39
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Effects of polyphenol on motor function in mice with Parkinson’s disease: a systematic review and meta-analysis

, , &

References

  • Abbaszadeh, F., S. Fakhri, and H. Khan. 2020. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacological Research 160:105069. doi:10.1016/j.phrs.2020.105069.
  • Anandhan, A., K. Tamilselvam, D. Vijayraja, N. Ashokkumar, S. Rajasankar, and T. Manivasagam. 2010. Resveratrol attenuates oxidative stress and improves behaviour in 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) challenged mice. Annals of Neurosciences 17 (3):113–9. doi:10.5214/ans.0972-7531.
  • Anandhan, A., K. Tamilselvam, T. Radhiga, S. Rao, M. M. Essa, and T. Manivasagam. 2012. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Research 1433:104–13. doi:10.1016/j.brainres.2011.11.021.
  • Anandhan, A., M. M. Essa, and T. Manivasagam. 2013. Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotoxicity Research 23 (2):166–73. doi:10.1007/s12640-012-9332-9.
  • Anandhan, A., U. Janakiraman, and T. Manivasagam. 2012. Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease. Neuroscience 218:257–67. doi:10.1016/j.neuroscience.2012.05.039.
  • Bach, J. P., O. Riedel, J. Klotsche, A. Spottke, R. Dodel, and H. U. Wittchen. 2012. Impact of complications and comorbidities on treatment costs and health-related quality of life of patients with Parkinson’s disease. Journal of the Neurological Sciences 314 (1-2):41–7. doi:10.1016/j.jns.2011.11.002.
  • Bhatia, G., J. Singh, and B. Nehru. 2021. Neuroprotective effects of hydro-alcoholic extract of Eclipta alba against 1-methyl-4-phenylpyridinium-induced in vitro and in vivo models of Parkinson’s disease. Environmental Science and Pollution Research International 28 (8):9390–406. doi:10.1007/s11356-020-11452-1.
  • Birla, H., S. N. Rai, S. S. Singh, W. Zahra, A. Rawat, N. Tiwari, R. K. Singh, A. Pathak, and S. P. Singh. 2019. Tinospora cordifolia suppresses neuroinflammation in Parkinsonian mouse model. Neuromolecular Medicine 21 (1):42–53. doi:10.1007/s12017-018-08521-7.
  • Bisht, R., B. C. Joshi, A. N. Kalia, and A. Prakash. 2017. Antioxidant-rich fraction of Urtica dioica mediated rescue of striatal mito-oxidative damage in MPTP-induced behavioral, cellular, and neurochemical alterations in rats. Molecular Neurobiology 54 (7):5632–45. doi:10.1007/s12035-016-0084-z.
  • Bloem, B. R., M. S. Okun, and C. Klein. 2021. Parkinson’s disease. Lancet (London, England) 397 (10291):2284–303. doi:10.1016/S0140-6736(21)00218-X.
  • Bové, J., and C. Perier. 2012. Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76. doi:10.1016/j.neuroscience.2011.10.057.
  • Bravo, L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56 (11):317–33. PMID: 9838798. doi:10.1111/j.1753-4887.1998.tb01670.x.
  • Cai, G., F. Lin, D. Wu, C. Lin, H. Chen, Y. Wei, H. Weng, Z. Chen, M. Wu, E. Huang, et al. 2022. Rosmarinic acid inhibits mitochondrial damage by alleviating unfolded protein response. Frontiers in Pharmacology 13:859978. doi:10.3389/fphar.2022.859978.
  • Cao, Q., L. Qin, F. Huang, X. Wang, L. Yang, H. Shi, H. Wu, B. Zhang, Z. Chen, and X. Wu. 2017. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicology and Applied Pharmacology 319:80–90. doi:10.1016/j.taap.2017.01.019.
  • Chang, H.-C., K.-F. Liu, C.-J. Teng, S.-C. Lai, S.-E. Yang, H. Ching, and C.-R. Wu. 2019. Sophora tomentosa extract prevents MPTP-induced parkinsonism in C57BL/6 mice via the inhibition of GSK-3β phosphorylation and oxidative stress. Nutrients 11 (2):252. doi:10.3390/nu11020252.
  • Chen, C., Y. Chen, T. Liu, D. Song, D. Ma, and O. Cheng. 2022. Dexmedetomidine can enhance PINK1/Parkin-mediated mitophagy in MPTP-induced PD mice model by activating AMPK. Oxidative Medicine and Cellular Longevity 2022:7511393. doi:10.1155/2022/7511393.
  • Chen, X., N. Zhang, and H. Y. Zou. 2007. Protective effect of baicalin on mouse with Parkinson’s disease induced by MPTP. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese Journal of Integrated Traditional and Western Medicine 27 (11):1010–2. [In Chinese]. PMID: 18173149.
  • Chen, Y., D. Q. Zhang, Z. Liao, B. Wang, S. Gong, C. Wang, M. Z. Zhang, G. H. Wang, H. Cai, F. F. Liao, et al. 2015. Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease. Molecular Neurodegeneration 10 (1):4. doi:10.1186/1750-1326-10-4.
  • Cheng, Y., G. He, X. Mu, T. Zhang, X. Li, J. Hu, B. Xu, and G. Du. 2008. Neuroprotective effect of baicalein against MPTP neurotoxicity: Behavioral, biochemical and immunohistochemical profile. Neuroscience Letters 441 (1):16–20. doi:10.1016/j.neulet.2008.05.116.
