165
Views
0
CrossRef citations to date
0
Altmetric
Review

Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression

, , , , &

References

  • Allen, D., A. D. Bui, N. Cain, G. Rose, and M. Downey. 2013. Analysis of free and bound phenolics in wine and grapes by GC-MS after automated SPE. Analytical and Bioanalytical Chemistry 405 (30):9869–77. doi: 10.1007/s00216-013-7405-0.
  • Arshad, Z., M. A. Hanif, R. W. K. Qadri, and M. Khan. 2014. Role of essential oils in plant diseases protection: A review. International Journal of Chemical and Biochemical Sciences 6:11–7.
  • Atkinson, R. G. 2018. Phenylpropenes: Occurrence, distribution, and biosynthesis in fruit. Journal of Agricultural and Food Chemistry 66 (10):2259–72. doi: 10.1021/acs.jafc.6b04696.
  • Bakker, J., and R. J. Clarke, eds. 2011. Wine: Flavour chemistry. Oxford, UK: John Wiley and Sons.
  • Barnaba, C., E. Dellacassa, G. Nicolini, T. Nardin, M. Malacarne, and R. Larcher. 2015. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction-ultrahigh-performance liquid chromatography-quadrupole-orbitrap mass spectrometry. Journal of Chromatography. A 1423:124–35. doi: 10.1016/j.chroma.2015.10.085.
  • Beek, S. V., and F. G. Priest. 2000. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Applied and Environmental Microbiology 66 (12):5322–8. doi: 10.1128/AEM.66.12.5322-5328.2000.
  • Benito, S., F. Palomero, A. Morata, F. Calderón, and J. A. Suárez-Lepe. 2009. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of Dekkera/Brettanomyces: Application for Dekkera/Brettanomyces control in red wine making. Journal of Food Science 74 (1):M15–M22. doi: 10.1111/j.1750-3841.2008.00977.x.
  • Birtić, S., C. Ginies, M. Causse, C. Renard, and D. Page. 2009. Changes in volatiles and glycosides during fruit maturation of two contrasted tomato (Solanum lycopersicum) lines. Journal of Agricultural and Food Chemistry 57 (2):591–8. doi: 10.1021/jf8023062.
  • Boido, E., M. García-Marino, E. Dellacassa, F. Carrau, J. Rivas-Gonzalo, and M. Escribano-Bailon. 2011. Characterisation and evolution of grape polyphenol profiles of Vitis vinifera L. cv. Tannat during ripening and vinification. Australian Journal of Grape and Wine Research 17 (3):383–93. doi: 10.1111/j.1755-0238.2011.00164.x.
  • Boidron, J. N., P. Chatonnet, and M. Pons. 1988. Influence du bois sur certaines substances odorantes des vins. Connaissance De La Vigne Et Du Vin 22 (4):275–94. doi: 10.20870/oeno-one.1988.22.4.1263.
  • Boss, P. K., and E. Dennis. 2010. Grapes, the essential raw material determining wine volatile composition: It’s not just about varietal characters. Australian and New Zealand Grapegrower and Winemaker 560:78–82.
  • Botha, J. J. 2010. Sensory, chemical and consumer analysis of Brettanomyces spoilage in South African wines. MSc thesis., University of Stellenbosch.
  • Brígida, F. D. S., E. Cadahia, M. Sanz, P. Poveda, S. Perez-Magarino, M. Ortega-Heras, and C. Gonzalez-Huerta. 2008. Volatile compounds and sensorial characterization of wines from four Spanish denominations of origin, aged in Spanish Rebollo (Quercus pyrenaica Willd.) oak wood barrels. Journal of Agricultural and Food Chemistry 56 (19):9046–9055. doi: 10.1021/jf8014602.
  • Burin, V. M., N. E. Ferreira-Lima, C. P. Panceri, and M. T. Bordignon-Luiz. 2014. Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchemical Journal 114:155–63. doi: 10.1016/j.microc.2013.12.014.
  • Caboni, P., G. Sarais, M. Cabras, and A. Angioni. 2007. Determination of 4-ethylphenol and 4-ethylguaiacol in wines by LC-MS-MS and HPLC-DAD-fluorescence. Journal of Agricultural and Food Chemistry 55 (18):7288–93. doi: 10.1021/jf071156m.
  • Cadahía, E., L. Muñoz, B. F. D. Simón, and M. C. García-Vallejo. 2001. Changes in low molecular weight phenolic compounds in Spanish, French, and American oak woods during natural seasoning and toasting. Journal of Agricultural and Food Chemistry 49 (4):1790–8. doi: 10.1021/jf0006168.
  • Caffrey, A., L. Lerno, A. Rumbaugh, R. Girardello, J. Zweigenbaum, A. Oberholster, and S. E. Ebeler. 2019. Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. American Journal of Enology and Viticulture 70 (4):373–81. doi: 10.5344/ajev.2019.19001.
  • Caffrey, A., L. A. Lerno, J. Zweigenbaum, and S. E. Ebeler. 2021. Characterization of free and bound monoterpene alcohols during Riesling fermentation. Journal of Agricultural and Food Chemistry 69 (45):13286–98. doi: 10.1021/acs.jafc.1c01216.
  • Cameleyre, M., G. Lytra, L. Schütte, J.-C. Vicard, and J.-C. Barbe. 2020. Oak wood volatiles impact on red wine fruity aroma perception in various matrices. Journal of Agricultural and Food Chemistry 68 (47):13319–30. doi: 10.1021/acs.jafc.0c00583.
  • Campbell, J. I., M. Sykes, M. A. Sefton, and A. P. Pollnitz. 2005. The effects of size, temperature and air contact on the outcome of heating oak fragments. Australian Journal of Grape and Wine Research 11 (3):348–54. doi: 10.1111/j.1755-0238.2005.tb00034.x.
  • Carpinteiro, I., B. Abuín, I. Rodríguez, M. Ramil, and R. Cela. 2010. Sorptive extraction with in-sample acetylation for gas chromatography-mass spectrometry determination of ethylphenol species in wine samples. Journal of Chromatography. A 1217 (46):7208–14. doi: 10.1016/j.chroma.2010.09.036.
  • Carpinteiro, I., B. Abuín, I. Rodríguez, M. Ramil, and R. Cela. 2012. Mixed-mode solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of ethylphenols in red wines. Journal of Chromatography. A 1229:79–85. doi: 10.1016/j.chroma.2012.01.044.
  • Carrillo, J. D., and M. T. Tena. 2007. Determination of ethylphenols in wine by in situ derivatisation and headspace solid-phase microextraction-gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry 387 (7):2547–58. doi: 10.1007/s00216-006-1086-x.
  • Cerdán, T. G., S. R. Mozaz, and C. A. Azpilicueta. 2002. Volatile composition of aged wine in used barrels of French oak and of American oak. Food Research International 35 (7):603–10. doi: 10.1016/S0963-9969(01)00151-X.
