y. Fang, S. Guo, and G. O. Phillips. 2014. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 39:301–18. doi: 10.1016/j.foodhyd.2014.01.013.
  • Nishiyama, T., K. Sugiura, K. Sugikawa, A. Ikeda, and T. Mizuno. 2021. Construction of protein-loadable protein cages using the hybrid proteins of the oleosin hydrophobic domain and hydrophilic dimeric coiled-coil. Colloid and Interface Science Communications 40:100352. doi: 10.1016/j.colcom.2020.100352.
  • Östbring, K., C. Tullberg, S. Burri, E. Malmqvist, and M. Rayner. 2019. Protein recovery from rapeseed press cake: Varietal and processing condition effects on yield, emulsifying capacity and antioxidant activity of the protein rich extract. Foods (Basel, Switzerland) 8 (12):627. doi: 10.3390/foods8120627.
  • Östbring, K., K. Nilsson, C. Ahlström, A. Fridolfsson, and M. Rayner. 2020. Emulsifying and anti-oxidative properties of proteins extracted from industrially cold-pressed rapeseed press-cake. Foods (Basel, Switzerland) 9 (5):678. doi: 10.3390/foods9050678.
  • Ozturk, B., and D. J. McClements. 2016. Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science 7:1–6. doi: 10.1016/j.cofs.2015.07.008.
  • Pan, Y., W. Jin, and Q. Huang. 2022. Structure, assembly and application of novel peanut oil body protein extracts nanoparticles. Food Chemistry 367:130678. doi: 10.1016/j.foodchem.2021.130678.
  • Partridge, M., and D. J. Murphy. 2009. Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in arabidopsis. Plant Physiology and Biochemistry: PPB 47 (9):796–806. doi: 10.1016/j.plaphy.2009.04.005.
  • Pasaribu, B., T. Y. Chung, C. S. Chen, P. L. Jiang, and J. T. Tzen. 2016. Identification of steroleosin in oil bodies of pine megagametophytes. Plant Physiology and Biochemistry: PPB 101:173–81. doi: 10.1016/j.plaphy.2016.02.008.
  • Peng, C. C., and J. T. Tzen. 1998. Analysis of the three essential constituents of oil bodies in developing sesame seeds. Plant and Cell Physiology 39 (1):35–42. doi: 10.1093/oxfordjournals.pcp.a029286.
  • Peng, C. C., D. J. Shyu, W. M. Chou, M. J. Chen, and J. T. Tzen. 2004. Method for bacterial expression and purification of sesame cystatin via artificial oil bodies. Journal of Agricultural and Food Chemistry 52 (10):3115–9. doi: 10.1021/jf049849f.
  • Peng, C. C., I. P. Lin, C. K. Lin, and J. T. Tzen. 2003. Size and stability of reconstituted sesame oil bodies. Biotechnology Progress 19 (5):1623–6. doi: 10.1021/bp034129z.
  • Peng, C. C., J. C. Chen, D. J. Shyu, M. J. Chen, and J. T. Tzen. 2004. A system for purification of recombinant proteins in Escherichia coli via artificial oil bodies constituted with their oleosin-fused polypeptides. Journal of Biotechnology 111 (1):51–7. doi: 10.1016/j.jbiotec.2004.03.013.
  • Peng, C. C., V. S. Y. Lee, M. Y. Lin, H. Y. Huang, and J. T. C. Tzen. 2007. Minimizing the central hydrophobic domain in oleosin for the constitution of artificial oil bodies. Journal of Agricultural and Food Chemistry 55 (14):5604–10. doi: 10.1021/jf070977o.
  • Plankensteiner, L., J. Yang, J. H. Bitter, J. P. Vincken, M. Hennebelle, and C. V. Nikiforidis. 2023. High yield extraction of oleosins, the proteins that plants developed to stabilize oil droplets. Food Hydrocolloids 137:108419. doi: 10.1016/j.foodhyd.2022.108419.
  • Poxleitner, M., S. W. Rogers, A. Lacey Samuels, J. Browse, and J. C. Rogers. 2006. A role for caleosin in degradation of oil-body storage lipid during seed germination. The Plant Journal: For Cell and Molecular Biology 47 (6):917–33. doi: 10.1111/j.1365-313X.2006.02845.x.