  • Chetia Phukan, B., A. Dutta, S. Deb, R. Saikia, M. K. Mazumder, R. Paul, P. Bhattacharya, R. Sandhir, and A. Borah. 2022. Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson’s disease: Involvement of anti-inflammatory response. Experimental Brain Research 240 (1):113–22. doi:10.1007/s00221-021-06237-y.
  • Chonpathompikunlert, P., P. Boonruamkaew, W. Sukketsiri, P. Hutamekalin, and M. Sroyraya. 2018. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complementary and Alternative Medicine 18 (1):103. doi:10.1186/s12906-018-2166-0.
  • Coe, S., D. Andreoli, M. George, J. Collett, A. Reed, J. Cossington, H. Izadi, A. Dixon, M. Mansoubi, and H. Dawes. 2022. A feasibility study to determine whether the daily consumption of flavonoid-rich pure cocoa has the potential to reduce fatigue and fatigability in people with Parkinson’s (pwP). Clinical Nutrition ESPEN 48:68–73. doi:10.1016/j.clnesp.2022.01.023.
  • Costas, C., and L. R. F. Faro. 2022. Do naturally occurring antioxidants protect against neurodegeneration of the dopaminergic system? A systematic revision in animal models of Parkinson’s disease. Current Neuropharmacology 20 (2):432–59. doi:10.2174/1570159X19666210421092725.
  • Cui, Y., X. Wang, Z. Jiang, C. Zhang, Z. Liang, Y. Chen, Z. Liu, and Z. Guo. 2023. A photoacoustic probe with blood-brain barrier crossing ability for imaging oxidative stress dynamics in the mouse brain. Angewandte Chemie (International ed. in English) 62 (9):e202214505. doi:10.1002/anie.202214505.
  • D’Amico, R., D. Impellizzeri, T. Genovese, R. Fusco, A. F. Peritore, R. Crupi, L. Interdonato, G. Franco, Y. Marino, A. Arangia, et al. 2022. Acai berry mitigates Parkinson’s disease progression showing dopaminergic neuroprotection via Nrf2-HO1 pathways. Molecular Neurobiology 59 (10):6519–33. doi:10.1007/s12035-022-02982-5.
  • Di Rosa, G., G. Brunetti, M. Scuto, A. Trovato Salinaro, E. J. Calabrese, R. Crea, C. Schmitz-Linneweber, V. Calabrese, and N. Saul. 2020. Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. International Journal of Molecular Sciences 21 (11):3893. doi:10.3390/ijms21113893.
  • Dickson, D. W., H. Braak, J. E. Duda, C. Duyckaerts, T. Gasser, G. M. Halliday, J. Hardy, J. B. Leverenz, K. Del Tredici, Z. K. Wszolek, et al. 2009. Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. The Lancet. Neurology 8 (12):1150–7. doi:10.1016/S1474-4422(09)70238-8.
  • Dong, L. M., Y. R. Wang, Y. Chen, and T. P. Yin. 2017. Anti-Parkinsonian activity of Chrysanthemum morifolium Ramat extract in mice. Acta Nutrimenta Sinica (Tianjin, China) 39: 294–8. [In Chinese]. doi:10.3969/j.issn.0512-7955.2017.03.017.
  • Dong, X. L., X. Wang, F. Liu, X. Liu, Z. R. Du, R. W. Li, C. H. Xue, K. H. Wong, W. T. Wong, Q. Zhao, et al. 2020. Polymannuronic acid prevents dopaminergic neuronal loss via brain-gut-microbiota axis in Parkinson’s disease model. International Journal of Biological Macromolecules 164:994–1005. doi:10.1016/j.ijbiomac.2020.07.180.
  • Dorsey, E. R., T. Sherer, M. S. Okun, and B. R. Bloem. 2018. The emerging evidence of the Parkinson pandemic. Journal of Parkinson’s Disease 8 (s1):S3–S8. doi:10.3233/JPD-181474.
  • Dutta, A., B. C. Phukan, R. Roy, M. K. Mazumder, R. Paul, A. Choudhury, D. Kumar, P. Bhattacharya, J. Nath, S. Kumar, et al. 2022. Garcinia morella extract confers dopaminergic neuroprotection by mitigating mitochondrial dysfunctions and inflammation in mouse model of Parkinson’s disease. Metabolic Brain Disease 37 (6):1887–900. doi:10.1007/s11011-022-01001-9.
  • Eisenhofer, G., A. Aneman, P. Friberg, D. Hooper, L. Fåndriks, H. Lonroth, B. Hunyady, and E. Mezey. 1997. Substantial production of dopamine in the human gastrointestinal tract. The Journal of Clinical Endocrinology and Metabolism 82 (11):3864–71. doi:10.1210/jcem.82.11.4339.
  • Essa, M. M., S. Subash, C. Dhanalakshmi, T. Manivasagam, S. Al-Adawi, G. J. Guillemin, and A. J. Thenmozhi. 2015. Dietary supplementation of walnut partially reverses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced neurodegeneration in a mouse model of Parkinson’s disease. Neurochemical Research 40 (6):1283–93. doi:10.1007/s11064-015-1593-2.