  • Chatonnet, P., I. Cutzach, M. Pons, and D. Dubourdieu. 1999. Monitoring toasting intensity of barrels by chromatographic analysis of volatile compounds from toasted oak wood. Journal of Agricultural and Food Chemistry 47 (10):4310–8. doi: 10.1021/jf981234t.
  • Chatonnet, P., D. Dubourdie, J. N. L. Boidron, and M. Pons. 1992. The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture 60 (2):165–78. doi: 10.1002/jsfa.2740600205.
  • Chatonnet, P., and D. Dubourdieu. 1998. Comparative study of the characteristics of American white oak (Quercus alba) and European oak (Quercus petraea and Q. robur) for production of barrels used in barrel aging of wines. American Journal of Enology and Viticulture 49 (1):79–85. doi: 10.1242/jcs.00823.
  • Chatonnet, P., D. Dubourdieu, and J. N. Boidron. 1995. The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. American Journal of Enology and Viticulture 46 (4):463–8. doi: 10.5344/ajev.1995.46.4.463.
  • Chatonnet, P., D. Dubourdieu, J. N. Boidron, and V. Lavigne. 1993. Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. Journal of the Science of Food and Agriculture 62 (2):191–202. doi: 10.1002/jsfa.2740620213.
  • Chatonnet, P., C. Viala, and D. Dubourdieu. 1997. Influence of polyphenolic components of red wines on the microbial synthesis of volatile phenols. American Journal of Enology and Viticulture 48 (4):443–8. doi: 10.1536/ihj.3.167.
  • Chira, K., M. R. Gonzáless-Centeno, and P. L. Teissedre. 2017. Wine ageing in oak barrel: Effect of toasting process. Agricultural Research & Technology: Open Access Journal 12 (3):555847. doi: 10.19080/ARTOAJ.2017.12.555847.
  • Chira, K., and P. L. Teissedre. 2013. Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: Behaviour during storage. Food Chemistry 140 (1–2):168–77. doi: 10.1016/j.foodchem.2013.02.049.
  • Coulter, A., G. Baldock, M. Parker, Y. Hayasaka, I. L. Francis, and M. Herderich. 2022. Concentration of smoke marker compounds in non-smoke-exposed grapes and wine in Australia. Australian Journal of Grape and Wine Research 28 (3):459–74. doi: 10.1111/ajgw.12543.
  • Crespo, J., P. Rigou, V. Romero, M. García, T. Arroyo, and J. M. Cabellos. 2017. Effect of seasonal climate fluctuations on the evolution of glycoconjugates during the ripening period of grapevine cv. Muscat à petits grains blancs berries. Journal of the Science of Food and Agriculture 98 (5):1803–12. doi: 10.1002/jsfa.8656.
  • Crews, P., P. Dorenbach, G. Amberchan, R. F. Keiffer, I. Lizama-Chamu, T. C. Ruthenburg, E. P. McCauley, and G. McGourty. 2022. Natural product phenolic diglycosides created from wildfires, defining their impact on California and Oregon grapes and wines. Journal of Natural Products 85 (3):547–61. doi: 10.1021/acs.jnatprod.2c00028.
  • Crump, A. M., M. A. Sefton, and K. L. Wilkinson. 2014. Microwave-assisted deuterium exchange: The convenient preparation of isotopically labelled analogues for stable isotope dilution analysis of volatile wine phenols. Food Chemistry 162:261–3. doi: 10.1016/j.foodchem.2014.04.051.
  • Culbert, J. A., W. W. Jiang, E. Bilogrevic, D. Likos, I. L. Francis, M. P. Krstic, and M. J. Herderich. 2021a. Compositional changes in smoke-affected grape juice as a consequence of activated carbon treatment and the impact on phenolic compounds and smoke flavor in wine. Journal of Agricultural and Food Chemistry 69 (35):10246–59. doi: 10.1021/acs.jafc.1c02642.
  • Culbert, J. A., W. W. Jiang, R. Ristic, C. J. Puglisi, E. C. Nixon, H. M. Shi, and K. L. Wilkinson. 2021b. Glycosylation of volatile phenols in grapes following pre-harvest (on-vine) vs. post-harvest (off-vine) exposure to smoke. Molecules (Basel, Switzerland) 26 (17):5277. doi: 10.3390/molecules26175277.
  • Culbert, J. A., M. P. Krstic, and M. J. Herderich. 2021c. Development and utilization of a model system to evaluate the potential of surface coatings for protecting grapes from volatile phenols implicated in smoke taint. Molecules (Basel, Switzerland) 26 (17):5197. doi: 10.3390/molecules26175197.
  • Culleré, L., A. Escudero, J. Cacho, and V. Ferreira. 2004. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality spanish aged red wines. Journal of Agricultural and Food Chemistry 52 (6):1653–60. doi: 10.1021/jf0350820.
  • Delfini, C., P. Gaia, R. Schellino, M. Strano, A. Pagliara, and S. Ambrò. 2002. Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC). Journal of Agricultural and Food Chemistry 50 (20):5605–11. doi: 10.1021/jf0256337.
  • Dong, W., R. Guo, M. Liu, C. Shen, X. Sun, M. Zhao, J. Sun, H. Li, F. Zheng, M. Huang, et al. 2019. Characterization of key odorants causing the roasted and mud-like aromas in strong-aroma types of base Baijiu. Food Research International (Ottawa, Ont.) 125:108546. doi: 10.1016/j.foodres.2019.108546.
  • Doussot, F., B. De Jéso, S. Quideau, and P. Pardon. 2002. Extractives content in cooperage oak wood during natural seasoning and toasting; influence of tree species, geographic location, and single-tree effects. Journal of Agricultural and Food Chemistry 50 (21):5955–61. doi: 10.1021/jf020494e.
  • Du Plessis, H. W., J. W. Hoff, L. Mokwena, M. van der Rijst, and N. P. Jolly. 2021. Impact of yeast selection on volatile phenol levels of wines produced from smoked-exposed juice. Fermentation 7 (4):240. doi: 10.3390/fermentation7040240.
  • Dufour, C., and I. Sauvaitre. 2000. Interactions between anthocyanins and aroma substances in a model system. Effect on the flavor of grape-derived beverages. Journal of Agricultural and Food Chemistry 48 (5):1784–8. doi: 10.1021/jf990877l.
  • Dungey, K. A., Y. Hayasaka, and K. L. Wilkinson. 2011. Quantitative analysis of glycoconjugate precursors of guaiacol in smoke-affected grapes using liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis. Food Chemistry 126 (2):801–6. doi: 10.1016/j.foodchem.2010.11.094.
  • Edlin, D. A. N., A. Narbad, J. R. Dickinson, and D. Lloyd. 1995. The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiology Letters 125 (2–3):311–5. doi: 10.1111/j.1574-6968.1995.tb07374.x.
