210
Views
0
CrossRef citations to date
0
Altmetric
Review Article

D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges

, , , , &

References

  • Anesiadis, N., H. Kobayashi, W. R. Cluett, and R. Mahadevan. 2013. Analysis and design of a genetic circuit for dynamic metabolic engineering. ACS Synthetic Biology 2 (8):442–452. doi: 10.1021/sb300129j.
  • Angyal, S. J. 1994. The composition of reducing sugars in dimethyl sulfoxide solution. Carbohydrate Research 263 (1):1–11. doi: 10.1016/0008-6215(94)00148-0.
  • Anishchenko, I., S. J. Pellock, T. M. Chidyausiku, T. A. Ramelot, S. Ovchinnikov, J. Hao, K. Bafna, C. Norn, A. Kang, A. K. Bera, et al. 2021. De novo protein design by deep network hallucination. Nature 600 (7889):547–552. doi: 10.1038/s41586-021-04184-w.
  • Bai, W., J. Shen, Y. Zhu, Y. Men, Y. Sun, and Y. Ma. 2015. Characteristics and kinetic properties of L-rhamnose isomerase from Bacillus Subtilis by isothermal titration calorimetry for the production of D-Allose. Food Science and Technology Research 21 (1):13–22. doi: 10.3136/fstr.21.13.
  • Basanta, B., M. J. Bick, A. K. Bera, C. Norn, C. M. Chow, L. P. Carter, I. Goreshnik, F. Dimaio, and D. Baker. 2020. An enumerative algorithm for de novo design of proteins with diverse pocket structures. Proceedings of the National Academy of Sciences 117 (36):22135–22145. doi: 10.1073/pnas.2005412117.
  • Basso, A., and S. Serban. 2019. Industrial applications of immobilized enzymes—A review. Molecular Catalysis 479:110607. doi: 10.1016/j.mcat.2019.110607.
  • Bautista, A. P., Z. Spolarics, H. Jaeschke, C. W. Smith, and J. J. Spitzer. 1992. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. Journal of Leukocyte Biology 55 (3):328–335. doi: 10.1002/jlb.52.4.377.
  • Bernaerts, M. J., J. Furnelle, and J. De Ley. 1963. The preparation of some new disaccharides and d-Allose from 3-ketoglycosides. Biochimica et Biophysica Acta 69:322–330. doi: 10.1016/0006-3002(63)91265-4.
  • Bhuiyan, S. H., Y. Itami, Y. Rokui, T. Katayama, and K. Izumori. 1998. d-Allose production from d-Psicose using immobilized l-rhamnose isomerase. Journal of Fermentation and Bioengineering 85 (5):539–541. doi: 10.1016/S0922-338X(98)80104-9.
  • Chari, V. M., R. J. Grayer-Barkmeijer, J. B. Harborne, and B.-G. Österdahl. 1981. An acylated allose-containing 8-hydroxyflavone glycoside from Veronica filiformis. Phytochemistry 20 (8):1977–1979. doi: 10.1016/0031-9422(81)84048-4.
  • Chattopadhyay, S., U. Raychaudhuri, and R. Chakraborty. 2014. Artificial sweeteners – A review. Journal of Food Science and Technology 51 (4):611–621. doi: 10.1007/s13197-011-0571-1.
  • Chen, Z., J. Chen, W. Zhang, T. Zhang, C. Guang, and W. Mu. 2018a. Improving thermostability and catalytic behavior of l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 toward d-Allulose by site-directed mutagenesis. Journal of Agricultural and Food Chemistry 66 (45):12017–12024. doi: 10.1021/acs.jafc.8b05107.
  • Chen, Z., J. Chen, W. Zhang, T. Zhang, C. Guang, and W. Mu. 2018b. Recent research on the physiological functions, applications, and biotechnological production of d-Allose. Applied Microbiology and Biotechnology 102 (10):4269–4278. doi: 10.1007/s00253-018-8916-6.
  • Chen, Z., W. Xu, W. Zhang, T. Zhang, B. Jiang, and W. Mu. 2018. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose. Journal of the Science of Food and Agriculture 98 (6):2184–2193. doi: 10.1002/jsfa.8703.
  • Choi, M. N., K. C. Shin, D. W. Kim, B. J. Kim, C. S. Park, S. J. Yeom, and Y. S. Kim. 2021. Production of D-Allose from D-Allulose using commercial immobilized glucose isomerase. Frontiers in Bioengineering and Biotechnology 9:681253. doi: 10.3389/fbioe.2021.681253.
  • Danieli, M. G., E. Antonelli, M. A. Piga, M. F. Cozzi, A. Allegra, and S. Gangemi. 2023. Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmunity Reviews 22 (5):103308. doi: 10.1016/j.autrev.2023.103308.
  • Doan, T.-N.-T., P. Prabhu, J.-K. Kim, Y.-J. Ahn, S. Natarajan, L.-W. Kang, … J.-K. Lee. 2010. Crystallization and preliminary X-ray crystallographic analysis of l-rhamnose isomerase with a novel high thermostability from Bacillus halodurans. Acta Crystallographica Section F 66 (6):677–680. doi: 10.1107/S174430911001256X.
  • Doughari, J. H. 2007. Antimicrobial activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research 5 (2):597–603. doi: 10.4314/tjpr.v5i2.14637.
  • Duan, S., Y. Chen, G. Wang, Z. Li, S. Dong, Y. Wu, Y. Wang, C. Ma, and R. Wang. 2023. A study of targeted mutation of l-rhamnose isomerase to improve the conversion efficiency of D-Allose. Enzyme and Microbial Technology 168:110259. doi: 10.1016/j.enzmictec.2023.110259.
  • Ellis, G. A., W. P. Klein, G. Lasarte-Aragonés, M. Thakur, S. A. Walper, and I. L. Medintz. 2019. Artificial multienzyme scaffolds: pursuing in vitro substrate channeling with an overview of current progress. ACS Catalysis 9 (12):10812–10869. doi: 10.1021/acscatal.9b02413.
  • Essenberg, M. K., and R. A. Cooper. 1975. Two ribose-5-phosphate isomerases from Escherichia coli K12: Partial characterisation of the enzymes and consideration of their possible physiological roles. European Journal of Biochemistry 55 (2):323–332. doi: 10.1111/j.1432-1033.1975.tb02166.x.