  • Giuliano, C., S. Cerri, and F. Blandini. 2021. Potential therapeutic effects of polyphenols in Parkinson’s disease: In vivo and in vitro pre-clinical studies. Neural Regeneration Research 16 (2):234–41. doi:10.4103/1673-5374.290879.
  • Goetz, C. G. 2011. The history of Parkinson’s disease: Early clinical descriptions and neurological therapies. Cold Spring Harbor Perspectives in Medicine 1 (1):a008862. doi:10.1101/cshperspect.a008862.
  • Gu, P. S., M. Moon, J. G. Choi, and M. S. Oh. 2017. Mulberry fruit ameliorates Parkinson’s-disease-related pathology by reducing alpha-synuclein and ubiquitin levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model. The Journal of Nutritional Biochemistry 39:15–21. doi:10.1016/j.jnutbio.2016.08.014.
  • Guo, Y. F., C. Wang, W. Li, K. Zhang, H. Lei, Y. Sun, X. P. Pu, and X. Zhao. 2016. Neuroprotective effects of xanthone extract from Swertia punicea Hemsl against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease. J Chin Pharm Sci 25:357–65. doi:10.5246/jcps.2016.05.040.
  • Guo, Y. J., S. Y. Dong, X. X. Cui, Y. Feng, T. Liu, M. Yin, S. H. Kuo, E. K. Tan, W. J. Zhao, and Y. C. Wu. 2016. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of alpha-synuclein via SIRT1-deacetylated LC3. Molecular Nutrition & Food Research 60 (10):2161–75. doi:10.1002/mnfr.201600111.
  • Hong, D. G., S. Lee, J. Kim, S. Yang, M. Lee, J. Ahn, H. Lee, S. C. Chang, N. C. Ha, and J. Lee. 2022. Anti-inflammatory and neuroprotective effects of morin in an MPTP-induced Parkinson’s disease model. International Journal of Molecular Sciences 23 (18):10578. doi:10.3390/ijms231810578.
  • Hu, M., F. Li, and W. Wang. 2018. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway. Drug Design, Development and Therapy 12:565–73. doi:10.2147/DDDT.S156920.
  • Huang, R. 2017. Study on the neuroprotective effect of Ginkgo biloba extract on MPTP induced Parkinson’s disease in mice. Journal of Mathematical Medicine 30:1581–3. doi:10.3969/j.issn.1004-4337.2017.11.001.
  • Huang, Y., X. Zhang, Q. Huang, Y. Dou, C. Qu, Q. Xu, Q. Yuan, Y.-F. Xian, and Z.-X. Lin. 2022. Quercetin enhances survival and axonal regeneration of motoneurons after spinal root avulsion and reimplantation: Experiments in a rat model of brachial plexus avulsion. Inflammation and Regeneration 42 (1):56. doi:10.1186/s41232-022-00245-3.
  • Jia, L., and X. J. Xu. 2021b. Schisandrin B improved motor function in Parkinson′s disease mice via anti-oxidative stress and protecting colonic barrier. Journal of Shandong University of Traditional Chinese Medicine 22 (5):336–40. [ In Chinese]. doi:10.19763/j.cnki.2096-7403.2021.05.06.
  • Jia, L., H. J. Fan, Q. Wang, Y. Q. Li, M. F. Guo, B. G. Xiao, Z. Chai, and C. G. Ma. 2021. Effect of Schisandrin B on oxidative stress and neurotrophic factors of esencephalic Substantia nigra in Parkinson’s disease mice. Chinese Journal of Veterinary Medicine 57 (12):56–61,67. Chinese. URL: http://d-wanfangdata-com-cn-443.bjmu.ilibs.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjMwMzIxEg96Z3N5enoyMDIxMTIwMTIaCGN1ams0ZXR4.
  • Kalia, L. V., and A. E. Lang. 2015. Parkinson’s disease. Lancet (London, England) 386 (9996):896–912. doi:10.1016/S0140-6736(14)61393-3.
  • Kavitha, M., J. Nataraj, M. M. Essa, M. A. Memon, and T. Manivasagam. 2013. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice. Chemico-Biological Interactions 206 (2):239–47. Epub 2013 Oct 2. doi:10.1016/j.cbi.2013.09.016.
  • Khan, M. M., M. N. Hoda, T. Ishrat, A. Ahmad, M. B. Khan, G. Khuwaja, S. S. Raza, M. M. Safhi, and F. Islam. 2010. Amelioration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced behavioural dysfunction and oxidative stress by Pycnogenol in mouse model of Parkinson’s disease. Behavioural Pharmacology 21 (5-6):563–71. doi:10.1097/FBP.0b013e32833d4186.
  • Kim, H. G., M. S. Ju, S. K. Ha, H. Lee, H. Lee, S. Y. Kim, and M. S. Oh. 2012. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biological & Pharmaceutical Bulletin 35 (8):1287–94. doi:10.1248/bpb.b12-00127.
  • Kiyimba, T., P. Yiga, M. Bamuwamye, P. Ogwok, B. Van der Schueren, and C. Matthys. 2023. Efficacy of dietary polyphenols from whole foods and purified food polyphenol extracts in optimizing cardiometabolic health: A meta-analysis of randomized controlled trials. Advances in Nutrition (Bethesda, Md.) 14 (2):270–82. doi:10.1016/j.advnut.2023.01.002.
