173
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The art and science of porous starch: understanding the preparation method and structure–function relationship

, , , , , & ORCID Icon show all

References

  • Abedi, E., M. Sayadi, and K. Pourmohammadi. 2022. Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocolloids. 129 (August):107676. doi: 10.1016/j.foodhyd.2022.107676.
  • Ahmadzadeh, S., and A. Ubeyitogullari. 2023. Generation of porous starch beads via a 3D food printer: The effects of amylose content and drying technique. Carbohydrate Polymers 301 (Pt A):120296. doi: 10.1016/j.carbpol.2022.120296.
  • Apriyanto, A., J. Compart, and J. Fettke. 2022. A review of starch, a unique biopolymer – Structure, metabolism and in planta modifications. Plant Science 318:111223. doi: 10.1016/j.plantsci.2022.111223.
  • Athira, V. A., T. Udayarajan, G. Chinthu, S. C. Goksen, and P. N. Brennan. 2023. A brief review on 3D printing of chocolate. International Journal of Food Science & Technology 58 (6):2811–28. doi: 10.1111/ijfs.16415.
  • Bao, L., X. Zhu, H. Dai, Y. Tao, X. Zhou, W. Liu, and Y. Kong. 2016. Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow. International Journal of Biological Macromolecules 89 (August):389–95. doi: 10.1016/j.ijbiomac.2016.05.003.
  • Benavent-Gil, Y., and C. M. Rosell. 2017a. Comparison of porous starches obtained from different enzyme types and levels. Carbohydrate Polymers 157 (February):533–40. doi: 10.1016/j.carbpol.2016.10.047.
  • Benavent-Gil, Y., and C. M. Rosell. 2017b. Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes. International Journal of Biological Macromolecules 103 (October):587–95. doi: 10.1016/j.ijbiomac.2017.05.089.
  • Cao, F., S. Lu, L. Wang, M. Zheng, and S. Young Quek. 2023. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chemistry 415 (July):135765. doi: 10.1016/j.foodchem.2023.135765.
  • Carmona, G. R., L. A. Bello-Pérez, A. Aguirre-Cruz, A. Aparicio-Saguilán, J. Hernández-Torres, and J. Alvarez-Ramirez. 2016. Effect of ultrasonic treatment on the morphological, physicochemical, functional, and rheological properties of starches with different granule size. Starch – Stärke 68 (9–10):972–9. doi: 10.1002/star.201600019.
  • Chen, J., Y. Wang, J. Liu, and X. Xu. 2020. Preparation, characterization, physicochemical property and potential application of porous starch: A review. International Journal of Biological Macromolecules 148:1169–81. doi: 10.1016/j.ijbiomac.2020.02.055.
  • Chen, X. Y., C. Chen, Z. J. Zhang, and D. H. Xie. 2013. Synthesis and capacitive performance of nitrogen doped porous carbons derived from sodium carboxymethyl starch. Powder Technology 246 (September):201–9. doi: 10.1016/j.powtec.2013.05.023.
  • Chen, Y., G. Dai, and Q. Gao. 2020. Preparation and properties of granular cold-water-soluble porous starch. International Journal of Biological Macromolecules 144 (February):656–62. doi: 10.1016/j.ijbiomac.2019.12.060.
  • Chung, H. J., Q. Liu, and R. Hoover. 2009. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers 75 (3):436–47. doi: 10.1016/j.carbpol.2008.08.006.
  • Dayang, D. N., H. Samsudin, U. Utra, and A. K. Alias. 2021. Modification methods toward the production of porous starch: A review. Critical Reviews in Food Science and Nutrition 61 (17):2841–62. doi: 10.1080/10408398.2020.1789064.
  • Deladino, L., A. S. Teixeira, A. S. Navarro, I. Alvarez, A. D. Molina-García, and M. Martino. 2015. Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants. Food and Bioproducts Processing 94 (April):463–72. doi: 10.1016/j.fbp.2014.07.001.
  • Deladino, L., A. Schneider Teixeira, F. J. Plou, A. S. Navarro, and A. D. Molina-García. 2017. Effect of high hydrostatic pressure, alkaline and combined treatments on corn starch granules metal binding: structure, swelling behavior and thermal properties assessment. Food and Bioproducts Processing 102 (March):241–9. doi: 10.1016/j.fbp.2017.01.003.