  • Feng, Z., W. Mu, and B. Jiang. 2013. Characterization of ribose-5-phosphate isomerase converting D-psicose to D-allose from Thermotoga lettingae TMO. Biotechnology Letters 35 (5):719–724. doi: 10.1007/s10529-013-1136-3.
  • Freimund, S., and S. Köpper. 2004. The composition of 2-keto aldoses in organic solvents as determined by NMR spectroscopy. Carbohydrate Research 339 (2):217–220. doi: 10.1016/j.carres.2003.11.001.
  • Gao, D., N. Kawai, T. Nakamura, F. Lu, Z. Fei, and T. Tamiya. 2013. Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats. Neurologia Medico-Chirurgica 53 (6):365–374. doi: 10.2176/nmc.53.365.
  • Gao, D., N. Kawai, and T. Tamiya. 2011. The anti-inflammatory effects of D-allose contribute to attenuation of cerebral ischemia-reperfusion injury. Medical Hypotheses. 76 (6):911–913. doi: 10.1016/j.mehy.2011.03.007.
  • Gao, X., C. Wei, H. Qi, C. Li, F. Lu, and H. M. Qin. 2023. Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose. Food Chemistry 401:134199. doi: 10.1016/j.foodchem.2022.134199.
  • Granström, T. B., G. Takata, M. Tokuda, and K. Izumori. 2004. Izumoring: A novel and complete strategy for bioproduction of rare sugars. Journal of Bioscience and Bioengineering 97 (2):89–94. doi: 10.1016/s1389-1723(04)70173-5.
  • Grogan, T. M., C. Fenoglio-Prieser, R. Zeheb, W. Bellamy, Y. Frutiger, E. Vela, G. Stemmerman, J. Macdonald, L. Richter, A. Gallegos, et al. 2000. Thioredoxin, a putative oncogene product is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Human Pathology 31 (4):475–481. doi: 10.1053/hp.2000.6546.
  • Guo, Q., C.-Y. Liu, L.-J. Zheng, S.-H. Zheng, Y.-X. Zhang, S.-Y. Zhao, H.-D. Zheng, L.-H. Fan, and X.-C. Lin. 2022. Metabolically engineered Escherichia coli for conversion of D-Fructose to D-Allulose via phosphorylation-dephosphorylation. Frontiers in Bioengineering and Biotechnology 10:947469. doi: 10.3389/fbioe.2022.947469.
  • Guo, Q., L.-J. Zheng, X. Luo, X.-Q. Gao, C.-Y. Liu, L. Deng, L.-H. Fan, and H.-D. Zheng. 2021. Engineering Escherichia coli for d-Allulose production from d-Fructose by fermentation. Journal of Agricultural and Food Chemistry 69 (45):13578–13585. doi: 10.1021/acs.jafc.1c05200.
  • Han, S. H., J. H. Jeon, H. R. Ju, U. Jung, K. Y. Kim, H. S. Yoo, Y. H. Lee, K. S. Song, H. M. Hwang, Y. S. Na, et al. 2003. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22 (26):4035–46. doi: 10.1038/sj.onc.1206610.
  • Harada, M., E. Kondo, H. Hayashi, C. Suezawa, S. Suguri, and M. Arai. 2012. D-allose and D-psicose reinforce the action of metronidazole on trichomonad. Parasitology Research 110 (4):1565–7. doi: 10.1007/s00436-011-2660-5.
  • Hartmann, M., and D. Jung. 2010. Biocatalysis with enzymes immobilized on mesoporous hosts: The status quo and future trends. Journal of Materials Chemistry 20 (5):844–57. doi: 10.1039/B907869J.
  • He, W., B. Jiang, W. Mu, and T. Zhang. 2016. Production of d-Allulose with d-Psicose 3-Epimerase expressed and displayed on the surface of Bacillus subtilis spores. Journal of Agricultural and Food Chemistry 64 (38):7201–7207. doi: 10.1021/acs.jafc.6b03347.
  • He, W., W. Mu, B. Jiang, X. Yan, and T. Zhang. 2016. Food-grade expression of d-Psicose 3-Epimerase with tandem repeat genes in Bacillus subtilis. Journal of Agricultural and Food Chemistry 64 (28):5701–5707. doi: 10.1021/acs.jafc.6b02209.
  • Herber Raymond, R., F. Maher Gregory, C. Arnold Edward, and W. Lorsbach Thomas. 1994. Preparation of high purity D-allose from D-glucose. http://europepmc.org/patents/PAT/US5433793 http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US5433793 https://www.surechembl.org/document/US-5433793-A
  • Hirata, Y., M. Saito, I. Tsukamoto, F. Yamaguchi, L. Sui, K. Kamitori, Y. Dong, E. Uehara, R. Konishi, N. Janjua, et al. 2009. Analysis of the inhibitory mechanism of D-allose on MOLT-4F leukemia cell proliferation. Journal of Bioscience and Bioengineering. 107 (5):562–568. doi: 10.1016/j.jbiosc.2008.12.021.
  • Hollingsworth, S. A., and R. O. Dror. 2018. Molecular dynamics simulation for all. Neuron 99 (6):1129–1143. doi: 10.1016/j.neuron.2018.08.011.
  • Holmgren, A. 1985. Thioredoxin. Annual Review of Biochemistry 54 (1):237–271. doi: 10.1146/annurev.bi.54.070185.001321.
  • Hoshikawa, H., K. Indo, T. Mori, and N. Mori. 2011. Enhancement of the radiation effects by d-allose in head and neck cancer cells. Cancer Letters 306 (1):60–66. doi: 10.1016/j.canlet.2011.02.032.
  • Hoshikawa, H., K. Kamitori, K. Indo, T. Mori, M. Kamata, T. Takahashi, and M. Tokuda. 2018. Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer. Oncology Letters 15 (3):3422–3428. doi: 10.3892/ol.2018.7787.
  • Hoshikawa, H., T. Mori, and N. Mori. 2010. In vitro and in vivo effects of D-allose: Up-regulation of thioredoxin-interacting protein in head and neck cancer cells. Annals of Otology, Rhinology & Laryngology 119 (8):567–571. doi: 10.1177/000348941011900810.