  • Fanzone, M., F. Zamora, V. Jofré, M. Assof, and Á. Peña-Neira. 2011. Phenolic composition of Malbec grape skins and seeds from Valle de Uco (Mendoza, Argentina) during ripening. Effect of cluster thinning. Journal of Agricultural and Food Chemistry 59 (11):6120–36. doi: 10.1021/jf200073k.
  • Favell, J. W., K. L. Wilkinson, I. Zigg, S. M. Lyons, R. Ristic, C. J. Puglisi, E. Wilkes, R. Taylor, D. Kelly, G. Howell, et al. 2022. Correlating sensory assessment of smoke-tainted wines with inter-laboratory study consensus values for volatile phenols. Molecules (Basel, Switzerland) 27 (15):4892. doi: 10.3390/molecules27154892.
  • Fernández de Simón, B., E. Cadahía, M. del Alamo, and I. Nevares. 2010. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Analytica Chimica Acta 660 (1–2):211–20. doi: 10.1016/j.aca.2009.09.031.
  • Fernández de Simón, B., E. Cadahía, M. Sanz, P. Poveda, S. Perez-Magariño, M. Ortega-Heras, and C. González-Huerta. 2008. Volatile compounds and sensorial characterization of wines from four Spanish denominations of origin, aged in Spanish Rebollo (Quercus pyrenaica Willd.) oak wood barrels. Journal of Agricultural and Food Chemistry 56 (19):9046–55. doi: 10.1021/jf8014602.
  • Ferreira, V., R. López, and J. F. Cacho. 2000. Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture 80 (11):1659–67. doi: 10.1002/1097-0010(20000901)80:11<1659::aid-jsfa693>3.0.co;2-6.
  • Ferreira, L., R. Perestrelo, M. Caldeira, and J. S. Câmara. 2015. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Journal of Separation Science 32 (11):1875–88. doi: 10.1002/jssc.200900024.
  • Ferreira, V., M.-P. Sáenz-Navajas, E. Campo, P. Herrero, A. de la Fuente, and P. Fernández-Zurbano. 2016. Sensory interactions between six common aroma vectors explain four main red wine aroma nuances. Food Chemistry 199:447–56. doi: 10.1016/j.foodchem.2015.12.048.
  • Filipe-Ribeiro, L., F. Cosme, and F. M. Nunes. 2018. Reducing the negative sensory impact of volatile phenols in red wine with different chitosans: Effect of structure on efficiency. Food Chemistry 242:591–600. doi: 10.1016/j.foodchem.2017.09.099.
  • Filipe-Ribeiro, L., F. Cosme, and F. M. Nunes. 2020. New molecularly imprinted polymers for reducing negative volatile phenols in red wine with low impact on wine colour. Food Research International (Ottawa, Ont.) 129:108855. doi: 10.1016/j.foodres.2019.108855.
  • Filipe-Ribeiro, L., J. Milheiro, C. C. Matos, F. Cosme, and F. M. Nunes. 2017. Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: Impact on wine quality. Food Chemistry 229 (AUG.15):242–51. doi: 10.1016/j.foodchem.2017.02.066.
  • Fudge, A. L., M. Schiettecatte, R. Ristic, Y. Hayasaka, and K. L. Wilkinson. 2012a. Amelioration of smoke taint in wine by treatment with commercial fining agents. Australian Journal of Grape and Wine Research 18 (3):302–7. doi: 10.1111/j.1755-0238.2012.00200.x.
  • Fudge, A. L., K. L. Wilkinson, R. Ristic, and D. Cozzolino. 2012b. Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry 60 (1):52–9. doi: 10.1021/jf203849h.
  • Fudge, A. L., K. L. Wilkinson, R. Ristic, and D. Cozzolino. 2013. Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine. Food Chemistry 139 (1–4):115–9. doi: 10.1016/j.foodchem.2013.01.090.
  • Garcia, D., A. Gomez-Caballero, A. Guerreiro, M. A. Goicolea, and R. J. Barrio. 2015. Molecularly imprinted polymers as a tool for the study of the 4-ethylphenol metabolic pathway in red wines. Journal of Chromatography. A 1410:164–72. doi: 10.1016/j.chroma.2015.07.103.
  • García-Moreno, M. V., M. M. Sánchez-Guillén, M. J. Delgado-González, E. Durán-Guerrero, M. C. Rodríguez-Dodero, C. García-Barroso, and D. A. Guillén-Sánchez. 2021. Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. LWT 140:110706. doi: 10.1016/j.lwt.2020.110706.
  • Garde-Cerdán, T., and C. Ancín-Azpilicueta. 2006. Review of quality factors on wine ageing in oak barrels. Trends in Food Science & Technology 17 (8):438–47. doi: 10.1016/j.tifs.2006.01.008.
  • Garrido, J., and F. Borges. 2013. Wine and grape polyphenols—A chemical perspective. Food Research International 54 (2):1844–58. doi: 10.1016/j.foodres.2013.08.002.
  • Glasser, W. G., R. A. Northey, and T. P. Schultz. 1999. Lignin: Historical, biological, and materials perspectives. Washington: American Chemical Society.
  • Godoy, L., J. Varela, C. Martínez, and M. A. Ganga. 2013. The effect of hydroxycinnamic acids on growth and H+-ATPase activity of the wine spoilage yeast Dekkera bruxellensis. African Journal of Microbiology Research 7 (47):5300–5305. doi: 10.5897/AJMR2013.6350.
  • Gunata, Z., S. Bitteur, J.-M. Brillouet, C. Bayonove, and R. Cordonnier. 1988. Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydrate Research 184:139–49. doi: 10.1016/0008-6215(88)80012-0.
  • Harborne, J. B. 1979. Variation in and functional significance of phenolic conjugation in plants. In T. Swain, J. B. HarboneandC. F. Van Sumere (Eds.), Biochemistry of Plant Phenolics 12:457–74. Boston, MA: Springer US. doi: 10.1007/978-1-4684-3372-2_14.
  • Härtl, K., F.-C. Huang, A. P. Giri, K. Franz-Oberdorf, J. Frotscher, Y. Shao, T. Hoffmann, and W. Schwab. 2017. Glucosylation of smoke-derived volatiles in grapevine (Vitis vinifera) is catalyzed by a promiscuous resveratrol/guaiacol glucosyltransferase. Journal of Agricultural and Food Chemistry 65 (28):5681–9. doi: 10.1021/acs.jafc.7b01886.
  • Hayasaka, Y., G. A. Baldock, K. H. Pardon, D. W. Jeffery, and M. J. Herderich. 2010a. Investigation into the formation of guaiacol conjugates in berries and leaves of grapevine Vitis vinifera L. Cv. Cabernet Sauvignon using stable isotope tracers combined with HPLC-MS and MS/MS analysis. Journal of Agricultural and Food Chemistry 58 (4):2076–81. doi: 10.1021/jf903732p.
  • Hayasaka, Y., G. A. Baldock, M. Parker, K. H. Pardon, C. A. Black, M. J. Herderich, and D. W. Jeffery. 2010b. Glycosylation of smoke-derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. Journal of Agricultural and Food Chemistry 58 (20):10989–98. doi: 10.1021/jf103045t.