  • Dura, A., and C. M. Rosell. 2016. Physico-chemical properties of corn starch modified with cyclodextrin glycosyltransferase. International Journal of Biological Macromolecules 87 (June):466–72. doi: 10.1016/j.ijbiomac.2016.03.012.
  • Dura, A., W. Błaszczak, and C. M. Rosell. 2014. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers 101 (1):837–45. doi: 10.1016/j.carbpol.2013.10.013.
  • Gao, F., D. Li, C. h Bi, Z. h Mao, and B. Adhikari. 2013. Application of various drying methods to produce enzymatically hydrolyzed porous starch granules. Drying Technology 31 (13–14):1627–34. doi: 10.1080/07373937.2013.771651.
  • Gao, F., D. Li, C. H. Bi, Z. H. Mao, and B. Adhikari. 2014. Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydrate Polymers 103 (1):310–8. doi: 10.1016/j.carbpol.2013.12.028.
  • Guo, L., J. Li, H. Li, Y. Zhu, and B. Cui. 2020b. The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches. International Journal of Biological Macromolecules 144 (February):863–73. doi: 10.1016/j.ijbiomac.2019.09.164.
  • Guo, L., J. Li, Y. Gui, Y. Zhu, B. Yu, C. Tan, Y. Fang, and B. Cui. 2020a. Porous starches modified with double enzymes: Structure and adsorption properties. International Journal of Biological Macromolecules 164 (December):1758–65. doi: 10.1016/j.ijbiomac.2020.07.323.
  • Han, X., H. Wen, Y. Luo, J. Yang, W. Xiao, X. Ji, and J. Xie. 2021. Effects of α-amylase and glucoamylase on the characterization and function of maize porous starches. Food Hydrocolloids. 116 (July):106661. doi: 10.1016/j.foodhyd.2021.106661.
  • Hu, X., B. Guo, C. Liu, X. Yan, J. Chen, S. Luo, Y. Liu, H. Wang, R. Yang, Y. Zhong, et al. 2018. Modification of potato starch by using superheated steam. Carbohydrate Polymers 198 (October):375–84. doi: 10.1016/j.carbpol.2018.06.110.
  • Iuga, M., and S. Mironeasa. 2020. A review of the hydrothermal treatments impact on starch based systems properties. Critical Reviews in Food Science and Nutrition 60 (22):3890–915. doi: 10.1080/10408398.2019.1664978.
  • Jane, J., Y. Y. Chen, L. F. Lee, A. E. McPherson, K. S. Wong, M. Radosavljevic, and T. Kasemsuwan. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry 76 (5):629–37. doi: 10.1094/CCHEM.1999.76.5.629.
  • Jiang, K., W. Wang, Q. Ma, J. Wang, and J. Sun. 2023. Microwave-assisted enzymatic hydrolysis as a novel efficient way to prepare porous starch. Carbohydrate Polymers 301 (Pt A):120306. doi: 10.1016/j.carbpol.2022.120306.
  • Jin, Z. 2018. Functional Starch and Applications in Food. In Functional Starch and Applications in Food, edited by Zhengyu Jin. Singapore: Springer Singapore. doi: 10.1007/978-981-13-1077-5.
  • Jung, Y. S., H. L. Byung, and H. Y. Sang. 2017. “Physical Structure and Absorption Properties of Tailor-Made Porous Starch Granules Produced by Selected Amylolytic Enzymes.” edited by Diego F. Gomez-Casati. PloS One 12 (7):e0181372. doi: 10.1371/journal.pone.0181372.
  • Keeratiburana, T., A. R. Hansen, S. Soontaranon, A. Blennow, and S. Tongta. 2020. Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase. Carbohydrate Polymers 230 (February):115611. doi: 10.1016/j.carbpol.2019.115611.
  • Kesarwani, A., P. Yuan Chiang, and S. S. Chen. 2016. Rapid visco analyzer measurements of japonica rice cultivars to study interrelationship between pasting properties and farming system. International Journal of Agronomy 2016:1–6. doi: 10.1155/2016/3595326.
  • Kraus, S., H. P. Schuchmann, and V. Gaukel. 2014. Factors influencing the microwave-induced expansion of starch-based extruded pellets under vacuum. Journal of Food Process Engineering 37 (3):264–72. doi: 10.1111/jfpe.12082.
  • Kumar, R., and B. S. Khatkar. 2017. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. Journal of Food Science and Technology 54 (8):2403–10. doi: 10.1007/s13197-017-2681-x.