  • Hossain, M. A., K. Izuishi, and H. Maeta. 2003. Protective effects of D-allose against ischemia reperfusion injury of the rat liver. Journal of Hepato-Biliary-Pancreatic Surgery 10 (3):218–225. doi: 10.1007/s00534-002-0785-8.
  • Hossain, M. A., H. Wakabayashi, F. Goda, S. Kobayashi, T. Maeba, and H. Maeta. 2000. Effect of the immunosuppressants FK506 and D-allose on allogenic orthotopic liver transplantation in rats. Transplantation Proceedings 32 (7):2021–2023. doi: 10.1016/s0041-1345(00)01540-2.
  • Hu, M., M. Li, B. Jiang, and T. Zhang. 2021. Bioproduction of D-allulose: Properties, applications, purification, and future perspectives. Comprehensive Reviews in Food Science and Food Safety 20 (6):6012–6026. doi: 10.1111/1541-4337.12859.
  • Huang, T., D. Gao, Y. Hei, X. Zhang, X. Chen, and Z. Fei. 2016. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury. Brain Research 1642:478–486. doi: 10.1016/j.brainres.2016.04.038.
  • Iga, Y., and T. Matsuo. 2010. D-allose metabolism in rats. Nippon Eiyo Shokuryo Gakkaishi 63 (1):17–19. doi: 10.4327/jsnfs.63.17.
  • Iga, Y., K. Nakamichi, Y. Shirai, and T. Matsuo. 2010. Acute and sub-chronic toxicity of D-allose in rats. Bioscience, Biotechnology, and Biochemistry 74 (7):1476–1478. doi: 10.1271/bbb.100121.
  • Indo, K., H. Hoshikawa, K. Kamitori, F. Yamaguchi, T. Mori, M. Tokuda, and N. Mori. 2014. Effects of D-allose in combination with docetaxel in human head and neck cancer cells. International Journal of Oncology 45 (5):2044–2050. doi: 10.3892/ijo.2014.2590.
  • Ishihara, Y., K. Katayama, M. Sakabe, M. Kitamura, M. Aizawa, M. Takara, and K. Itoh. 2011. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells. Journal of Bioscience and Bioengineering 112 (6):638–642. doi: 10.1016/j.jbiosc.2011.08.005.
  • Ishiyama, H., R. C. Yanagita, K. Takemoto, K. Kobashi, Y. Sugiyama, and Y. Kawanami. 2020. Development of a d-allose-6-phosphate derivative with anti-proliferative activity against a human leukemia MOLT-4F cell line. Carbohydrate Research 487:107859. doi: 10.1016/j.carres.2019.107859.
  • Izumori, K. 2006. Izumoring: A strategy for bioproduction of all hexoses. Journal of Biotechnology. 124 (4):717–722. doi: 10.1016/j.jbiotec.2006.04.016.
  • Jakočiūnas, T., M. K. Jensen, and J. D. Keasling. 2016. CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering 34:44–59. doi: 10.1016/j.ymben.2015.12.003.
  • Jensen, S. R., C. B. Mikkelsen, and B. J. Nielsen. 1981. Iridoid mono- and di-glycosides in Mentzelia. Phytochemistry 20 (1):71–83. doi: 10.1016/0031-9422(81)85221-1.
  • Jeong, R. U., S. Lim, M. O. Kim, and M. H. Moon. 2011. Effect of D-allose on prostate cancer cell lines: Phospholipid profiling by nanoflow liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 401 (2):689–698. doi: 10.1007/s00216-011-5113-1.
  • Jose, C., N. Bellance, and R. Rossignol. 2011. Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma? Biochimica et Biophysica Acta 1807 (6):552–561. doi: 10.1016/j.bbabio.2010.10.012.
  • Ju, X., X. Xu, M. Shen, X. Mo, H. Fan, and L. Li. 2020. Biochemical and structural insights into an Ochrobactrum sp. CSL1 ribose-5-phosphate isomerase A and its roles in isomerization of rare sugars. Enzyme and Microbial Technology 140:109604. doi: 10.1016/j.enzmictec.2020.109604.
  • Jung, J., J.-K. Kim, S.-J. Yeom, Y.-J. Ahn, D.-K. Oh, and L.-W. Kang. 2011. Crystal structure of Clostridium thermocellum ribose-5-phosphate isomerase B reveals properties critical for fast enzyme kinetics. Applied Microbiology and Biotechnology 90 (2):517–527. doi: 10.1007/s00253-011-3095-8.
  • Kakolyris, S., A. Giatromanolaki, M. Koukourakis, G. Powis, J. Souglakos, E. Sivridis, … A. L. Harris. 2001. Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer 1. Clinical Cancer Research 7 (10):3087–3091.
  • Kanaji, N., K. Kamitori, A. Hossain, C. Noguchi, A. Katagi, N. Kadowaki, and M. Tokuda. 2018. Additive antitumour effect of D‑allose in combination with cisplatin in non-small cell lung cancer cells. Oncology Reports 39 (3):1292–1298. doi: 10.3892/or.2018.6192.
  • Kang, W., T. Ma, M. Liu, J. Qu, Z. Liu, H. Zhang, B. Shi, S. Fu, J. Ma, L. T. F. Lai, et al. 2019. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nature Communications 10 (1):4248. doi: 10.1038/s41467-019-12247-w.
  • Kano, A., T. Fukumoto, K. Ohtani, A. Yoshihara, T. Ohara, S. Tajima, K. Izumori, K. Tanaka, T. Ohkouchi, Y. Ishida, et al. 2013. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation. Journal of Experimental Botany 64 (16):4939–51. doi: 10.1093/jxb/ert282.
  • Kano, A., K. Gomi, Y. Yamasaki-Kokudo, M. Satoh, T. Fukumoto, K. Ohtani, S. Tajima, K. Izumori, K. Tanaka, Y. Ishida, et al. 2010. A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa. Phytopathology® 100 (1):85–90. doi: 10.1094/PHYTO-100-1-0085.
  • Kim, C., S. Song, and C. Park. 1997. The D-allose operon of Escherichia coli K-12. Journal of Bacteriology 179 (24):7631–37. doi: 10.1128/jb.179.24.7631-7637.1997.