  • Hayasaka, Y., K. A. Dungey, G. A. Baldock, K. R. Kennison, and K. L. Wilkinson. 2010c. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta 660 (1–2):143–8. doi: 10.1016/j.aca.2009.10.039.
  • Hayasaka, Y., M. Parker, G. A. Baldock, K. H. Pardon, C. A. Black, D. W. Jeffery, and M. J. Herderich. 2013. Assessing the impact of smoke exposure in grapes: Development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. Journal of Agricultural and Food Chemistry 61 (1):25–33. doi: 10.1021/jf305025j.
  • Heresztyn, T. 1986. Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Archives of Microbiology 146 (1):96–8. doi: 10.1007/BF00690165.
  • Hixson, J. L., Y. Hayasaka, C. D. Curtin, M. A. Sefton, and D. K. Taylor. 2016. Hydroxycinnamoyl glucose and tartrate esters and their role in the formation of ethylphenols in wine. Journal of Agricultural and Food Chemistry 64 (49):9401–11. doi: 10.1021/acs.jafc.6b04074.
  • Hixson, J. L., N. R. Sleep, D. L. Capone, G. M. Elsey, C. D. Curtin, M. A. Sefton, and D. K. Taylor. 2012. Hydroxycinnamic acid ethyl esters as precursors to ethylphenols in wine. Journal of Agricultural and Food Chemistry 60 (9):2293–8. doi: 10.1021/jf204908s.
  • Hong, T. K., and N. Ritsuo. 2012. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science 12 (1):56. doi: 10.1673/031.012.5601.
  • Howes, M. J. R., G. C. Kite, and M. S. J. Simmonds. 2009. Distinguishing Chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 57 (13):5783–9. doi: 10.1021/jf9009153.
  • Jain, A., S. Soni, K. Reddy-Noone, A. Pillai, and K. K. Verma. 2017. Combined headspace single-drop microextraction and solid-phase microextraction for the determination of phenols as their methyl ethers by gas chromatography-mass spectrometry. Analytical Methods 9 (46):6590–8. doi: 10.1039/C7AY02275A.
  • Juge, N., G. Williamson, A. Puigserver, N. J. Cummings, I. F. Connerton, and C. B. Faulds. 2001. High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Research 1 (2):127–32. doi: 10.1111/j.1567-1364.2001.tb00023.x.
  • Kelly, D., A. Zerihun, Y. Hayasaka, and M. Gibberd. 2014. Winemaking practice affects the extraction of smoke-borne phenols from grapes into wines. Australian Journal of Grape and Wine Research 20 (3):386–93. doi: 10.1111/ajgw.12089.
  • Kennison, K. R., M. R. Gibberd, A. P. Pollnitz, and K. L. Wilkinson. 2008. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. Journal of Agricultural and Food Chemistry 56 (16):7379–83. doi: 10.1021/jf800927e.
  • Kennison, K. R., K. L. Wilkinson, A. P. Pollnitz, H. G. Williams, and M. R. Gibberd. 2009. Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Australian Journal of Grape and Wine Research 15 (3):228–37. doi: 10.1111/j.1755-0238.2009.00056.x.
  • Kennison, K. R., K. L. Wilkinson, A. P. Pollnitz, H. G. Williams, and M. R. Gibberd. 2011. Effect of smoke application to field-grown Merlot grapevines at key phenological growth stages on wine sensory and chemical properties. Australian Journal of Grape and Wine Research 17 (2):S5–S12. doi: 10.1111/j.1755-0238.2011.00137.x.
  • Kennison, K. R., K. L. Wilkinson, H. G. Williams, J. H. Smith, and M. R. Gibberd. 2007. Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. Journal of Agricultural and Food Chemistry 55 (26):10897–901. doi: 10.1021/jf072509k.
  • Koeduka, T., E. Fridman, D. R. Gang, D. G. Vassão, B. L. Jackson, C. M. Kish, I. Orlova, S. M. Spassova, N. G. Lewis, J. P. Noel, et al. 2006. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America 103 (26):10128–33. doi: 10.1073/pnas.0603732103.
  • Koseki, T., S. Fushinobu, Ardiansyah, H. Shirakawa, and M. Komai. 2009. Occurrence, properties, and applications of feruloyl esterases. Applied Microbiology and biotechnology 84 (5):803–810. doi: 10.1007/s00253-009-2148-8.
  • Krstic, M. P., D. L. Johnson, and M. J. Herderich. 2015. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Australian Journal of Grape and Wine Research 21:537–53. doi: 10.1111/ajgw.12183.
  • Lan, Y.-B., X.-F. Xiang, X. Qian, J.-M. Wang, M.-Q. Ling, B.-Q. Zhu, T. Liu, L.-B. Sun, Y. Shi, A. G. Reynolds, et al. 2019. Characterization and differentiation of key odor-active compounds of ‘Beibinghong’ icewine and dry wine by gas chromatography-olfactometry and aroma reconstitution. Food Chemistry 287 (30):186–96. doi: 10.1016/j.foodchem.2019.02.074.
  • Larcher, R., G. Nicolini, D. Bertoldi, and T. Nardin. 2008. Determination of 4-ethylcatechol in wine by high-performance liquid chromatography-coulometric electrochemical array detection. Analytica Chimica Acta 609 (2):235–40. doi: 10.1016/j.aca.2007.12.038.
  • Larcher, R., G. Nicolini, C. Puecher, D. Bertoldi, S. Moser, and G. Favaro. 2007. Determination of volatile phenols in wine using high-performance liquid chromatography with a coulometric array detector. Analytica Chimica Acta 582 (1):55–60. doi: 10.1016/j.aca.2006.08.056.
  • Lecas, M., Z. Y. Gunata, J.-C. Sapis, and C. L. Bayonove. 1991. Purification and partial characterization of β-glucosidase from grape. Phytochemistry 30 (2):451–4. doi: 10.1016/0031-9422(91)83702-M.
  • Liang, Z. J., Z. X. Fang, A. Pai, J. Q. Luo, R. Y. Gan, Y. Gao, J. Lu, and P. Z. Zhang. 2022. Glycosidically bound aroma precursors in fruits: A comprehensive review. Critical Reviews in Food Science and Nutrition 62 (1):215–43. doi: 10.1080/10408398.2020.1813684.
  • Ling, M., R. Chai, X. Xiang, J. Li, P. Zhou, Y. Shi, C. Duan, and Y. Lan. 2023. Characterization of key odor-active compounds in Chinese Dornfelder wine and its regional variations by application of molecular sensory science approaches. Food Chemistry: X 17:100598. doi: 10.1016/j.fochx.2023.100598.
  • Lobo, A. P., R. P. Bedriana, R. R. Madrera, and B. S. Valles. 2020. Aromatic, olfactometric and consumer description of sweet ciders obtained by cryo-extraction. Food Chemistry 338:127829. doi: 10.1016/j.foodchem.2020.127829.