  • Li, H., Y. Zhu, A. Jiao, J. Zhao, X. Chen, B. Wei, X. Hu, C. Wu, Z. Jin, and Y. Tian. 2013. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch. International Journal of Biological Macromolecules 55 (April):276–81. doi: 10.1016/j.ijbiomac.2013.01.021.
  • Liu, Y., J. Gao, H. Wu, M. Gou, L. Jing, K. Zhao, B. Zhang, G. Zhang, and W. Li. 2019. Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures. International Journal of Biological Macromolecules 133 (July):346–53. doi: 10.1016/j.ijbiomac.2019.04.111.
  • Luo, X.-E., R.-Y. Wang, J.-H. Wang, Y. Li, H.-N. Luo, X.-A. Zeng, M.-W. Woo, and Z. Han. 2023. Combining pulsed electric field and cross-linking to enhance the structural and physicochemical properties of corn porous starch. Food Chemistry 418 (August):135971. doi: 10.1016/j.foodchem.2023.135971.
  • Magallanes-Cruz, P. A., P. C. Flores-Silva, and L. A. Bello-Perez. 2017. Starch structure influences its digestibility: A review. Journal of Food Science 82 (9):2016–23. doi: 10.1111/1750-3841.13809.
  • Majzoobi, M., S. Hedayati, and A. Farahnaky. 2015. Functional properties of microporous wheat starch produced by α-amylase and sonication. Food Bioscience 11 (September):79–84. doi: 10.1016/j.fbio.2015.05.001.
  • Malafaya, P. B., C. Elvira, A. Gallardo, J. San Román, and R. L. Reis. 2001. Porous starch-based drug delivery systems processed by a microwave route. Journal of Biomaterials Science. Polymer Edition 12 (11):1227–41. doi: 10.1163/156856201753395761.
  • Malucelli, L. C., L. G. Lacerda, M. A. S. Da Carvalho Filho, D. E. R. Fernández, I. M. Demiate, C. S. Oliveira, and E. Schnitzler. 2015. Porous waxy maize starch: Thermal, structural and viscographic properties of modified granules obtained by enzyme treatment. Journal of Thermal Analysis and Calorimetry 120 (1):525–32. doi: 10.1007/s10973-015-4483-6.
  • Mirka, S., H. Katerina, M. Zdenka, T. Alexandra, I.-P. Viara, and S. Ivo. 2012. Magnetic porous corn starch for the affinity purification of cyclodextrin glucanotransferase produced by Bacillus circulans. Biocatalysis and Biotransformation 30 (1):96–101. doi: 10.3109/10242422.2012.646665.
  • Nadaf, S., A. Jadhav, and S. Killedar. 2021. Mung bean (Vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion. International Journal of Biological Macromolecules 167 (January):345–57. doi: 10.1016/j.ijbiomac.2020.11.172.
  • Offiah, V., V. Kontogiorgos, and K. O. Falade. 2019. Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition 59 (18):2979–98. doi: 10.1080/10408398.2018.1480007.
  • Oyeyinka, S. A., O. A. Akintayo, O. A. Adebo, E. Kayitesi, and P. B. Njobeh. 2021. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. International Journal of Biological Macromolecules 176:87–95. doi: 10.1016/j.ijbiomac.2021.02.066.
  • Punia Bangar, S., A. O. Ashogbon, A. Singh, V. Chaudhary, and W. S. Whiteside. 2022. Enzymatic modification of starch: A green approach for starch applications. Carbohydrate Polymers 287:119265. doi: 10.1016/j.carbpol.2022.119265.
  • Purwitasari, L., M. P. Wulanjati, Y. Pranoto, and L. D. Witasari. 2023. Characterization of porous starch from edible canna (Canna edulis Kerr.) produced by enzymatic hydrolysis using thermostable α-amylase. Food Chemistry Advances 2 (October):100152. doi: 10.1016/j.focha.2022.100152.
  • Qian, J., X. Chen, X. Ying, and B. Lv. 2011. Optimisation of porous starch preparation by ultrasonic pretreatment followed by enzymatic hydrolysis. International Journal of Food Science & Technology 46 (1):179–85. doi: 10.1111/j.1365-2621.2010.02469.x.