  • Kim, Y. S., K. C. Shin, Y. R. Lim, and D. K. Oh. 2013. Characterization of a recombinant L-rhamnose isomerase from Dictyoglomus turgidum and its application for L-rhamnulose production. Biotechnology Letters 35 (2):259–64. doi: 10.1007/s10529-012-1069-2.
  • Kimura, S., G.-X. Zhang, A. Nishiyama, Y. Nagai, T. Nakagawa, H. Miyanaka, Y. Fujisawa, A. Miyatake, T. Nagai, M. Tokuda, et al. 2005. D-allose, an all-cis aldo-hexose, suppresses development of salt-induced hypertension in Dahl rats. Journal of Hypertension 23 (10):1887–94. doi: 10.1097/01.hjh.0000182523.29193.e3.
  • Kishida, K., T. Iida, T. Yamada, and Y. Toyoda. 2021. d-Allose is absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) in the rat small intestine. Metabolism Open 11:100112. doi: 10.1016/j.metop.2021.100112.
  • Kitagawa, M., M. Tanaka, Y. Yoshikawa, and T. Y. K. Iida. 2018. Evaluation of absorption and fermentability of D-mannose, D-sorbose, and D-allose in humans. Journal of Japanese Association for Dietary Fiber Research 22 (2):75–82. https://cir.nii.ac.jp/crid/1520009409746124416.
  • Kogure, T., and M. Inui. 2018. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Applied Microbiology and Biotechnology 102 (20):8685–8705. doi: 10.1007/s00253-018-9289-6.
  • Korndörfer, I. P., W.-D. Fessner, and B. W. Matthews. 2000. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. Journal of Molecular Biology 300 (4):917–933. doi: 10.1006/jmbi.2000.3896.
  • Leang, K., G. Takada, Y. Fukai, K. Morimoto, T. B. Granström, and K. Izumori. 2004. Novel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificity. Biochimica et Biophysica Acta 1674 (1):68–77. doi: 10.1016/j.bbagen.2004.06.003.
  • Lee, T. E., K. C. Shin, and D. K. Oh. 2018. Biotransformation of fructose to allose by a one-pot reaction using Flavonifractor plautii (D)-allulose 3-epimerase and Clostridium thermocellum ribose 5-phosphate isomerase. Journal of Microbiology and Biotechnology. 28 (3):418–24. doi: 10.4014/jmb.1709.09044.
  • Levin, G. V. 2002. Tagatose, the new GRAS sweetener and health product. Journal of Medicine Food 5 (1):23–36. doi: 10.1089/109662002753723197.
  • Li, C., L. Gao, K. Du, H. Lin, Y. Ren, J. Lin, and J. Lin. 2019. Production of d-allose from d-fructose using immobilized l-rhamnose isomerase and d-psicose 3-epimerase. Bioprocess and Biosystems Engineering 43 (4):645–653. doi: 10.1007/s00449-019-02262-y.
  • Li, Z., L. Feng, Z. Chen, Y. Hu, K. Fei, H. Xu, and X. D. Gao. 2023. Efficient enzymatic synthesis of d-allulose using a novel d-allulose-3-epimerase from Caballeronia insecticola. Journal of the Science of Food and Agriculture 103 (1):339–348. doi: 10.1002/jsfa.12147.
  • Li, Z., F. Li, L. Cai, Z. Chen, L. Qin, and X. D. Gao. 2020. One-pot multienzyme synthesis of rare ketoses from glycerol. Journal of Agricultural and Food Chemistry 68 (5):1347–1353. doi: 10.1021/acs.jafc.9b06748.
  • Liese, A., and L. Hilterhaus. 2013. Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews 42 (15):6236–6249. doi: 10.1039/c3cs35511j.
  • Lin, C. J., W. C. Tseng, and T. Y. Fang. 2011. Characterization of a thermophilic L-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. Journal of Agricultural and Food Chemistry 59 (16):8702–8708. doi: 10.1021/jf201428b.
  • Lin, C. J., W. C. Tseng, T. H. Lin, S. M. Liu, W. S. Tzou, and T. Y. Fang. 2010. Characterization of a thermophilic L-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1. Journal of Agricultural and Food Chemistry 58 (19):10431–10436. doi: 10.1021/jf102063q.
  • Lipsh-Sokolik, R., O. Khersonsky, S. P. Schröder, C. de Boer, S.-Y. Hoch, G. J. Davies, H. S. Overkleeft, and S. J. Fleishman. 2023. Combinatorial assembly and design of enzymes. Science 379 (6628):195–201. doi: 10.1126/science.ade9434.
  • Liu, L., Y. Liu, H. Shin, R. R. Chen, N. S. Wang, J. Li, G. Du, and J. Chen. 2013. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Applied Microbiology and Biotechnology 97 (14):6113–6127. doi: 10.1007/s00253-013-4960-4.
  • Lu, J., and A. Holmgren. 2014. The thioredoxin antioxidant system. Free Radical Biology and Medicine 66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036.
  • Lu, J., C. Wang, Y. Ma, K. Liu, X. Fu, and S. Xing. 2023. Exploration of the product specificity of chitosanase CsnMY002 and mutants using molecular dynamics simulations. Molecules 28 (3):1048. https://www.mdpi.com/1420-3049/28/3/1048. doi: 10.3390/molecules28031048.
  • Mahmood, S., M. W. Iqbal, X. Tang, H. M. Zabed, Z. Chen, C. Zhang, Y. Ravikumar, M. Zhao, and X. Qi. 2024. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. International Journal of Biological Macromolecules 254 (Pt 2):127859. doi: 10.1016/j.ijbiomac.2023.127859.
  • Malm, S. W., N. T. Hanke, A. Gill, L. Carbajal, and A. F. Baker. 2015. The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines. Journal of Experimental & Clinical Cancer Research 34 (1):31. doi: 10.1186/s13046-015-0147-4.
  • Menavuvu, B. T., W. Poonperm, K. Leang, N. Noguchi, H. Okada, K. Morimoto, T. B. Granström, G. Takada, and K. Izumori. 2006. Efficient biosynthesis of d-allose from d-psicose by cross-linked recombinant l-rhamnose isomerase: Separation of product by ethanol crystallization. Journal of Bioscience and Bioengineering 101 (4):340–345. doi: 10.1263/jbb.101.340.