  • López, R., M. Aznar, J. Cacho, and V. Ferreira. 2002. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography. A 966 (1–2):167–77. doi: 10.1016/S0021-9673(02)00696-9.
  • Loscos, N., P. Hernández-Orte, J. Cacho, and V. Ferreira. 2009. Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties. Journal of Agricultural and Food Chemistry 57 (6):2468–80. doi: 10.1021/jf803256e.
  • Loureiro, V., and M. Malfeito-Ferreira. 2003. Spoilage yeasts in the wine industry. International Journal of Food Microbiology 86 (1–2):23–50. doi: 10.1016/S0168-1605(03)00246-0.
  • Lubbers, R. J., A. Dilokpimol, J. Visser, M. R. Mäkelä, K. S. Hildén, and R. P. de Vries. 2019. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnology Advances 37 (7):107396. doi: 10.1016/j.biotechadv.2019.05.002.
  • Maga, J. A., and I. Katz. 1978. Simple phenol and phenolic compounds in food flavor. CRC Critical Reviews in Food Science and Nutrition 10 (4):323–72. doi: 10.1080/10408397809527255.
  • Mageroy, M. H., D. M. Tieman, A. Floystad, M. G. Taylor, and H. J. Klee. 2012. A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. Plant Journal: For Cell and Molecular Biology 69 (6):1043–51. doi: 10.1111/j.1365-313X.2011.04854.x.
  • Malfeito-Ferreira, M., N. Rodrigues, and V. Loureiro. 2001. The influence of oxygen on the “horse sweat taint” in red wines. Italian Food Beverage Technology 24:34–8.
  • Martínez-Gil, A. M., M. Angenieux, A. I. Pardo-García, G. L. Alonso, H. Ojeda, and M. R. Salinas. 2013. Glycosidic aroma precursors of Syrah and Chardonnay grapes after an oak extract application to the grapevines. Food Chemistry 138 (2–3):956–65. doi: 10.1016/j.foodchem.2012.11.032.
  • Martínez-Gil, A. M., T. Garde-Cerdán, L. Martínez, G. L. Alonso, and M. R. Salinas. 2011. Effect of oak extract application to verdejo grapevines on grape and wine aroma. Journal of Agricultural and Food Chemistry 59 (7):3253–63. doi: 10.1021/jf104178c.
  • Mateo, J., and R. Di Stefano. 1997. Description of the β-glucosidase activity of wine yeasts. Food Microbiology 14 (6):583–91. doi: 10.1006/fmic.1997.0122.
  • Mayr, C. M., J. P. Geue, H. E. Holt, W. P. Pearson, D. W. Jeffery, and I. L. Francis. 2014. Characterization of the key aroma compounds in Shiraz wine by quantitation, aroma reconstitution, and omission studies. Journal of Agricultural and Food Chemistry 62 (20):4528–36. doi: 10.1021/jf405731v.
  • McKay, M., F. F. Bauer, V. Panzeri, and A. Buica. 2020. Investigation of olfactory interactions of low levels of five off-flavour causing compounds in a red wine matrix. Food Research International (Ottawa, Ont.) 128:108878. doi: 10.1016/j.foodres.2019.108878.
  • McKay, M., F. F. Bauer, V. Panzeri, and A. Buica. 2021. Investigating the effects of two volatile phenols on aroma perception of four red wine cultivars using projective mapping. Journal of Sensory Studies 36 (1): E 12616. doi: 10.1111/joss.12616.
  • Meng, J. F., T. F. Xu, C. Z. Song, X. L. Li, T. X. Yue, M. Y. Qin, Y. L. Fang, Z. W. Zhang, and Z. M. Xi. 2013. Characteristic free aromatic components of nine clones of spine grape (Vitis davidii Foex) from Zhongfang County (China). Food Research International 54 (2):1795–800. doi: 10.1016/j.foodres.2013.09.039.
  • Milheiro, J., L. Filipe-Ribeiro, F. Cosme, and F. M. Nunes. 2017. A simple, cheap and reliable method for control of 4-ethylphenol and 4-ethylguaiacol in red wines. Screening of fining agents for reducing volatile phenols levels in red wines. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1041–1042:183–90. doi: 10.1016/j.jchromb.2016.10.036.
  • Milheiro, J., L. Filipe-Ribeiro, A. Vilela, F. Cosme, and F. M. Nunes. 2019. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches. Critical Reviews in Food Science and Nutrition 59 (9):1367–91. doi: 10.1080/10408398.2017.1408563.
  • Miyagusuku-Cruzado, G., I. García-Cano, D. Rocha-Mendoza, R. Jiménez-Flores, and M. M. Giusti. 2020. Monitoring hydroxycinnamic acid decarboxylation by lactic acid bacteria using high-throughput UV-Vis spectroscopy. Molecules (Basel, Switzerland) 25 (14):3142. doi: 10.3390/molecules25143142.
  • Mkumbuzi, E., M. N. Pillay, and W. E. van Zyl. 2023. Reaction mechanisms in microwave-assisted lignin depolymerisation in hydrogen-donating solvents. Green Processing and Synthesis 12 (1):20230154. doi: 10.1515/gps-2023-0154.
  • Modesti, M., C. Szeto, R. Ristic, W. Jiang, J. Culbert, K. Bindon, C. Catelli, F. Mencarelli, P. Tonutti, and K. Wilkinson. 2021a. Potential mitigation of smoke taint in wines by post-harvest ozone treatment of grapes. Molecules (Basel, Switzerland) 26 (6):1798. doi: 10.3390/molecules26061798.
  • Modesti, M., C. Szeto, R. Ristic, W. Jiang, J. Culbert, C. Catelli, F. Mencarelli, P. Tonutti, and K. Wilkinson. 2021b. Amelioration of smoke taint in Cabernet Sauvignon wine via post-harvest ozonation of grapes. Beverages 7 (3):44. doi: 10.3390/beverages7030044.
  • Monagas, M., R. Suárez, C. Gómez-Cordovés, and B. Bartolomé. 2005. Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS. American Journal of Enology and Viticulture 56 (2):139–47. doi: 10.5344/ajev.2005.56.2.139.
  • Moreno, J. J., F. Cerpa-Calderón, S. D. Cohen, Y. Fang, M. Qian, and J. A. Kennedy. 2008. Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine. Food Chemistry 109 (4):755–62. doi: 10.1016/j.foodchem.2008.01.035.
  • Muhlemann, J. K., A. Klempien, and N. Dudareva. 2014. Floral volatiles: From biosynthesis to function. Plant, Cell & Environment 37 (8):1936–49. doi: 10.1111/pce.12314.
  • Noestheden, M., E. G. Dennis, and W. F. Zandberg. 2018. Quantitating volatile phenols in Cabernet Franc berries and wine after on-vine exposure to smoke from a simulated forest fire. Journal of Agricultural and Food Chemistry 66 (3):695–703. doi: 10.1021/acs.jafc.7b04946.