  • Sarifudin, A., T. Keeratiburana, S. Soontaranon, C. Tangsathitkulchai, and S. Tongta. 2020. Pore characteristics and structural properties of ethanol-treated starch in relation to water absorption capacity. Lwt 129 (July):109555. doi: 10.1016/j.lwt.2020.109555.
  • Sathyan, S., and P. Nisha. 2022. Optimization and characterization of porous starch from corn starch and application studies in emulsion stabilization. Food and Bioprocess Technology 15 (9):2084–99. doi: 10.1007/s11947-022-02843-y.
  • Shipra Jha, Shubhajit Sarkhel, Sreyajit Saha, Bijendra Sahoo, Ankanksha Kumari, Kaberi Chatterjee, Papiya Mitra Mazumder, Gautam Sarkhel, Anand Mohan, and Anupam Roy. 2024. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Research International, 175:113771. doi: 10.1016/j.foodres.2023.113771.
  • Singh, J., L. Kaur, and O. J. McCarthy. 2007. Factors Influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review. Food Hydrocolloids. 21 (1):1–22. doi: 10.1016/j.foodhyd.2006.02.006.
  • Song, Z., Y. Zhong, W. Tian, C. Zhang, A. R. Hansen, A. Blennow, W. Liang, and D. Guo. 2020. Structural and functional characterizations of α-amylase-treated porous popcorn starch. Food Hydrocolloids. 108 (vember):105606. doi: 10.1016/j.foodhyd.2019.105606.
  • Soykeabkaew, N., C. Thanomsilp, and O. Suwantong. 2015. A review: Starch-based composite foams. Composites Part A: Applied Science and Manufacturing 78:246–63. doi: 10.1016/j.compositesa.2015.08.014.
  • Su, H., J. Tu, M. Zheng, K. Deng, S. Miao, S. Zeng, B. Zheng, and X. Lu. 2020. Effects of oligosaccharides on particle structure, pasting and thermal properties of wheat starch granules under different freezing temperatures. Food Chemistry 315 (June):126209. doi: 10.1016/j.foodchem.2020.126209.
  • Subando, T. R., Y. Pranoto, and L. D. Witasari. 2023. Optimization and characterization of arrowroot porous starch using thermostable α-amylase by response surface methodology. ResearchSquare 1–25. doi: 10.21203/rs.3.rs-2440776/v1.
  • Sujka, M. 2017. Ultrasonic modification of starch – impact on granules porosity. Ultrasonics Sonochemistry 37 (July):424–9. doi: 10.1016/j.ultsonch.2017.02.001.
  • Sujka, M., U. Pankiewicz, R. Kowalski, K. Nowosad, and A. Noszczyk-Nowak. 2018. Porous starch and its application in drug delivery systems. Polimery w Medycynie 48 (1):25–9. doi: 10.17219/pim/99799.
  • Szwengiel, A., G. Lewandowicz, A. R. Górecki, and W. Błaszczak. 2018. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content. Food Chemistry 240 (February):51–8. doi: 10.1016/j.foodchem.2017.07.082.
  • Tao, H., B. Zhang, F. Wu, Z. Jin, and X. Xu. 2016. Effect of multiple freezing/thawing-modified wheat starch on dough properties and bread quality using a reconstitution system. Journal of Cereal Science 69:132–7. doi: 10.1016/j.jcs.2016.03.001.
  • Thymi, S., Krokida, M. K., Pappa, A., and Z. B. Maroulis. 2005. Structural properties of extruded corn starch. Journal of Food Engineering, 68 (4): 519–526. doi: 10.1016/j.jfoodeng.2004.07.002.
  • Ulfa, G. M., W. D. R. Putri, K. Fibrianto, and S. B. Widjanarko. 2023. Optimization of temperature and reaction influence on ultrasound-modified sweet potato starch. Food Research 7 (Supplementary 1):133–8. doi: 10.26656/fr.2017.7(S1).12.
  • Ulfa, G. M., Putri, W. D. R., Fibrianto, K., and S. B. Widjanarko. 2023. Optimization of temperature and reaction influence on ultrasound-modified sweet potato starch. Food Research, 7 (Supplementary 1):133–138. doi: 10.26656/fr.2017.7(S1).12
  • Uthumporn, U., I. S. M. Zaidul, and A. A. Karim. 2010. Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing 88 (1):47–54. doi: 10.1016/j.fbp.2009.10.001.