  • O’Neil, M. J. 2013. The Merck index: An encyclopedia of chemicals, drugs, and biologicals. Cambridge: Royal Society of Chemistry.
  • Miyawaki, Y., M. Ueki, M. Ueno, T. Asaga, M. Tokuda, and G. Shirakami. 2012. D-allose ameliorates cisplatin-induced nephrotoxicity in mice. The Tohoku Journal of Experimental Medicine 228 (3):215–221. doi: 10.1620/tjem.228.215.
  • Miyazaki, K., N. Noda, S. Okada, Y. Hagiwara, M. Miyata, I. Sakurabayashi, N. Yamaguchi, T. Sugimura, M. Terada, and H. Wakasugi. 1998. Elevated serum level of thioredoxin in patients with hepatocellular carcinoma. Biotherapy 11 (4):277–288. doi: 10.1023/A:1008032703468.
  • Molina-Jiménez, M. F., M. I. Sánchez-Reus, M. Cascales, D. Andrés, and J. Benedí. 2005. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine. Toxicology and Applied Pharmacology 209 (3):214–225. doi: 10.1016/j.taap.2005.04.009.
  • Mooradian, A. D., M. J. Haas, L. Onstead-Haas, Y. Tani, T. Iida, and M. Tokuda. 2020. Naturally occurring rare sugars are free radical scavengers and can ameliorate endoplasmic reticulum stress. International Journal for Vitamin and Nutrition Research 90 (3-4):210–220. doi: 10.1024/0300-9831/a000517.
  • Mooradian, A. D., M. Smith, and M. Tokuda. 2017. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clinical Nutrition ESPEN 18:1–8. doi: 10.1016/j.clnesp.2017.01.004.
  • Morimoto, K., C.-S. Park, M. Ozaki, K. Takeshita, T. Shimonishi, T. B. Granström, G. Takata, M. Tokuda, and K. Izumori. 2006. Large scale production of d-allose from d-psicose using continuous bioreactor and separation system. Enzyme and Microbial Technology 38 (6):855–9. doi: 10.1016/j.enzmictec.2005.08.014.
  • Morimoto, K., T. Suzuki, H. Ikeda, C. Nozaki, and S. Goto. 2022. One-pot multi-step transformation of D-allose from D-fructose using a co-immobilized biocatalytic system. The Journal of General and Applied Microbiology 68 (1):1–9. doi: 10.2323/jgam.2021.07.002.
  • Murata, A., K. Sekiya, Y. Watanabe, F. Yamaguchi, N. Hatano, K. Izumori, and M. Tokuda. 2003. A novel inhibitory effect of D-allose on production of reactive oxygen species from neutrophils. Journal of Bioscience and Bioengineering 96 (1):89–91. doi: 10.1016/s1389-1723(03)90104-6.
  • Naha, N., H. Y. Lee, M. J. Jo, B. C. Chung, S. H. Kim, and M. O. Kim. 2008. Rare sugar D-allose induces programmed cell death in hormone refractory prostate cancer cells. Apoptosis 13 (9):1121–1134. doi: 10.1007/s10495-008-0232-7.
  • Nakamura, H., J. Bai, Y. Nishinaka, S. Ueda, T. Sasada, G. Ohshio, … J. Yodoi. 2000. Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect Prev 24 (1):53–60.
  • Nakamura, T., S. Tanaka, K. Hirooka, T. Toyoshima, N. Kawai, T. Tamiya, F. Shiraga, M. Tokuda, R. F. Keep, T. Itano, et al. 2011. Anti-oxidative effects of d-allose, a rare sugar, on ischemia-reperfusion damage following focal cerebral ischemia in rat. Neuroscience Letters 487 (1):103–106. doi: 10.1016/j.neulet.2010.10.004.
  • Narayan Patel, S., V. Singh, M. Sharma, R. S. Sangwan, N. K. Singhal, and S. P. Singh. 2018. Development of a thermo-stable and recyclable magnetic nanobiocatalyst for bioprocessing of fruit processing residues and D-allulose synthesis. Bioresource Technology 247:633–639. doi: 10.1016/j.biortech.2017.09.112.
  • Nestl, B. M., and B. Hauer. 2014. Engineering of flexible loops in enzymes. ACS Catalysis 4 (9):3201–3211. doi: 10.1021/cs500325p.
  • Noguchi, C., K. Kamitori, A. Hossain, H. Hoshikawa, A. Katagi, Y. Dong, L. Sui, M. Tokuda, and F. Yamaguchi. 2016. D-allose inhibits cancer cell growth by reducing GLUT1 expression. The Tohoku Journal of Experimental Medicine 238 (2):131–141. doi: 10.1620/tjem.238.131.
  • Ohta, S., E. W. Lai, A. L. Y. Pang, F. M. Brouwers, W.-Y. Chan, G. Eisenhofer, R. de Krijger, L. Ksinantova, J. Breza, P. Blazicek, et al. 2005. Downregulation of metastasis suppressor genes in malignant pheochromocytoma. International Journal of Cancer 114 (1):139–143. doi: 10.1002/ijc.20670.
  • Park, H.-Y., C.-S. Park, H.-J. Kim, and D.-K. Oh. 2007. Substrate specificity of a galactose 6-phosphate isomerase from Lactococcus lactis that produces d-allose from d-psicose. Journal of Biotechnology 132 (1):88–95. 10.1016/j.jbiotec.2007.08.022.
  • Park, C.-S., S.-J. Yeom, H.-J. Kim, S.-H. Lee, J.-K. Lee, S.-W. Kim, and D.-K. Oh. 2007. Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing d-allose from d-psicose. Biotechnology Letters 29 (9):1387–1391. doi: 10.1007/s10529-007-9393-7.
  • Park, C. S., S. J. Yeom, Y. R. Lim, Y. S. Kim, and D. K. Oh. 2010. Characterization of a recombinant thermostable L: -rhamnose isomerase from Thermotoga maritima ATCC 43589 and its application in the production of L-lyxose and L-mannose. Biotechnology Letters 32 (12):1947–1953. doi: 10.1007/s10529-010-0385-7.