  • Noestheden, M., K. Thiessen, E. G. Dennis, B. Tiet, and W. F. Zandberg. 2017. Quantitating organoleptic volatile phenols in smoke-exposed Vitis vinifera berries. Journal of Agricultural and Food Chemistry 65 (38):8418–25. doi: 10.1021/acs.jafc.7b03225.
  • Noguerol-Pato, R., C. González-Barreiro, B. Cancho-Grande, M. C. Martínez, J. L. Santiago, and J. Simal-Gándara. 2012. Floral, spicy and herbaceous active odorants in Gran Negro grapes from shoulders and tips into the cluster, and comparison with Brancellao and Mouraton varieties. Food Chemistry 135 (4):2771–82. doi: 10.1016/j.foodchem.2012.06.104.
  • Obeng-Ofori, D., and C. Reichmuth. 1997. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild) against four species of stored-product Coleoptera. International Journal of Pest Management 43 (1):89–94. doi: 10.1080/096708797229040.
  • Oberholster, O., L. X. Lim, C. M. Plaza, I. A. Perez, Y. Wen, and B. Neupane. 2023. Grape smoke exposure risk assessment: Wine matrix impact on smoke marker compound smoke expression. BIO Web of Conferences 56:02039. doi: 10.1051/bioconf/20235602039.
  • Oberholster, A., Y. Wen, S. Dominguez Suarez, J. Erdmann, R. Cauduro Girardello, A. Rumbaugh, B. Neupane, C. Brenneman, A. Cantu, and H. Heymann. 2022. Investigation of different winemaking protocols to mitigate smoke taint character in wine. Molecules (Basel, Switzerland) 27 (5):1732. doi: 10.3390/molecules27051732.
  • Ogunwande, I. A., T. M. Walker, and W. N. Setzer. 2007. A review of aromatic herbal plants of medicinal importance from Nigeria. Natural Product Communications 2 (12):1934578X0700201. doi: 10.1177/1934578X0700201224.
  • Ortega-Heras, M., C. González-Huerta, P. Herrera, and M. L. González-Sanjosé. 2004. Changes in wine volatile compounds of varietal wines during ageing in wood barrels. Analytica Chimica Acta 513 (1):341–50. doi: 10.1016/j.aca.2003.10.051.
  • Ortiz-Serrano, P., and J. V. Gil. 2010. Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. Journal of Agricultural and Food Chemistry 58 (2):1106–14. doi: 10.1021/jf903366r.
  • Pardo-García, A. I., K. S. de la Hoz, A. Zalacain, G. L. Alonso, and M. R. Salinas. 2014. Effect of vine foliar treatments on the varietal aroma of Monastrell wines. Food Chemistry 163:258–66. doi: 10.1016/j.foodchem.2014.04.100.
  • Pardo-García, A. I., K. L. Wilkinson, J. A. Culbert, N. D. R. Lloyd, G. L. Alonso, and M. R. Salinas. 2017. Accumulation of guaiacol glycoconjugates in fruit, leaves and shoots of Vitis vinifera cv. Monastrell following foliar applications of guaiacol or oak extract to grapevines. Food Chemistry 217:782–9. doi: 10.1016/j.foodchem.2016.08.090.
  • Parker, M., W. M. Jiang, E. Bilogrevic, D. Likos, J. Gledhill, A. D. Coulter, G. D. Cowey, C. A. Simos, I. L. Francis, and M. J. Herderich. 2023. Modelling smoke flavour in wine from chemical composition of smoke-exposed grapes and wine. Australian Journal of Grape and Wine Research 2023:1–14. doi: 10.1155/2023/4964850.
  • Parker, M., P. Osidacz, G. A. Baldock, Y. Hayasaka, C. A. Black, K. H. Pardon, D. W. Jeffery, J. P. Geue, M. J. Herderich, and I. L. Francis. 2012. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. Journal of Agricultural and Food Chemistry 60 (10):2629–37. doi: 10.1021/jf2040548.
  • Paul, H.-A., L. Diana, and G. B. Ralf. 2013. Detection of feruloyl-and cinnamoyl esterases from basidiomycetes in the presence of interfering laccase. Bioresource Technology 130:231–8. doi: 10.1016/j.biortech.2012.12.039.
  • Perez-Jiménez, M., A. Esteban-Fernández, C. Muñoz-González, and M. A. Pozo-Bayón. 2020. Interactions among odorants, phenolic compounds, and oral components and their effects on wine aroma volatility. Molecules (Basel, Switzerland) 25 (7):1701. doi: 10.3390/molecules25071701.
  • Pérez-Magariño, S., M. Ortega-Heras, and E. Cano-Mozo. 2008. Optimization of a solid-phase extraction method using copolymer sorbents for isolation of phenolic compounds in red wines and quantification by HPLC. Journal of Agricultural and Food Chemistry 56 (24):11560–70. doi: 10.1021/jf802100j.
  • Pérez-Prieto, L. J., J. M. López-Roca, A. Martínez-Cutillas, F. Pardo Mínguez, and E. Gómez-Plaza. 2002. Maturing wines in oak barrels. Effects of origin, volume, and age of the barrel on the wine volatile composition. Journal of Agricultural and Food Chemistry 50 (11):3272–6. doi: 10.1021/jf011505r.
  • Pet’ka, J., E. Leitner, and B. Parameswaran. 2012. Musk strawberries: The flavour of a formerly famous fruit reassessed. Flavour and Fragrance Journal 27 (4):273–9. doi: 10.1002/ffj.3095.
  • Petrozziello, M., A. Asproudi, M. Guaita, D. Borsa, S. Motta, L. Panero, and A. Bosso. 2014. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chemistry 149:197–202. doi: 10.1016/j.foodchem.2013.10.098.
  • Pizarro, C., C. Sáenz-González, N. Perez-del-Notario, and J. M. González-Sáiz. 2010. Optimisation of a dispersive liquid-liquid microextraction method for the simultaneous determination of halophenols and haloanisoles in wines. Journal of Chromatography. A 1217 (49):7630–7. doi: 10.1016/j.chroma.2010.10.032.
  • Pizarro, C., C. Sáenz-González, N. Pérez-Del-Notario, and J. M. González-Sáiz. 2012. Optimisation of a sensitive method based on ultrasound-assisted emulsification-microextraction for the simultaneous determination of haloanisoles and volatile phenols in wine. Journal of Chromatography. A 1244:37–45. doi: 10.1016/j.chroma.2012.04.070.
  • Pogorzelski, E., and A. Wilkowska. 2007. Flavour enhancement through the enzymatic hydrolysis of glycosidic aroma precursors in juices and wine beverages: A review. Flavour and Fragrance Journal 22 (4):251–4. doi: 10.1002/ffj.1784.
  • Pollnitz, A. P., K. H. Pardon, and M. A. Sefton. 2000. Quantitative analysis of 4-ethylphenol and 4-ethylguaiacol in red wine. Journal of Chromatography. A 874 (1):101–9. doi: 10.1016/S0021-9673(00)00086-8.