  • Ko, J. H., H. Lee, S. N. Kim, and H. J. Park. 2019. Does acupuncture protect dopamine neurons in Parkinson’s disease rodent model?: A systematic review and meta-analysis. Frontiers in Aging Neuroscience 11:102. doi:10.3389/fnagi.2019.00102.
  • Lang, X. Y., Y. Hu, J. P. Bai, J. Wang, X. Y. Qin, and R. Lan. 2022. Coeloglossum viride Var. Bracteatum extract attenuates MPTP-induced neurotoxicity in vivo by restoring BDNF-TrkB and FGF2-Akt signaling axis and inhibiting RIP1-driven inflammation. Frontiers in Pharmacology 13:903235. doi:10.3389/fphar.2022.903235.
  • Lee, K. M., Y. Lee, H. J. Chun, A. H. Kim, J. Y. Kim, J. Y. Lee, A. Ishigami, and J. Lee. 2016. Neuroprotective and anti-inflammatory effects of morin in a murine model of Parkinson’s disease. Journal of Neuroscience Research 94 (10):865–78. doi:10.1002/jnr.23764.
  • Lee, Y. R., G. H. Moon, D. Shim, J. C. Kim, K. J. Lee, K. H. Chung, and J. H. An. 2023. Neuroprotective effects of fermented tea in MPTP-induced Parkinson’s disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity. Food Research International (Ottawa, Ont.) 164:112133. doi:10.1016/j.foodres.2022.112133.
  • Lee, Y., H. R. Park, H. J. Chun, and J. Lee. 2015. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. Journal of Neuroscience Research 93 (5):755–65. doi:10.1002/jnr.23544.
  • Lei, K., Y. Shen, Y. He, L. Zhang, J. Zhang, W. Tong, Y. Xu, and L. Jin. 2020. Baicalin represses C/EBPβ via its antioxidative effect in Parkinson’s disease. Oxidative Medicine and Cellular Longevity 2020:8951907–14. doi:10.1155/2020/8951907.
  • Li, J. F., G. M. Xu, C. Z. Zhang, and F. Fei. 2016. Study on the protective effect of Ginkgo biloba extract on MPTP induced Parkinson’s disease in mice. Neuroscience 223:246–57. doi:10.1016/j.neuroscience.2012.08.004.
  • Li, W. W., R. Yang, and D. F. Cai. 2008. Protective effects of cistanche total glycosides on dopaminergic neuron in Substantia nigra of model mice of Parkinson’s disease. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi Jiehe zazhi = Chinese Journal of Integrated Traditional and Western Medicine(Beijing, China) 28 (3):248–51. [In Chinese]. PMID: 18476428.
  • Liang, C. B., and F. Zhang. 2016. Effect of proanthocyanidins on oxidative stress damage in Substantia nigra of Parkinson’s model mice. Clinical Journal of Medicine 44 (11):1172–4. [In Chinese]. doi:10.16680/j.1671-3826.2016.11.20.
  • Lim, S. Y., A. H. Tan, A. Ahmad-Annuar, C. Klein, L. C. S. Tan, R. L. Rosales, R. Bhidayasiri, Y. R. Wu, H. F. Shang, A. H. Evans, et al. 2019. Parkinson’s disease in the Western Pacific Region. The Lancet. Neurology 18 (9):865–79. doi:10.1016/S1474-4422(19)30195-4.
  • Lin, Z. H., Y. Liu, N. J. Xue, R. Zheng, Y. Q. Yan, Z. X. Wang, Y. L. Li, C. Z. Ying, Z. Song, J. Tian, et al. 2022. Quercetin protects against MPP(+)/MPTP-induced dopaminergic neuron death in Parkinson’s disease by inhibiting ferroptosis. Oxidative Medicine and Cellular Longevity 2022:7769355. doi:10.1155/2022/7769355.
  • Liu, C., W. Wang, H. Li, J. Liu, P. Zhang, Y. Cheng, X. Qin, Y. Hu, and Y. Wei. 2021. The neuroprotective effects of isoquercitrin purified from apple pomace by high-speed countercurrent chromatography in the MPTP acute mouse model of Parkinson’s disease. Food & Function 12 (13):6091–101. doi:10.1039/d1fo00843a.
  • Liu, J. T., Y. Chen, Y. Jin, and H. Y. Huang. 2016. Effect of the green tea on the neuroethology of the Parkinson’s disease mice caused by MPTP. Chinese Journal of Gerontology(Jilin, China) 36 (13):3119–21. [In Chinese]. doi:10.3969/j.issn.1005-9202.2016.13.011.
  • Liu, Q., D. Zhu, P. Jiang, X. Tang, Q. Lang, Q. Yu, S. Zhang, Y. Che, and X. Feng. 2019. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice. Behavioural Brain Research 367:10–8. doi:10.1016/j.bbr.2019.03.043.
  • Liu, S.-M., X.-Z. Li, S.-N. Zhang, Z.-M. Yang, K.-X. Wang, F. Lu, C.-Z. Wang, and C.-S. Yuan. 2018. Acanthopanax senticosus protects structure and function of mesencephalic mitochondria in a mouse model of Parkinson’s disease. Chinese Journal of Integrative Medicine 24 (11):835–43. doi:10.1007/s11655-018-2935-5.
  • Liu, X. C., and H. J. Jin. 2022. Protective effect of extracts from broad bean seedlings on Parkinson’s disease. Science and Technology of Food 43 (22):379–86. [In Chinese]. doi:10.13386/j.issn1002-0306.2022010053.