  • Paterson, A. H. J., and S. J. Kellam. 2009. 24 - Transformation of lactose for value-added ingredients. In Dairy-Derived Ingredients, edited by M. Corredig, 625–43. New Delhi: Woodhead Publishing.
  • Perez, J. G., J. C. Stark, and M. C. Jewett. 2016. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harbor Perspectives in Biology 8 (12):a023853. doi: 10.1101/cshperspect.a023853.
  • Perold, G. W., P. Beylis, and A. S. Howard. 1973. Metabolites of proteaceae. 8. The occurrence of (+)-D-allose in nature: Rubropilosin and pilorubrosin from Protea rubropilosa beard. Journal of the Chemical Society 6:643–649. doi: 10.1039/p19730000643.
  • Phelps, F. P., and F. Bates. 1934. Preparation of crystalline β-d-allose. Journal of the American Chemical Society 56 (5):1250. doi: 10.1021/ja01320a505.
  • Poonperm, W., G. Takata, H. Okada, K. Morimoto, T. B. Granström, and K. Izumori. 2007. Cloning, sequencing, overexpression and characterization of L-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Applied Microbiology and Biotechnology 76 (6):1297–1307. doi: 10.1007/s00253-007-1109-3.
  • Poulsen, T. S., Y. Y. Chang, and B. Hove-Jensen. 1999. D-Allose catabolism of Escherichia coli: Involvement of alsI and regulation of als regulon expression by allose and ribose. Journal of Bacteriology 181 (22):7126–30. doi: 10.1128/jb.181.22.7126-7130.1999.
  • Prabhu, P., T. N. T. Doan, M. Tiwari, R. Singh, S. C. Kim, M.-K. Hong, Y. C. Kang, L.-W. Kang, and J.-K. Lee. 2014. Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. FEBS Journal. 281 (15):3446–3459. doi: 10.1111/febs.12872.
  • Raffel, J., A. K. Bhattacharyya, A. Gallegos, H. Cui, J. G. Einspahr, D. S. Alberts, and G. Powis. 2003. Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. The Journal of Laboratory and Clinical Medicine 142 (1):46–51. doi: 10.1016/S0022-2143(03)00068-4.
  • Ragupathi Raja Kannan, R., R. Arumugam, P. Iyapparaj, T. Thangaradjou, and P. Anantharaman. 2012. Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens. Food Chemistry 136 (3-4):1484–1489. doi: 10.1016/j.foodchem.2012.07.070.
  • Roos, A. K., C. Andersson, T. Bergfors, M. Jacobsson, A. Karlén, T. Unge, T. Jones, and S. L. Mowbray. 2004. Mycobacterium tuberculosis ribose-5-phosphate isomerase has a known fold, but a novel active site. Journal of Molecular Biology 335 (3):799–809. doi: 10.1016/j.jmb.2003.11.021.
  • Roos, A. K., E. Burgos, D. J. Ericsson, L. Salmon, and S. L. Mowbray. 2005. Competitive inhibitors of Mycobacterium tuberculosis ribose-5-phosphate isomerase B reveal new information about the reaction mechanism. The Journal of Biological Chemistry 280 (8):6416–6422. doi: 10.1074/jbc.M412018200.
  • Roos, A. K., S. Mariano, E. Kowalinski, L. Salmon, and S. L. Mowbray. 2008. d-Ribose-5-Phosphate isomerase B from Escherichia coli is also a functional d-allose-6-phosphate isomerase, while the Mycobacterium tuberculosis enzyme is not. Journal of Molecular Biology 382 (3):667–679. doi: 10.1016/j.jmb.2008.06.090.
  • Sakoguchi, H., T. Shintani, H. Ishiyama, R. C. Yanagita, Y. Kawanami, and M. Sato. 2019. Nematocidal activity of 6-O-octanoyl- and 6-O-octyl-d-allose against larvae of Caenorhabditis elegans. Bioscience, Biotechnology, and Biochemistry 83 (12):2194–2197. doi: 10.1080/09168451.2019.1648206.
  • Schieber, M., and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24 (10):R453–R462. doi: 10.1016/j.cub.2014.03.034.
  • Seo, M. J., J. H. Choi, S. H. Kang, K. C. Shin, and D. K. Oh. 2018. Characterization of L-rhamnose isomerase from Clostridium stercorarium and its application to the production of D-allose from D-allulose (D-psicose). Biotechnology Letters 40 (2):325–334. doi: 10.1007/s10529-017-2468-1.
  • Shen, M., X. Ju, X. Xu, X. Yao, L. Li, J. Chen, C. Hu, J. Fu, and L. Yan. 2018. Characterization of ribose-5-phosphate isomerase B from newly isolated strain Ochrobactrum sp. CSL1 producing (L)-Rhamnulose from (L)-Rhamnose. Journal of Microbiology and Biotechnology. 28 (7):1122–32. doi: 10.4014/jmb.1802.02021.
  • Shinohara, N., T. Nakamura, Y. Abe, T. Hifumi, K. Kawakita, A. Shinomiya, T. Tamiya, M. Tokuda, R. F. Keep, T. Yamamoto, et al. 2016. d-Allose attenuates overexpression of inflammatory cytokines after cerebral ischemia/reperfusion injury in gerbil. Journal of Stroke and Cerebrovascular Diseases 25 (9):2184–2188. doi: 10.1016/j.jstrokecerebrovasdis.2016.01.030.
  • Shintani, H., T. Shintani, and M. Sato. 2020. D-Allose, a trace component in human serum, and its pharmaceutical applicability. International Journal of Applied Biology and Pharmaceutical Technology 11:200–213.
  • Sithara, R., P. Selvakumar, C. Arun, S. Anandan, and P. Sivashanmugam. 2017. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. Journal of Advanced Research 8 (6):561–568. doi: 10.1016/j.jare.2017.07.001.
  • Siu, K.-H., R. P. Chen, Q. Sun, L. Chen, S.-L. Tsai, and W. Chen. 2015. Synthetic scaffolds for pathway enhancement. Current Opinion in Biotechnology 36:98–106. doi: 10.1016/j.copbio.2015.08.009.