  • Purkrtova, Z., C. Le Bon, B. Kralova, M. H. Ropers, M. Anton, and T. Chardot. 2008. Caleosin of Arabidopsis thaliana: Effect of calcium on functional and structural properties. Journal of Agricultural and Food Chemistry 56 (23):11217–24. doi: 10.1021/jf802305b.
  • Purkrtova, Z., S. d’Andrea, P. Jolivet, P. Lipovova, B. Kralova, M. Kodicek, and T. Chardot. 2007. Structural properties of caleosin: A MS and CD study. Archives of Biochemistry and Biophysics 464 (2):335–43. doi: 10.1016/j.abb.2007.04.041.
  • Reichert, C. L., H. Salminen, G. B. Bönisch, C. Schäfer, and J. Weiss. 2019. Influence of concentration ratio on emulsifying properties of Quillaja saponin-protein or lecithin mixed systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 561:267–74. doi: 10.1016/j.colsurfa.2018.10.050.
  • Riedl, M. A., and A. M. Casillas. 2003. Adverse drug reactions: Types and treatment options. American Family Physician 68 (9):1781–90.
  • Ries, D., A. Ye, D. Haisman, and H. Singh. 2010. Antioxidant properties of caseins and whey proteins in model oil-in-water emulsions. International Dairy Journal 20 (2):72–8. doi: 10.1016/j.idairyj.2009.09.001.
  • Roberts, N. J., R. W. Scott, and J. T. C. Tzen. 2008. Recent biotechnological applications using oleosins. The Open Biotechnology Journal 2 (1):13–21. doi: 10.74/18740707008020100.
  • Rolland, N., M. Ferro, G. Ephritikhine, A. Marmagne, C. Ramus, S. Brugière, D. Salvi, D. Seigneurin-Berny, J. Bourguignon, H. Barbier-Brygoo, et al. 2006. A versatile method for deciphering plant membrane proteomes. Journal of Experimental Botany 57 (7):1579–89. doi: 10.1093/jxb/erj162.
  • Romero-Guzmán, M. J., V. Petris, S. De Chirico, V. di Bari, D. Gray, R. M. Boom, and C. V. Nikiforidis. 2020. The effect of monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations on rapeseed oleosome (oil body) extraction and stability at pH 7. Food Chemistry 306:125578. doi: 10.1016/j.foodchem.2019.125578.
  • Rossetti, D., G. E. Yakubov, J. R. Stokes, A. M. Williamson, and G. G. Fuller. 2008. Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocolloids 22 (6):1068–78. doi: 10.1016/j.foodhyd.2007.05.014.
  • Roux, É., S. Baumberger, M. A. Axelos, and T. Chardot. 2004. Oleosins of Arabidopsis thaliana: Expression in Escherichia coli, purification, and functional properties. Journal of Agricultural and Food Chemistry 52 (16):5245–9. doi: 10.1021/jf0355046.
  • Saadat, F., P. Macheroux, H. Alizadeh, and S. H. Razavi. 2022. Economic purification of recombinant uricase by artificial oil bodies. Bioresources and Bioprocessing 9 (1):1–8. doi: 10.1186/s40643-022-00501-x.
  • Sagalowicz, L., M. Michel, I. Blank, O. Schafer, and M. E. Leser. 2017. Self-assembly in food—A concept for structure formation inspired by Nature. Current Opinion in Colloid & Interface Science 28:87–95. doi: 10.1016/j.cocis.2017.03.003.
  • Samaranayaka, A. G., and E. C. Li-Chan. 2011. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods 3 (4):229–54. doi: 10.1016/j.jff.2011.05.006.
  • Santiago, M. R., and M. K. P. Devanadera. 2016. Microencapsulation of Pediococcus spp. with coconut oil bodies and oleosin for improved viability and enhanced targeted delivery in the gastrointestinal tract. Philippine Agricultural Scientist 99 (3):288–95.
  • Sarmiento, C., J. H. Ross, E. Herman, and D. J. Murphy. 1997. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. The Plant Journal: For Cell and Molecular Biology 11 (4):783–96. doi: 10.1046/j.1365-313X.1997.11040783.x.
  • Scharbert, S., N. Holzmann, and T. Hofmann. 2004. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry 52 (11):3498–508. doi: 10.1021/jf049802u.
  • Schwager, C., S. Kull, J. Behrends, N. Röckendorf, F. Schocker, A. Frey, A. Homann, W. M. Becker, and U. Jappe. 2017. Peanut oleosins associated with severe peanut allergy—importance of lipophilic allergens for comprehensive allergy diagnostics. The Journal of Allergy and Clinical Immunology 140 (5):1331–8.e8. doi: 10.1016/j.jaci.2017.02.020.