  • Wang, S. Y., C. Zhang, Q. Q. Liu, Z. J. Wang, K. X. Wan, J. Y. Qian, L. Zhang, C. Wu, and Q. Li. 2022. Modification of potato starch by critical melting pretreatment combined with freeze-thawing: preparation, morphology, structure, and functionality. Lwt 158 (March):113109. doi: 10.1016/j.lwt.2022.113109.
  • Wu, Y., X. Du, H. Ge, and Z. Lv. 2011. Preparation of microporous starch by glucoamylase and ultrasound. Starch – Stärke 63 (4):217–25. doi: 10.1002/star.201000036.
  • Xiao, W., H. He, Q. Dong, Q. Huang, F. An, and H. Song. 2023. Effects of high-speed shear and double-enzymatic hydrolysis on the structural and physicochemical properties of rice porous starch. International Journal of Biological Macromolecules 234 (April):123692. doi: 10.1016/j.ijbiomac.2023.123692.
  • Xu, K., C. Chi, Z. She, X. Liu, Y. Zhang, H. Wang, and H. Zhang. 2022. Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread. Food Chemistry 366 (January):130614. doi: 10.1016/j.foodchem.2021.130614.
  • Yaqoob, S., H. Liu, C. Zhao, M. Liu, D. Cai, and J. Liu. 2019. Influence of multiple freezing/thawing cycles on a structural, rheological, and textural profile of fermented and unfermented corn dough. Food Science & Nutrition 7 (11):3471–9. doi: 10.1002/fsn3.1193.
  • Zhang, B., D. Cui, M. Liu, H. Gong, Y. Huang, and F. Han. 2012. Corn porous starch: Preparation, characterization and adsorption property. International Journal of Biological Macromolecules 50 (1):250–6. doi: 10.1016/j.ijbiomac.2011.11.002.
  • Zhang, C., J. A. Han, and S. T. Lim. 2018. Characteristics of some physically modified starches using mild heating and freeze-thawing. Food Hydrocolloids. 77 (April):894–901. doi: 10.1016/j.foodhyd.2017.11.035.
  • Zhang, C., S. Y. Wang, C. Y. Wu, J. J. Li, L. Z. Zhang, Z. J. Wang, Q. Quan Liu, and J. Ya Qian. 2023. Effect of melting combined with ice recrystallization on porous starch preparation: Pore-forming properties, granular morphology, functionality, and multi-scale structures. Food Research International (Ottawa, Ont.) 174 (Pt 1):113463. doi: 10.1016/j.foodres.2023.113463.
  • Zhang, C., S.-Y. Wang, S.-T. Lim, K.-X. Wan, Z.-J. Wang, J.-Y. Qian, and Q.-Q. Liu. 2022. Critical melting assisted freeze-thawing treatment as a novel clean-label way to prepare porous starch: Synergistic effect of melting and ice recrystallization. Food Hydrocolloids. 131 (October):107730. doi: 10.1016/j.foodhyd.2022.107730.
  • Zhang, J., X.-F. Zhu, F. Lu, Z. Yang, H. Tao, Y. Xu, and H.-L. Wang. 2022. Physical modification of waxy maize starch: Combining SDS and freezing/thawing treatments to modify starch structure and functionality. Food Structure 32 (April):100263. doi: 10.1016/j.foostr.2022.100263.
  • Zhang, Y., P. Chen, S. Liu, P. Peng, M. Min, Y. Cheng, E. Anderson, N. Zhou, L. Fan, C. Liu, et al. 2017. Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology 230:143–51. doi: 10.1016/j.biortech.2017.01.046.
  • Zhao, A. Q., L. Yu, M. Yang, C. J. Wang, M. M. Wang, and X. Bai. 2018. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocolloids. 83:465–72. doi: 10.1016/j.foodhyd.2018.04.041.
  • Zheng, J., Q. Li, A. Hu, L. Yang, J. Lu, X. Zhang, and Q. Lin. 2013. Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch – Stärke 65 (7–8):621–7. doi: 10.1002/star.201200197.
  • Zhu, F. 2015. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology 43 (1):1–17. doi: 10.1016/j.tifs.2014.12.008.
  • Zhy Ying, B., H. Kamilah, A. A. Karim, and U. Utra. 2020. Effects of heat-moisture and alkali treatment on the enzymatic hydrolysis of porous sago (Metroxylon sagu) starch. Journal of Food Processing and Preservation 44 (5) doi: 10.1111/jfpp.14419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.