  • Sui, L., Y. Dong, Y. Watanabe, F. Yamaguchi, N. Hatano, I. Tsukamoto, K. Izumori, and M. Tokuda. 2005. The inhibitory effect and possible mechanisms of D-allose on cancer cell proliferation. International Journal of Oncology 27 (4):907–912.
  • Sui, L., R. Nomura, Y. Dong, F. Yamaguchi, K. Izumori, and M. Tokuda. 2007. Cryoprotective effects of D-allose on mammalian cells. Cryobiology 55 (2):87–92. doi: 10.1016/j.cryobiol.2007.05.003.
  • Sun, Y., S. Hayakawa, S. Puangmanee, and K. Izumori. 2006. Chemical properties and antioxidative activity of glycated α-lactalbumin with a rare sugar, d-allose, by Maillard reaction. Food Chemistry 95 (3):509–517. doi: 10.1016/j.foodchem.2005.01.033.
  • Takata, G., K. Uechi, E. Taniguchi, Y. Kanbara, A. Yoshihara, K. Morimoto, and K. Izumori. 2011. Characterization of Mesorhizobium loti L-rhamnose isomerase and its application to L-talose production. Bioscience, Biotechnology, and Biochemistry 75 (5):1006–1009. doi: 10.1271/bbb.110018.
  • Tan, T. Y. C., X. Y. Lim, J. H. H. Yeo, S. W. H. Lee, and N. M. Lai. 2021. The health effects of chocolate and cocoa: A systematic review. Nutrients 13 (9):2909. doi: 10.3390/nu13092909.
  • Tang, H., X. Ju, J. Zhao, and L. Li. 2021. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Applied Microbiology and Biotechnology 105 (2):509–523. doi: 10.1007/s00253-020-11075-z.
  • Tang, X., Y. An, M. W. Iqbal, H. Cong, G. Zhang, Y. Zhang, Y. Ravikumar, H. M. Zabed, M. Zhao, H. Zhou, et al. 2022. The characterization of a novel D-allulose 3-epimerase from Blautia produca and its application in D-allulose production. Foods 11 (20):3225. doi: 10.3390/foods11203225.
  • Tohi, Y., R. Taoka, X. Zhang, Y. Matsuoka, A. Yoshihara, E. Ibuki, R. Haba, K. Akimitsu, K. Izumori, Y. Kakehi, et al. 2022. Antitumor effects of orally administered rare sugar D-allose in bladder cancer. International Journal of Molecular Sciences 23 (12):6771. doi: 10.3390/ijms23126771.
  • Tseng, W. C., Y. C. Chen, H. C. Chang, R. Lin, and T. Y. Fang. 2022. Altering the substrate specificity of recombinant l-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1 to favor d-allose production. Journal of Biotechnology 358:9–16. doi: 10.1016/j.jbiotec.2022.08.015.
  • Tseng, W.-C., C.-N. Chen, C.-T. Hsu, H.-C. Lee, H.-Y. Fang, M.-J. Wang, Y.-H. Wu, and T.-Y. Fang. 2018. Characterization of a recombinant d-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. International Journal of Biological Macromolecules. 112:767–74. doi: 10.1016/j.ijbiomac.2018.02.036.
  • Wang, J., and W. Yang. 2013. Concerted proton transfer mechanism of Clostridium thermocellum ribose-5-phosphate isomerase. The Journal of Physical Chemistry B 117 (32):9354–61. doi: 10.1021/jp404948c.
  • Wang, R., X. Xu, X. Yao, H. Tang, X. Ju, and L. Li. 2021. Enhanced isomerization of rare sugars by ribose-5-phosphate isomerase A from Ochrobactrum sp. CSL1. Enzyme and Microbial Technology 148:109789. doi: 10.1016/j.enzmictec.2021.109789.
  • Wang, Y., H. M. Carder, and A. E. Wendlandt. 2020. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578 (7795):403–408. doi: 10.1038/s41586-020-1937-1.
  • Weckwerth, W., M. E. Loureiro, K. Wenzel, and O. Fiehn. 2004. Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings of the National Academy of Sciences of the United States of America 101 (20):7809–7814. doi: 10.1073/pnas.0303415101.
  • Wei, M., X. Gao, W. Zhang, C. Li, F. Lu, L. Guan, W. Liu, J. Wang, F. Wang, and H.-M. Qin. 2023. Enhanced thermostability of an l-rhamnose isomerase for d-allose synthesis by computation-based rational redesign of flexible regions. Journal of Agricultural and Food Chemistry 71 (42):15713–22. doi: 10.1021/acs.jafc.3c05736.
  • WHO Guidelines Approved by the Guidelines Review Committee. 2015. Guideline: Sugars Intake for Adults and Children. Switzerland: World Health Organization.
  • Wu, S., and Z. Li. 2018. Whole-cell cascade biotransformations for one-pot multistep organic synthesis. ChemCatChem,. 10 (10):2164–78. doi: 10.1002/cctc.201701669.
  • Xu, W., W. Zhang, Y. Tian, T. Zhang, B. Jiang, and W. Mu. 2017. Characterization of a novel thermostable l-rhamnose isomerase from Thermobacillus composti KWC4 and its application for production of d-allose. Process Biochemistry 53:153–161. doi: 10.1016/j.procbio.2016.11.025.
  • Xu, W., W. Zhang, T. Zhang, B. Jiang, and W. Mu. 2016. L-Rhamnose isomerase and its use for biotechnological production of rare sugars. Applied Microbiology and Biotechnology 100 (7):2985–2992. doi: 10.1007/s00253-016-7369-z.
  • Xu, Y., Y. Wu, Y. Liu, J. Li, G. Du, J. Chen, X. Lv, and L. Liu. 2022. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends in Food Science & Technology 129:512–527. doi: 10.1016/j.tifs.2022.11.008.
  • Yamada, K., C. Noguchi, K. Kamitori, Y. Dong, Y. Hirata, M. A. Hossain, I. Tsukamoto, M. Tokuda, and F. Yamaguchi. 2012. Rare sugar D-allose strongly induces thioredoxin-interacting protein and inhibits osteoclast differentiation in Raw264 cells. Nutrition Research. 32 (2):116–123. doi: 10.1016/j.nutres.2011.12.010.