  • Scott, R. W., S. Winichayakul, M. Roldan, R. Cookson, M. Willingham, M. Castle, R. Pueschel, C. C. Peng, J. T. Tzen, and N. J. Roberts. 2010. Elevation of oil body integrity and emulsion stability by polyoleosins, multiple oleosin units joined in tandem head-to-tail fusions. Plant Biotechnology Journal 8 (8):912–27. doi: 10.1111/j.1467-7652.2010.00522.x.
  • Seigneurin-Berny, D., N. Rolland, J. Garin, and J. Joyard. 1999. Differential extraction of hydrophobic proteins from chloroplast envelope membranes: A subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. The Plant Journal: For Cell and Molecular Biology 19 (2):217–28. doi: 10.1046/j.1365-313X.1999.00511.x.
  • Şen, A., A. Acevedo-Fani, A. Dave, A. Ye, J. Husny, and H. Singh. 2024. Plant oil bodies and their membrane components: New natural materials for food applications. Critical Reviews in Food Science and Nutrition 64 (2):256–79. doi: 10.1080/10408398.2022.2105808.
  • Shao, Q., X. Liu, T. Su, C. Ma, and P. Wang. 2019. New insights into the role of seed oil body proteins in metabolism and plant development. Frontiers in Plant Science 10. doi: 10.3389/fpls.2019.0:1568.
  • Shih, Y. E., Y. C. Lin, T. Y. Chung, M. C. Liu, G. H. Chen, C. C. Wu, and J. T. Tzen. 2017. In vitro assay to estimate tea astringency via observing flotation of artificial oil bodies sheltered by caleosin fused with histatin 3. Journal of Food and Drug Analysis 25 (4):828–36. doi: 10.1016/j.jfda.2016.08.008.
  • Shimada, T. L., and I. Hara-Nishimura. 2010. Oil-body-membrane proteins and their physiological functions in plants. Biological & Pharmaceutical Bulletin 33 (3):360–3. doi: 10.1248/bpb.33.360.
  • Siloto, R. M., K. Findlay, A. Lopez-Villalobos, E. C. Yeung, C. L. Nykiforuk, and M. M. Moloney. 2006. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. The Plant Cell 18 (8):1961–74. doi: 10.1105/tpc.106.041269.
  • Singh, K. V., J. Kaur, G. C. Varshney, M. Raje, and C. R. Suri. 2004. Synthesis and characterization of hapten − protein conjugates for antibody production against small molecules. Bioconjugate Chemistry 15 (1):168–73. doi: 10.1021/bc034158v.
  • Sukhotu, R., S. Guo, J. Xing, Q. Hu, R. Wang, X. Shi, K. Nishinari, Y. Fang, and S. Guo. 2016. Changes in physiochemical properties and stability of peanut oil body emulsions by applying gum arabic. LWT - Food Science and Technology 68:432–8. doi: 10.1016/j.lwt.2015.12.055.
  • Sukhotu, R., X. Shi, Q. Hu, K. Nishinari, Y. Fang, and S. Guo. 2014. Aggregation behaviour and stability of maize germ oil body suspension. Food Chemistry 164:1–6. doi: 10.1016/j.foodchem.2014.05.003.
  • Sun, H., Q. Luo, C. Hou, and J. Liu. 2017. Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials. Nano Today 14:16–41. doi: 10.1016/j.nantod.2017.04.006.
  • Sun, J., L. Wang, H. Chen, and G. Yin. 2023a. Preparation and application of edible film based on sodium carboxymethylcellulose-sodium alginate composite soybean oil body. Coatings 13 (10):1716. doi: 10.3390/coatings13101716.
  • Sun, Y., M. Zhong, L. Wu, Y. Huang, Y. Li, and B. Qi. 2022. Effects of ultrasound-assisted salt (NaCl) extraction method on the structural and functional properties of Oleosin. Food Chemistry 372:131238. doi: 10.1016/j.foodchem.2021.131238.
  • Sun, Y., M. Zhong, Y. Liao, M. Kang, B. Qi, and Y. Li. 2023b. Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients. Food Hydrocolloids 138:108445. doi: 10.1016/j.foodhyd.2022.108445.