  • Liu, X., W. Liu, C. Wang, Y. Chen, P. Liu, T. Hayashi, K. Mizuno, S. Hattori, H. Fujisaki, and T. Ikejima. 2021. Silibinin attenuates motor dysfunction in a mouse model of Parkinson’s disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiology & Behavior 239:113510. doi:10.1016/j.physbeh.2021.113510.
  • Lu, K. T., M. C. Ko, B. Y. Chen, J. C. Huang, C. W. Hsieh, M. C. Lee, R. Y. Chiou, B. S. Wung, C. H. Peng, and Y. L. Yang. 2008. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. Journal of Agricultural and Food Chemistry 56 (16):6910–3. doi:10.1021/jf8007212.
  • Mani, S., S. Sekar, R. Barathidasan, T. Manivasagam, A. J. Thenmozhi, M. Sevanan, S. B. Chidambaram, M. M. Essa, G. J. Guillemin, and M. K. Sakharkar. 2018. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotoxicity Research 33 (3):656–70. doi:10.1007/s12640-018-9869-3.
  • Martinez-Negrin, G., J. P. Acton, S. P. Cocksedge, S. J. Bailey, and T. Clifford. 2022. The effect of dietary (poly)phenols on exercise-induced physiological adaptations: A systematic review and meta-analysis of human intervention trials. Critical Reviews in Food Science and Nutrition 62 (11):2872–87. doi:10.1080/10408398.2020.1860898.
  • Meissner, W., C. Prunier, D. Guilloteau, S. Chalon, C. E. Gross, and E. Bezard. 2003. Time-course of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson’s disease. Molecular Neurobiology 28 (3):209–18. doi:10.1385/MN:28:3:209.
  • Metta, V., V. Leta, K. R. Mrudula, L. K. Prashanth, V. Goyal, R. Borgohain, G. Chung-Faye, and K. R. Chaudhuri. 2021. Gastrointestinal dysfunction in Parkinson’s disease: Molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. Journal of Neurology 269 (3):1154–63. doi:10.1007/s00415-021-10567-w.
  • Mo, C. R., and L. L. Zhou. 2022. Effect of total flavones of Vanilaria L., on the expression of DAT and VMAT2 proteins in the Substantia nigra in mice with Parkinson’s disease. Journal of Baotou Medi 38 (6):30–4. 40. [ In Chinese]. doi:10.16833/j.cnki.jbmc.2022.06.007.
  • Moreira, E. L., D. Rial, A. S. J. Aguiar, C. P. Figueiredo, J. M. Siqueira, S. DalBó, H. Horst, J. de Oliveira, G. Mancini, T. S. dos Santos, et al. 2010. Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. Journal of Neural Transmission 117 (12):1337–51. doi:10.1007/s00702-010-0464-x.
  • Moreno-Indias, I., L. Sánchez-Alcoholado, P. Pérez-Martínez, C. Andrés-Lacueva, F. Cardona, F. Tinahones, and M. I. Queipo-Ortuño. 2016. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food & Function 7 (4):1775–87. doi:10.1039/c5fo00886g.
  • Mu, X., G. R. He, X. Yuan, X. X. Li, and G. H. Du. 2011. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacology, Biochemistry, and Behavior 98 (2):286–91. doi:10.1016/j.pbb.2011.01.011.
  • Myburgh, K. H. 2014. Polyphenol supplementation: Benefits for exercise performance or oxidative stress? Sports Medicine (Auckland, N.Z.) 44 (Suppl 1): S57–S70. doi:10.1007/s40279-014-0151-4.
  • Nagarajan, S., D. R. Chellappan, P. Chinnaswamy, and S. Thulasingam. 2015. Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice. Pharmaceutical Biology 53 (11):1591–601. doi:10.3109/13880209.2014.993041.
  • Narmashiri, A., M. Abbaszadeh, and A. Ghazizadeh. 2022. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews 140:104792. doi:10.1016/j.neubiorev.2022.104792.
  • Ojha, R. P., M. Rastogi, B. P. Devi, A. Agrawal, and G. P. Dubey. 2012. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology 7 (3):609–18. doi:10.1007/s11481-012-9363-2.
  • Pang, H. B., and X. F. He. 2022. Neuroprotective effect of alpha-twist on mice with Parkinson’s disease. Anhui Medical and Phar 26 (9):1710–4. [In Chinese]. doi:10.3969/j.issn.1009-6469.2022.09.004.
  • Pathania, A., R. Kumar, and R. Sandhir. 2021. Hydroxytyrosol as anti-parkinsonian molecule: Assessment using in-silico and MPTP-induced Parkinson’s disease model. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 139:111525. doi:10.1016/j.biopha.2021.111525.
  • Petramfar, P., F. Hajari, G. Yousefi, S. Azadi, and A. Hamedi. 2020. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson’s disease, A randomized double blinded clinical trial. Journal of Ethnopharmacology. 247:112226. doi:10.1016/j.jep.2019.112226.
  • Popa, D. E., C. M. Dragoi, A. L. Arsene, and I. B. Dumitrescu. 2017. The relationship between phenolic compounds from diet and microbiota. In Phenolic compounds – Biological activity, ed. M. Soto-Hernndez, M. Palma-Tenango, and M. del Rosario Garcia-Mateos, Rijeka, Croatia: InTech. doi:10.5772/66908.