  • Pollnitz, A. P., K. H. Pardon, M. Sykes, and M. A. Sefton. 2004. The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses. Journal of Agricultural and Food Chemistry 52 (11):3244–52. doi: 10.1021/jf035380x.
  • Portugal, C., Y. Sáenz, B. Rojo-Bezares, M. Zarazaga, C. Torres, J. Cacho, and F. Ruiz-Larrea. 2014. Brettanomyces susceptibility to antimicrobial agents used in winemaking: In vitro and practical approaches. European Food Research and Technology 238 (4):641–52. doi: 10.1007/s00217-013-2143-2.
  • Puértolas, E., N. López, S. Condón, J. Raso, I. Álvarez, E. Puértolas, N. López, S. Condón, J. Raso, and I. Álvarez. 2009. 2009. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology 130 (1):49–55. doi: 10.1016/j.ijfoodmicro.2008.12.035.
  • Pyysalo, T., E. Honkanen, and T. Hirvi. 1979. Volatiles of wild strawberries, Fragaria-vesca L., compared to those of cultivated berries, Fragaria × Ananassa cv. Senga Sengana. Journal of Agricultural and Food Chemistry 27 (1):19–22. doi: 10.1021/jf60221a042.
  • Rafson, J. P., and G. L. Sacks. 2021. Rapid analysis of volatile phenols from grape juice by immersive sorbent sheet extraction prior to direct analysis in real-time mass spectrometry (DART-MS). Journal of Agricultural and Food Chemistry 69 (41):12344–53. doi: 10.1021/acs.jafc.1c04197.
  • Reynolds, A. G., A. Knox, and F. D. Profio. 2018. Evaluation of macerating pectinase enzyme activity under various temperature, pH and ethanol regimes. Beverages 4 (1):10. doi: 10.3390/beverages4010010.
  • Ribereau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. 2006. Organic acids in wine. In Handbook of Enology, ed. Dubourdieu D, vol. 2, 2nd ed., 3–56. Oxford, UK: John Wiley and Sons.
  • Ristic, R., P. K. Boss, and K. L. Wilkinson. 2015. Influence of fruit maturity at harvest on the intensity of smoke taint in wine. Molecules (Basel, Switzerland) 20 (5):8913–27. doi: 10.3390/molecules20058913.
  • Ristic, R., A. L. Fudge, K. A. Pinchbeck, R. De Bei, S. Fuentes, Y. Hayasaka, S. D. Tyerman, and K. L. Wilkinson. 2016. Impact of grapevine exposure to smoke on vine physiology and the composition and sensory properties of wine. Theoretical and Experimental Plant Physiology 28 (1):67–83. doi: 10.1007/s40626-016-0054-x.
  • Ristic, R., P. Osidacz, K. A. Pinchbeck, Y. Hayasaka, A. L. Fudge, and K. L. Wilkinson. 2011. The effect of winemaking techniques on the intensity of smoke taint in wine. Australian Journal of Grape and Wine Research 17 (2):S29–S40. doi: 10.1111/j.1755-0238.2011.00146.x.
  • Ristic, R., K. A. Pinchbeck, A. L. Fudge, Y. Hayasaka, and K. L. Wilkinson. 2013. Effect of leaf removal and grapevine smoke exposure on colour, chemical composition and sensory properties of Chardonnay wines. Australian Journal of Grape and Wine Research 19 (2):230–7. doi: 10.1111/ajgw.12017.
  • Ristic, R., and K. Wilkinson. 2013. Varietal response to smoke exposure. Wine and Viticulture Journal 28 (1):40–1.
  • Rodríguez, H., J. M. Landete, J. A. Curiel, B. de Las Rivas, J. M. Mancheño, and R. Muñoz. 2008. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748T. Journal of Agricultural and Food Chemistry 56 (9):3068–72. doi: 10.1021/jf703779s.
  • Romano, D., F. Valdetara, P. Zambelli, S. Galafassi, V. De Vitis, F. Molinari, C. Compagno, R. Foschino, and I. Vigentini. 2017. Cloning the putative gene of vinyl phenol reductase of Dekkera bruxellensis in Saccharomyces cerevisiae. Food Microbiology 63:92–100. doi: 10.1016/j.fm.2016.11.003.
  • Rubio, P., P. Garijo, P. Santamaría, R. López, J. Martínez, and A. R. Gutiérrez. 2015. Influence of oak origin and ageing conditions on wine spoilage by Brettanomyces yeasts. Food Control 54:176–80. doi: 10.1016/j.foodcont.2015.01.034.
  • Sánchez-Gómez, R., M. Alamo-Sanza, and I. Nevares. 2020. Volatile composition of oak wood from different customised oxygenation wine barrels: Effect on red wine. Food Chemistry 329:127181. doi: 10.1016/j.foodchem.2020.127181.
  • Sánchez-Gómez, R., L. Torregrosa, A. Zalacain, H. Ojeda, V. Bouckenooghe, R. Schneider, G. L. Alonso, and M. R. Salinas. 2019. Behavior of glycosylated aroma precursors in Microvine fruits after guaiacol foliar application. Scientia Horticulturae 246:e1–e8. doi: 10.1016/j.scienta.2018.11.068.
  • Schopp, L. M., J. Lee, J. P. Osborne, S. C. Chescheir, and C. G. Edwards. 2013. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis. Journal of Agricultural and Food Chemistry 61 (47):11610–7. doi: 10.1021/jf403440k.
  • Schumacher, R., M. E. AlañóN, L. Castro‐VáZquez, M. S. PéRez‐Coello, and M. C. DíAz‐Maroto. 2013. Evaluation of oak chips treatment on volatile composition and sensory characteristics of Merlot wine. Journal of Food Quality 36 (1):1–9. doi: 10.1111/jfq.12012.
  • Schumaker, M. R., C. Diako, J. C. Castura, C. G. Edwards, and C. F. Ross. 2019. Influence of wine composition on consumer perception and acceptance of Brettanomyces metabolites using temporal check-all-that-apply methodology. Food Research International (Ottawa, Ont.) 116:963–72. doi: 10.1016/j.foodres.2018.09.034.
  • Sefton, M. A. 1998. Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cvs Merlot and Cabernet Sauvignon. Australian Journal of Grape and Wine Research 4 (1):30–8. doi: 10.1111/j.1755-0238.1998.tb00132.x.
  • Sheppard, S. I., M. K. Dhesi, and N. J. Eggers. 2009. Effect of pre- and postveraison smoke exposure on guaiacol and 4-methylguaiacol concentration in mature grapes. American Journal of Enology and Viticulture 60 (1):98–103. doi: 10.1109/ICEMI.2009.5274122.