  • Sun, Y., M. Zhong, Y. Liao, M. Kang, Y. Li, and B. Qi. 2023c. Interfacial characteristics of artificial oil body emulsions (O/W) prepared using extrinsic and intrinsic proteins: Inspired by natural oil body. Lwt 173:114270. doi: 10.1016/j.lwt.2022.114270.
  • Sun, Y., S. Zhang, F. Xie, M. Zhong, L. Jiang, B. Qi, and Y. Li. 2021. Effects of covalent modification with epigallocatechin-3-gallate on oleosin structure and ability to stabilize artificial oil body emulsions. Food Chemistry 341 (Pt 2):128272. doi: 10.1016/j.foodchem.2020.
  • Tai, S. S., M. C. Chen, C. C. Peng, and J. T. Tzen. 2002. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Bioscience, Biotechnology, and Biochemistry 66 (10):2146–53. doi: 10.1271/bbb.66.2146.
  • Takahashi, S., T. Katagiri, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2000. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant & Cell Physiology 41 (7):898–903. doi: 10.1093/pcp/pcd010.
  • Tang, C. H. 2021. Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocolloids 112:106344. doi: 10.1016/j.foodhyd.2020.106344.
  • Ting, J. T., K. Lee, C. Ratnayake, K. A. Platt, R. A. Balsamo, and A. H. Huang. 1996. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents: Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio. Planta 199 (1):158–65. doi: 10.1007/BF00196892.
  • Tseng, C. W., C. Y. Liao, Y. Sun, C. C. Peng, J. T. Tzen, R. T. Guo, and J. R. Liu. 2014. Immobilization of Clostridium cellulolyticum D-psicose 3-epimerase on artificial oil bodies. Journal of Agricultural and Food Chemistry 62 (28):6771–6. doi: 10.1021/jf502022w.
  • Tseng, J. M., J. R. Huang, H. C. Huang, J. T. Tzen, W. M. Chou, and C. C. Peng. 2011. Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil-body system. Biotechnology Progress 27 (1):153–61. doi: 10.1002/btpr.528.
  • Tzen, J. T. 2012. Integral proteins in plant oil bodies. ISRN Botany 2012:1–16. doi: 10.5402/2012/173954.
  • Tzen, J. T., and A. H. Huang. 1992. Surface structure and properties of plant seed oil bodies. The Journal of Cell Biology 117 (2):327–35. doi: 10.1083/jcb.117.2.327.
  • Tzen, J. T., Y. K. Lai, K. L. Chan, and A. H. Huang. 1990. Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiology 94 (3):1282–9. doi: 10.1104/pp.94.3.1282.
  • Tzen, J. T., Y. Z. Cao, P. Laurent, C. Ratnayake, and A. H. Huang. 1993. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiology 101 (1):267–76. doi: 10.1104/pp.101.1.267.
  • Valivullah, H. M., D. R. Bevan, A. Peat, and T. W. Keenan. 1988. Milk lipid globules: Control of their size distribution. Proceedings of the National Academy of Sciences of the United States of America 85 (23):8775–9. doi: 10.1073/pnas.85.23.8775.
  • Vargo, K. B., N. Sood, T. D. Moeller, P. A. Heiney, and D. A. Hammer. 2014. Spherical micelles assembled from variants of recombinant oleosin. Langmuir: The ACS Journal of Surfaces and Colloids 30 (38):11292–300. doi: 10.1021/la502664e.
  • Vargo, K. B., R. Parthasarathy, and D. A. Hammer. 2012. Self-assembly of tunable protein suprastructures from recombinant oleosin. Proceedings of the National Academy of Sciences of the United States of America 109 (29):11657–62. doi: 10.1073/pnas.1205426109.
  • Wagner, J. R., and J. Guéguen. 1999. Surface functional properties of native, acid-treated, and reduced soy glycinin. 2. Emulsifying properties. Journal of Agricultural and Food Chemistry 47 (6):2181–7. doi: 10.1021/jf9809784.
  • Wang, C., C. Sun, W. Lu, K. Gul, A. Mata, and Y. Fang. 2020. Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety 19 (6):2955–71. doi: 10.1111/1541-4337.12621.
  • Wang, H., X. Lan, M. Noman, Z. Wang, and J. Zhang. 2022a. Recombinant oil-body-expressed oleosin-hFGF5 in Arabidopsis thaliana regulates hair growth. Genes 14 (1):21. doi: 10.3390/genes14010021.