  • Presti-Silva, S. M., A. L. Herlinger, C. Martins-Silva, and R. G. W. Pires. 2023. Biochemical and behavioral effects of rosmarinic acid treatment in an animal model of Parkinson’s disease induced by MPTP. Behavioural Brain Research. 440:114257. doi:10.1016/j.bbr.2022.114257.
  • Pringsheim, T., N. Jette, A. Frolkis, and T. D. Steeves. 2014. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Movement Disorders: Official Journal of the Movement Disorder Society 29 (13):1583–90. doi:10.1002/mds.25945.
  • Pu, Y., L. Chang, Y. Qu, S. Wang, K. Zhang, and K. Hashimoto. 2019. Antibiotic-induced microbiome depletion protects against MPTP-induced dopaminergic neurotoxicity in the brain. Aging 11 (17):6915–29. doi:10.18632/aging.102221.
  • Qin, L., Z. Chen, L. Yang, H. Shi, H. Wu, B. Zhang, W. Zhang, Q. Xu, F. Huang, and X. Wu. 2019. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology 426:152256. doi:10.1016/j.tox.2019.152256.
  • Qu, L., H. Xu, W. Jia, H. Jiang, and J. Xie. 2019. Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced α-synuclein aggregation. Neuropharmacology 144:291–300. doi:10.1016/j.neuropharm.2018.09.042.
  • Quideau, S., D. Deffieux, C. Douat-Casassus, and L. Pouységu. 2011. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie (International ed. in English) 50 (3):586–621. doi:10.1002/anie.201000044.
  • Rai, S. N., H. Birla, S. S. Singh, W. Zahra, R. R. Patil, J. P. Jadhav, M. R. Gedda, and S. P. Singh. 2017. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Frontiers in Aging Neuroscience 9:421. doi:10.3389/fnagi.2017.00421.
  • Reglodi, D., J. Renaud, A. Tamas, Y. Tizabi, S. B. Socías, E. Del-Bel, and R. Raisman-Vozari. 2017. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Progress in Neurobiology 155:120–48. doi:10.1016/j.pneurobio.2015.10.004.
  • Rodriguez-Oroz, M. C., M. Jahanshahi, P. Krack, I. Litvan, R. Macias, E. Bezard, and J. A. Obeso. 2009. Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. The Lancet. Neurology 8 (12):1128–39. doi:10.1016/S1474-4422(09)70293-5.
  • Rui, W., S. Li, H. Xiao, M. Xiao, and J. Shi. 2020. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinson’s disease. The International Journal of Neuropsychopharmacology 23 (11):762–73. doi:10.1093/ijnp/pyaa060.
  • Ryu, S., H. Jeon, S. Koo, and S. Kim. 2018. Korean red ginseng enhances neurogenesis in the subventricular zone of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Frontiers in Aging Neuroscience 10:355. doi:10.3389/fnagi.2018.00355.
  • Sampson, T. R., J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, V. Gradinaru, et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167 (6):1469–80.e12. doi:10.1016/j.cell.2016.11.018.
  • Sengupta, T., J. Vinayagam, N. Nagashayana, B. Gowda, P. Jaisankar, and K. P. Mohanakumar. 2011. Antiparkinsonian effects of aqueous methanolic extract of hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochemical Research 36 (1):177–86. doi:10.1007/s11064-010-0289-x.
  • Shi, R., D. Gao, R. Stoika, K. Liu, A. Sik, and M. Jin. 2024. Potential implications of polyphenolic compounds in neurodegenerative diseases. Critical Reviews in Food Science and Nutrition 64 (16):5491–514. doi:10.1080/10408398.2022.2155106.
  • Silva Meneguelli, T., M. Duarte Villas Mishima, H. H. M. Hermsdorff, H. S. D. Martino, J. Bressan, and E. Tako. 2023. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Critical Reviews in Food Science and Nutrition 14:1–16. doi:10.1080/10408398.2023.2234025.
  • Singh, A., T. M. Dawson, and S. Kulkarni. 2021. Neurodegenerative disorders and gut-brain interactions. The Journal of Clinical Investigation 131 (13):e143775. doi:10.1172/JCI143775.
  • Singh, S., S. Jamwal, and P. Kumar. 2017. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regeneration Research 12 (7):1137–44. doi:10.4103/1673-5374.211194.
  • Singsai, K., T. Akaravichien, V. Kukongviriyapan, and J. Sattayasai. 2015. Protective effects of Streblus asper leaf extract on H2O2-induced ROS in SK-N-SH cells and MPTP-induced Parkinson’s disease-like symptoms in C57BL/6 mouse. Evidence-Based Complementary and Alternative Medicine: ECAM 2015:970354–6. doi:10.1155/2015/970354.
  • Somerville, V., C. Bringans, and A. Braakhuis. 2017. Polyphenols and performance: A systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.) 47 (8):1589–99. doi:10.1007/s40279-017-0675-5.
  • Song, M. Y., J. H. Wang, T. Eom, and H. Kim. 2015. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: A randomized, double-blind placebo-controlled study. Nutrition Research (New York, N.Y.) 35 (8):655–63. doi:10.1016/j.nutres.2015.05.001.
  • Song, Q., S. Peng, and X. Zhu. 2021. Baicalein protects against MPP(+)/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology 87:188–94. doi:10.1016/j.neuro.2021.10.003.