  • Yamaguchi, F., K. Kamitori, K. Sanada, M. Horii, Y. Dong, L. Sui, and M. Tokuda. 2008. Rare sugar d-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7. Journal of Bioscience and Bioengineering 106 (3):248–252. doi: 10.1263/jbb.106.248.
  • Yamaguchi, F., M. Takata, K. Kamitori, M. Nonaka, Y. Dong, L. Sui, and M. Tokuda. 2008. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. International Journal of Oncology 32 (2):377–385. http://europepmc.org/abstract/MED/18202760.
  • Yamamoto, R., A. Iida, K. Tanikawa, H. Shiratsuchi, M. Tokuda, T. Matsui, and T. Nakamura. 2017. Dietary D-allose ameliorates hepatic inflammation in mice with non-alcoholic steatohepatitis. Food Science and Technology Research 23 (2):319–327. doi: 10.3136/fstr.23.319.
  • Yang, J., C. Tian, T. Zhang, C. Ren, Y. Zhu, Y. Zeng, Y. Men, Y. Sun, and Y. Ma. 2019. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose. Biotechnology and Bioengineering 116 (4):745–56. doi: 10.1002/bit.26909.
  • Yang, P., X. Zhu, Z. Zheng, D. Mu, S. Jiang, S. Luo, Y. Wu, and M. Du. 2018. Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a D-psicose-3-epimerase gene from Agrobacterium tumefaciens for D-allulose production. World Journal of Microbiology and Biotechnology 34 (5):65. doi: 10.1007/s11274-018-2451-6.
  • Yeom, S.-J., B.-N. Kim, C.-S. Park, and D.-K. Oh. 2010. Substrate specificity of ribose-5-phosphate isomerases from Clostridium difficile and Thermotoga maritima. Biotechnology Letters 32 (6):829–835. doi: 10.1007/s10529-010-0224-x.
  • Yeom, S. J., E. S. Seo, Y. S. Kim, and D. K. Oh. 2011. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Applied Microbiology and Biotechnology 89 (6):1859–1866. doi: 10.1007/s00253-010-3026-0.
  • Yokohira, M., K. Hosokawa, K. Yamakawa, K. Saoo, Y. Matsuda, Y. Zeng, T. Kuno, and K. Imaida. 2008. Potential inhibitory effects of d-allose, a rare sugar, on liver preneoplastic lesion development in F344 rat medium-term bioassay. Journal of Bioscience and Bioengineering 105 (5):545–553. doi: 10.1263/jbb.105.545.
  • Yoon, R. Y., S. J. Yeom, C. S. Park, and D. K. Oh. 2009. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Applied Microbiology and Biotechnology 83 (2):295–303. doi: 10.1007/s00253-009-1859-1.
  • Yoshida, H., K. Takeda, K. Izumori, and S. Kamitori. 2010. Elucidation of the role of Ser329 and the C-terminal region in the catalytic activity of Pseudomonas stutzeri L-rhamnose isomerase. Protein Engineering, Design & Selection 23 (12):919–927. doi: 10.1093/protein/gzq077.
  • Yoshida, H., M. Yamada, Y. Ohyama, G. Takada, K. Izumori, and S. Kamitori. 2007. The structures of L-rhamnose isomerase from Pseudomonas stutzeri in complexes with L-rhamnose and D-allose provide insights into broad substrate specificity. Journal of Molecular Biology 365 (5):1505–1516. doi: 10.1016/j.jmb.2006.11.004.
  • Zhang, J., M. K. Jensen, and J. D. Keasling. 2015. Development of biosensors and their application in metabolic engineering. Current Opinion in Chemical Biology 28:1–8. doi: 10.1016/j.cbpa.2015.05.013.
  • Zhang, R-g., C. Andersson, A. Savchenko, T. Skarina, E. Evdokimova, S. Beasley, C. H. Arrowsmith, A. M. Edwards, A. Joachimiak, and S. L. Mowbray. 2003. Structure of Escherichia coli ribose-5-phosphate isomerase: A ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle. Structure 11 (1):31–42. doi: 10.1016/s0969-2126(02)00933-4.
  • Zhang, W., D. Chen, J. Chen, W. Xu, Q. Chen, H. Wu, C. Guang, and W. Mu. 2023. D-allulose, a versatile rare sugar: Recent biotechnological advances and challenges. Critical Reviews in Food Science and Nutrition 63 (22):5661–5679. doi: 10.1080/10408398.2021.2023091.
  • Zhang, W., M. Wei, X. Sun, F. Lu, L. Guan, S. Mao, and H. M. Qin. 2022. Fine-tuning of carbon flux and artificial promoters in Bacillus subtilis enables high-level biosynthesis of d-allulose. Journal of Agricultural and Food Chemistry 70 (43):13935–13944. doi: 10.1021/acs.jafc.2c05585.
  • Zhang, W., S. Yu, T. Zhang, B. Jiang, and W. Mu. 2016. Recent advances in d -allulose: Physiological functionalities, applications, and biological production. Trends in Food Science & Technology 54:127–137. doi: 10.1016/j.tifs.2016.06.004.
  • Zhang, X., X. Xu, X. Yao, R. Wang, H. Tang, X. Ju, and L. Li. 2020. Exploring multifunctional residues of ribose-5-phosphate isomerase B from Ochrobactrum sp. CSL1 enhancing isomerization of d-allose. Journal of Agricultural and Food Chemistry 68 (11):3539–3547. doi: 10.1021/acs.jafc.9b07855.
  • Zheng, L., Y. Sun, J. Wang, H. Huang, X. Geng, Y. Tong, and Z. Wang. 2018. Preparation of a flower-like immobilized D-Psicose 3-Epimerase with enhanced catalytic performance. Catalysts 8 (10):468. https://www.mdpi.com/2073-4344/8/10/468. doi: 10.3390/catal8100468.
  • Zheng, L. J., Q. Guo, Y. X. Zhang, C. Y. Liu, L. H. Fan, and H. D. Zheng. 2022. Engineering of Escherichia coli for D-allose fermentative synthesis from D-glucose through izumoring cascade epimerization. Frontiers in Bioengineering and Biotechnology 10:1050808. doi: 10.3389/fbioe.2022.1050808.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.