  • Wang, W., C. Cui, Q. Wang, C. Sun, L. Jiang, and J. Hou. 2018. Effect of pH on physicochemical properties of oil bodies from different oil crops. Journal of Food Science and Technology 56 (1):49–58. doi: 10.1007/s13197-018-3453-y.
  • Wang, W., C. Hu, H. Sun, J. Zhao, C. Xu, Y. Ma, J. Ma, L. Jiang, and J. Hou. 2022b. Physicochemical properties, stability and texture of soybean-oil-body-substituted low-fat mayonnaise: Effects of thickeners and storage temperatures. Foods (Basel, Switzerland) 11 (15):2201. doi: 10.3390/foods11152201.
  • Wang, W., R. Wang, J. Yao, S. Luo, X. Wang, N. Zhang, L. Wang, and X. Zhu. 2022. Effect of ultrasonic power on the emulsion stability of rice bran protein-chlorogenic acid emulsion. Ultrasonics Sonochemistry 84:105959. doi: 10.1016/j.ultsonch.2022.105959.
  • Wang, X., K. Yu, C. Cheng, D. Peng, X. Yu, H. Chen, Y. Chen, D. Julian McClements, and Q. Deng. 2021. Effect of sesamol on the physical and chemical stability of plant-based flaxseed oil-in-water emulsions stabilized by proteins or phospholipids. Food & Function 12 (5):2090–101. doi: 10.1039/D0FO02420A.
  • Weiss, J., and H., Zhang. 2020. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends in Food Science & Technology 106:322–332. doi: 10.1016/j.tifs.2020.10.029.
  • Wijesundera, C., T. Boiteau, X. Xu, Z. Shen, P. Watkins, and A. Logan. 2013. Stabilization of fish oil-in-water emulsions with oleosin extracted from canola meal. Journal of Food Science 78 (9):C1340–C1347. doi: 10.1111/1750-3841.12177.
  • Wu, L. C. Y. F. Sun, Y. S. Chen, S. Z. Yan, F. Y. Xie B. K. Qi, and Y. Li 2022. Effect of pasteurization on oxidative stability of oil body emulsions from various crops. Food Science 43 (7):23–30. doi: 10.5555/20220236799.
  • Wu, N. N., X. Huang, X. Q. Yang, J. Guo, E. L. Zheng, S. W. Yin, J.-H. Zhu, J.-R. Qi, X.-T. He, and J. B. Zhang. 2012. Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling. Food Hydrocolloids 28 (1):110–20. doi: 10.1016/j.foodhyd.2011.12.005.
  • Wu, N. N., X. Q. Yang, Z. Teng, S. W. Yin, J. H. Zhu, and J. R. Qi. 2011. Stabilization of soybean oil body emulsions using κ, ι, λ-carrageenan at different pH values. Food Research International 44 (4):1059–68. doi: 10.1016/j.foodres.2011.03.019.
  • Wu, Y. Y., Y. R. Chou, C. S. Wang, T. H. Tseng, L. J. Chen, and J. T. Tzen. 2010. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiology and Biochemistry: PPB 48 (2–3):81–9. doi: 10.1016/j.plaphy.2009.12.004.
  • Yan, Z., L. Zhao, X. Kong, Y. Hua, and Y. Chen. 2016. Behaviors of particle size and bound proteins of oil bodies in soymilk processing. Food Chemistry 194:881–90. doi: 10.1016/j.foodchem.2015.08.100.
  • Yang, X., Y. Wu, Y. Liu, X. Ding, D. Zhang, and L. Zhao. 2022. Digestive characteristics of oil body extracted from soybean aqueous extract at different pHs. Food Research International (Ottawa, Ont.) 161:111828. doi: 10.1016/j.foodres.2022.111828.
  • Yousefi, N., and S. Abbasi. 2022. Food proteins: Solubility & thermal stability improvement techniques. Food Chemistry Advances 1:100090. doi: 10.1016/j.focha.2022.100090.
  • Zaaboul, F., E. Matabaro, H. Raza, B. D. Xin, E. Duhoranimana, C. Cao, and Y. Liu. 2018. Validation of a simple extraction method for oil bodies isolated from peanuts. European Journal of Lipid Science and Technology 120 (2):1700363. doi: 10.1002/ejlt.201700363.