  • Sun, T., L. Chen, R. Liu, Q. S. Liu, and Y. Cheng. 2023. Sophora alopecuroides alleviates neuroinflammation and oxidative damage of Parkinson’s disease in vitro and in vivo. The American Journal of Chinese Medicine 51 (2):309–28. doi:10.1142/S0192415X23500167.
  • Tomobe, K., H. Fujii, B. Sun, H. Nishioka, and O. I. Aruoma. 2007. Modulation of infection-induced inflammation and locomotive deficit and longevity in senescence-accelerated mice-prone (SAMP8) model by the oligomerized polyphenol Oligonol. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 61 (7):427–34. doi:10.1016/j.biopha.2007.05.007.
  • Travagli, R. A., K. N. Browning, and M. Camilleri. 2020. Parkinson disease and the gut: New insights into pathogenesis and clinical relevance. Nature Reviews. Gastroenterology & Hepatology 17 (11):673–85. doi:10.1038/s41575-020-0339-z.
  • Tsao, S. P., B. A. Nurrahma, R. Kumar, C. H. Wu, T. H. Yeh, C. C. Chiu, Y. P. Lee, Y. C. Liao, C. H. Huang, Y. T. Yeh, et al. 2021. Probiotic Enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced Parkinson’s disease rats. Antioxidants (Basel, Switzerland) 10 (11):1823. doi:10.3390/antiox10111823.
  • Wang, B., L. Wang, Y. Qu, J. Lu, and W. Xia. 2022. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food & Function 13 (10):5838–53. doi:10.1039/d1fo04374a.
  • Wang, N., B. N. Feng, B. Hu, Y. L. Cheng, Y. H. Guo, and H. Qian. 2022. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway. Food & Function 13 (4):2019–32. doi:10.1039/d1fo02216d.
  • Wang, T., F. Yue, J. Liu, and P. P. Zou. 2010. Protective effect of epigallocatechin gallate on MPTP induced dopaminergic neuron damage. Chinese Journal of Rehabilitation Theory and Practice 16 (10):913–5. doi:10.3969/j.issn.1006-9771.2010.10.005.
  • Wang, X. H. 2018. Protective effect of methyl rosmarinate on dopaminergic neuron injury in mice with Parkinson’s disease. Chinese Traditional Patient Medicine 40 (5):1156–9. [In Chinese]. doi:10.3969/j.issn.1001-1528.2018.05.031.
  • Wang, X. H. 2023. Effects of phenylethanoid glycosides on MDA, SOD and GSH-Px levels in MPTP-induced PD model mice. Clinical Research and Practice 8 (6):9–12. [ In Chinese]. doi:10.19347/j.cnki.2096-1413.202306003.
  • Wang, X. L., S. T. Feng, Y. T. Wang, N. N. Zhang, Z. Y. Guo, X. Yan, Y. H. Yuan, Z. Z. Wang, N. H. Chen, and Y. Zhang. 2022. Mangiferin, a natural glucoxilxanthone, inhibits mitochondrial dynamin-related protein 1 and relieves aberrant mitophagic proteins in mice model of Parkinson’s disease. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 104:154281. doi:10.1016/j.phymed.2022.154281.
  • Wang, Y. Q., M. Y. Wang, X. R. Fu, Y. Peng, G. F. Gao, Y. M. Fan, X. L. Duan, B. L. Zhao, Y. Z. Chang, and Z. H. Shi. 2015. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron. Free Radical research 49(9):1069–80. doi:10.3109/10715762.2015.1032958.
  • Willis, L. M.,B. Shukitt-Hale, andJ. A. Joseph. 2009. Modulation of cognition and behavior in aged animals: role for antioxidant- and essential fatty acid-rich plant foods. The American Journal of Clinical Nutrition 89 (5):1602S–6S. doi:10.3945/ajcn.2009.26736J. 19339395
  • Wu, L. Y., L. W. Chu, H. D. Cao, Q. Tian, H. Gao, J. H. Huo, and Q. H. Gao. 2024. Effect of Lycium ruthenicum and Lycium barbarum intake on Parkinson based on microbiology and metabonomics: A randomized pilot trial. Food Bioscience 57:103548. doi:10.1016/j.fbio.2023.103548.
  • Wu, Q., M. Wang, W. Chen, K. Wang, and Y. Wang. 2022. Daidzein exerts neuroprotective activity against MPTP-induced Parkinson’s disease in experimental mice and lipopolysaccharide-induced BV2 microglial cells. Journal of Biochemical and Molecular Toxicology 36 (2):e22949. doi:10.1002/jbt.22949.
  • Xiong, S., W. Liu, D. Li, X. Chen, F. Liu, D. Yuan, H. Pan, Q. Wang, S. Fang, and T. Chen. 2019. Oral delivery of puerarin nanocrystals to improve brain accumulation and anti-parkinsonian efficacy. Molecular Pharmaceutics 16 (4):1444–55. doi:10.1021/acs.molpharmaceut.8b01012.
  • Xiong, S., W. Liu, Y. Zhou, Y. Mo, Y. Liu, X. Chen, H. Pan, D. Yuan, Q. Wang, and T. Chen. 2020. Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian Journal of Pharmaceutical Sciences 15 (4):518–28. doi:10.1016/j.ajps.2019.04.003.