  • Zaaboul, F., H. Raza, C. Chen, and Y. Liu. 2018. Characterization of peanut oil bodies integral proteins, lipids, and their associated phytochemicals. Journal of Food Science 83 (1):93–100. doi: 10.1111/1750-3841.13995.
  • Zaaboul, F., Q. Zhao, Y. Xu, and Y. Liu. 2022. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocolloids 124:107296. doi: 10.1016/j.foodhyd.2021.107296.
  • Zeng, X., J. Jiang, F. Wang, W. Liu, S. Zhang, J. Du, and C. Yang. 2022. Rice OsClo5, a caleosin protein, negatively regulates cold tolerance through the jasmonate signalling pathway. Plant Biology (Stuttgart, Germany) 24 (1):52–61. doi: 10.1111/plb.13350.
  • Zhai, F., N. Xu, J. Yang, Y. Wang, L. Jin, H. Li, X. Li, and C. Jiang. 2018. Expression of Human FGF18 by Fusion with Oleosin in Arabidopsis thaliana Seeds. Journal of Plant Biology 61 (3):137–42. doi: 10.1007/s12374-015-0527-5.
  • Zhang, S., H. Chen, F. Geng, D. Peng, B. Xie, Z. Sun, Y. Chen, and Q. Deng. 2022. Natural oil bodies from typical oilseeds: Structural characterization and their potentials as natural delivery system for curcumin. Food Hydrocolloids 128:107521. doi: 10.1016/j.foodhyd.2022.107521.
  • Zhang, Y., N. Yang, Y. Xu, Q. Wang, P. Huang, K. Nishinari, and Y. Fang. 2019. Improving the stability of oil body emulsions from diverse plant seeds using sodium alginate. Molecules (Basel, Switzerland) 24 (21):3856. doi: 10.3390/molecules24213856.
  • Zhao, L., X. Kong, C. Zhang, Y. Hua, and Y. Chen. 2017. Soybean P34 probable thiol protease probably has proteolytic activity on oleosins. Journal of Agricultural and Food Chemistry 65 (28):5741–50. doi: 10.1021/acs.jafc.7b02190.
  • Zhao, L., Y. Chen, Y. Cao, X. Kong, and Y. Hua. 2013. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies. Journal of Agricultural and Food Chemistry 61 (40):9727–33. doi: 10.1021/jf403327e.
  • Zhao, L., Y. Chen, Y. Chen, X. Kong, and Y. Hua. 2016. Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis. Food Chemistry 200:125–33. doi: 10.1016/j.foodchem.2016.01.034.
  • Zhao, L., Y. Chen, Z. Yan, X. Kong, and Y. Hua. 2016. Physicochemical and rheological properties and oxidative stability of oil bodies recovered from soybean aqueous extract at different pHs. Food Hydrocolloids 61:685–94. doi: 10.1016/j.foodhyd.2016.06.032.
  • Zheng, B., X. Zhang, H. Lin, and D. J. McClements. 2019a. Loading natural emulsions with nutraceuticals using the pH-driven method: Formation & stability of curcumin-loaded soybean oil bodies. Food & Function 10 (9):5473–84. doi: 10.1039/C9FO00752K.
  • Zheng, B., X. Zhang, S. Peng, and D. J. McClements. 2019b. Impact of curcumin delivery system format on bioaccessibility: Nanocrystals, nanoemulsion droplets, and natural oil bodies. Food & Function 10 (7):4339–49. doi: 10.1039/C8FO02510J.
  • Zhou, L. Z., F. S. Chen, L. H. Hao, Y. Du, and C. Liu. 2019. Peanut oil body composition and stability. Journal of Food Science 84 (10):2812–9. doi: 10.1111/1750-3841.14801.
  • Zhou, X., R. Sun, J. Zhao, Z. Liu, M. Wang, K. Wang, L. Z. Jiang, J. C. Hou, and Z. Jiang. 2022. Enzymatic activity and stability of soybean oil body emulsions recovered under neutral and alkaline conditions: Impacts of thermal treatments. Lwt 153:112545. doi: 10.1016/j.lwt.2021.112545.
  • Zhu, J., H. Wang, L. Miao, N. Chen, Q. Zhang, Z. Wang, F.Xie, B. Qi, and L. Jiang. 2023. Curcumin-loaded oil body emulsions prepared by an ultrasonic and pH-driven method: Fundamental properties, stability, and digestion characteristics. Ultrasonics Sonochemistry 101:106711. doi: 10.1016/j.ultsonch.2023.106711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.