  • Xu, Q., Z. Chen, B. Zhu, G. Wang, Q. Jia, Y. Li, and X. Wu. 2020. A-type cinnamon procyanidin oligomers protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice through inhibiting the P38 mitogen-activated protein kinase/P53/BCL-2 associated X protein signaling pathway. The Journal of Nutrition 150 (7):1731–7. doi:10.1093/jn/nxaa128.
  • Xu, Y., M. Xie, J. Xue, L. Xiang, Y. Li, J. Xiao, G. Xiao, and H.-L. Wang. 2020. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson’s disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34 (4):5931–50. doi:10.1096/fj.201903125RR.
  • Xue, X., H. Liu, L. Qi, X. Li, C. Guo, D. Gong, and H. Qu. 2014. Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Research Bulletin 103:54–9. doi:10.1016/j.brainresbull.2014.02.004.
  • Yemula, N., C. Dietrich, V. Dostal, and M. Hornberger. 2021. Parkinson’s disease and the gut: Symptoms, nutrition, and microbiota. Journal of Parkinson’s Disease 11 (4):1491–505. doi:10.3233/JPD-212707.
  • Zhang, L., and F. Li. 2022. Neuroprotective mechanism of passion fruit seed oil in mice with Parkinson’s disease. Chinese Journal of Gerontology 42 (15):3768–72. [ In Chinese] doi:10.3969/j.issn.1005-9202.2022.15.040.
  • Zhang, Q.-S., Y. Heng, Z. Mou, J.-Y. Huang, Y.-H. Yuan, and N.-H. Chen. 2017. Reassessment of subacute MPTP-treated mice as animal model of Parkinson’s disease. Acta Pharmacologica Sinica 38 (10):1317–28. doi:10.1038/aps.2017.49.
  • Zhang, S., S. Wang, X. Shi, and X. Feng. 2020. Polydatin alleviates parkinsonism in MPTP-model mice by enhancing glycolysis in dopaminergic neurons. Neurochemistry International 139:104815. doi:10.1016/j.neuint.2020.104815.
  • Zhang, X. Y., and K. P. Zhang. 2020. Study on eriocitrin alleviating MPTP-induced chronic Parkinson’s disease in rats and its mechanism. Chinese Journal of Immunology 36 (3):369–74. doi:10.3969/j.issn.1000-484X.2020.03.021.
  • Zhang, X., S. A. Molsberry, T. S. Yeh, A. Cassidy, M. A. Schwarzschild, A. Ascherio, and X. Gao. 2022. Intake of flavonoids and flavonoid-rich foods and mortality risk among individuals with Parkinson disease: A prospective cohort study. Neurology 98 (10):e1064–e1076. doi:10.1212/WNL.0000000000013275.
  • Zhang, Y. H., M. L. Liu, and L. Zhu. 2021. Effect and Mechanism of Echinacoside on Inhibiting Glial Cell Activation in MPTP Mouse Model of Parkinson’s Disease. Traditional Chinese Medicine and Clinical Pharmacology 32 (1):36–43. [ In Chinese]. doi:10.19378/j.issn.1003-9783.2021.01.005.
  • Zhang, Y., L. Qin, J. Xie, J. Li, and C. Wang. 2020. Eupatilin prevents behavioral deficits and dopaminergic neuron degeneration in a Parkinson’s disease mouse model. Life Sciences 253:117745. doi:10.1016/j.lfs.2020.117745.
  • Zhao, Y., and Z. N. Lu. 2017. Glabridin attenuates MPTP-induced Parkinson disease by inhibiting extracellular regulated protein kinases signaling pathway. Zhonghua yi xue za zhi(Beijing, China) 97 (26):2050–4. [In Chinese]. PMID: 28763878. doi:10.3760/cma.j.issn.0376-2491.2017.26.008.
  • Zhao, Z., J. Ning, X. Q. Bao, M. Shang, J. Ma, G. Li, and D. Zhang. 2021. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 9 (1):226. doi:10.1186/s40168-021-01107-9.
  • Zheng, C. Q., H. X. Fan, X. X. Li, J. J. Li, S. Sheng, and F. Zhang. 2021. Resveratrol alleviates levodopa-induced dyskinesia in rats. Frontiers in Immunology 12:683577. doi:10.3389/fimmu.2021.683577.
  • Zhou, T., M. Zhu, and Z. Liang. 2018. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Molecular Medicine Reports 17 (4):4883–8. doi:10.3892/mmr.2018.8470.
  • Zhu, G., W. Wang, C. Chen, L. Tang, Y. Liang, Z. Zhang, Y. Lu, and Y. Zhao. 2021. UHPLC-MS-based metabolomics and chemoinformatics study reveals the neuroprotective effect and chemical characteristic in Parkinson’s disease mice after oral administration of Wen-Shen-Yang-Gan decoction. Aging 13 (15):19510–28. doi:10.18632/aging.203361.
  • Zhu, G., X. Wang, S. Wu, X. Li, and Q. Li. 2014. Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease model in mice. Phytotherapy Research: PTR 28 (2):179–86. doi:10.1002/ptr.4975.
  • Zhu, Y. L., M. F. Sun, X. B. Jia, K. Cheng, Y. D. Xu, Z. L. Zhou, P. H. Zhang, C. M. Qiao, C. Cui, X. Chen, et al. 2019. Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction, α-synuclein expression and oxidative stress. International Immunopharmacology 66:19–27. doi:10.1016/j.intimp.2018.11.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.