  • Siebert, T. E., A. Barker, W. Pearson, S. R. Barter, M. A. D. Lopes, P. Darriet, M. J. Herderich, and I. L. Francis. 2018. Volatile compounds related to ‘stone fruit’ aroma attributes in viognier and chardonnay wines. Journal of Agricultural and Food Chemistry 66 (11):2838–50. doi: 10.1021/acs.jafc.7b05343.
  • Silva, I., F. M. Campos, T. Hogg, and J. A. Couto. 2011. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria. Journal of Applied Microbiology 111 (2):360–70. doi: 10.1111/j.1365-2672.2011.05052.x.
  • Singh, D. P., A. Zerihun, D. Kelly, N. M. Cain, P. Nankervis, and M. O. Downey. 2012. A GC-MS based analytical method for detection of smoke taint associated phenols in smoke affected wines. Current Bioactive Compounds 8 (3):190–9. doi: 10.2174/157340712802762483.
  • Somers, T. C., E. Vérette, and K. F. Pocock. 1987. Hydroxycinnamate esters of Vitis vinifera: Changes during white vinification, and effects of exogenous enzymic hydrolysis. Journal of the Science of Food and Agriculture 40 (1):67–78. doi: 10.1002/jsfa.2740400109.
  • Sousa, F. M., R. J. R. Ferreira, S. V. M. D. Sá, S. C. S. Cunha, and J. D. O. Fernandes. 2020. Novel analytical approach to assess the profile of volatile phenols in Portuguese red wines. Australian Journal of Grape and Wine Research 26 (1):90–100. doi: 10.1111/ajgw.12421.
  • Spillman, P. J., A. P. Pollnitz, D. Liacopoulos, G. K. Skouroumounis, and M. A. Sefton. 1997. Accumulation of vanillin during barrel-aging of white, red, and model wines. Journal of Agricultural and Food Chemistry 45 (7):2584–9. doi: 10.1021/jf970034z.
  • Spillman, P. J., M. A. Sefton, and R. Gawel. 2008. The contribution of volatile compounds derived during oak barrel maturation to the aroma of a Chardonnay and Cabernet Sauvignon wine. Australian Journal of Grape and Wine Research 10 (3):227–35. doi: 10.1111/j.1755-0238.2004.tb00026.x.
  • Stamatopoulos, P., E. Frérot, S. Tempère, A. Pons, and P. Darriet. 2014. Identification of a new lactone contributing to overripe orange aroma in Bordeaux dessert wines via perceptual interaction phenomena. Journal of Agricultural and Food Chemistry 62 (12):2469–78. doi: 10.1021/jf405397c。.
  • Suárez, R., J. A. Suárez-Lepe, A. Morata, and F. Calderón. 2007. The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chemistry 102 (1):10–21. doi: 10.1016/j.foodchem.2006.03.030.
  • Summerson, V., C. G. Viejo, A. L. Pang, D. D. Torrico, and S. Fuentes. 2021b. Assessment of volatile aromatic compounds in smoke tainted Cabernet Sauvignon wines using a low-cost e-nose and machine learning modelling. Molecules (Basel, Switzerland) 26 (16):5108. doi: 10.3390/molecules26165108.
  • Summerson, V., C. G. Viejo, A. Pang, D. D. Torrico, and S. Fuentes. 2021a. Review of the effects of grapevine smoke exposure and technologies to assess smoke contamination and taint in grapes and wine. Beverages 7 (1):7. doi: 10.3390/beverages7010007.
  • Summerson, V., C. G. Viejo, A. Pang, D. D. Torrico, and S. Fuentes. 2021c. Digital smoke taint detection in Pinot Grigio wines using an e-nose and machine learning algorithms following treatment with activated carbon and a cleaving enzyme. Fermentation 7 (3):119. doi: 10.3390/fermentation7030119.
  • Summerson, V., C. G. Viejo, C. Szeto, K. L. Wilkinson, D. D. Torrico, A. Pang, R. De Bei, and S. Fuentes. 2020. Classification of smoke contaminated Cabernet Sauvignon berries and leaves based on chemical fingerprinting and machine learning algorithms. Sensors (Basel, Switzerland) 20 (18):5099. doi: 10.3390/s20185099.
  • Sun, Q., M. J. Gates, E. H. Lavin, T. E. Acree, and G. L. Sacks. 2011. Comparison of odor-active compounds in grapes and wines from Vitis vinifera and non-foxy American grape species. Journal of Agricultural and Food Chemistry 59 (19):10657–64. doi: 10.1021/jf2026204.
  • Szeto, C., N. Lloyd, L. Nicolotti, M. J. Herderich, and K. L. Wilkinson. 2024. Beyond volatile phenols: An untargeted metabolomic approach to revealing additional markers of smoke taint in grapevines (Vitis vinifera L.) cv. Merlot. Journal of Agricultural and Food Chemistry 72 (4):2018–33. doi: 10.1021/acs.jafc.2c09013.
  • Szeto, C., R. Ristic, D. Capone, C. Puglisi, V. Pagay, J. Culbert, W. Jiang, M. Herderich, J. Tuke, and K. Wilkinson. 2020. Uptake and glycosylation of smoke-derived volatile phenols by Cabernet Sauvignon grapes and their subsequent fate during winemaking. Molecules (Basel, Switzerland) 25 (16):3720. doi: 10.3390/molecules25163720.
  • Tan, C.-E., B. P. Neupane, Y. Wen, L. X. Lim, C. Medina Plaza, A. Oberholster, and I. Tagkopoulos. 2024. Volatile organic compound-based predictive modeling of smoke taint in wine. Journal of Agricultural and Food Chemistry 72 (14):8060–71. doi: 10.1021/acs.jafc.3c07019.
  • Taofiq, O., A. M. González-Paramás, M. F. Barreiro, and I. C. F. R. Ferreira. 2017. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules (Basel, Switzerland) 22 (2):281. doi: 10.3390/molecules22020281.
  • Tate, D., and A. G. Reynolds. 2006. Validation of a rapid method for measuring β-glucosidase activity in fermenting muscat grape musts. American Journal of Enology and Viticulture 57 (1):60–8. doi: 10.5344/ajev.2006.57.1.60.
  • Teixeira, R., S. Dopico-García, P. B. Andrade, P. Valentão, J. M. López-Vilariño, V. González-Rodríguez, C. Cela-Pérez, and L. R. Silva. 2015. Volatile phenols depletion in red wine using molecular imprinted polymers. Journal of Food Science and Technology 52 (12):7735–46. doi: 10.1007/s13197-015-1892-2.
  • Teixeira, J., A. Gaspar, E. M. Garrido, J. Garrido, and F. Borges. 2013. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Research International 2013:251754–11. doi: 10.1155/2013/251754.
  • Tempère, S., E. Cuzange, M. H. Schaaper, R. De Lescar, G. De Revel, and G. Sicard. 2014. Brett character" in wine: Is there a consensus among professional assessors? A perceptual and conceptual approach. Food Quality and Preference 34:29–36. doi: 10.1016/j.foodqual.2013.12.007.
  • Tempère, S., M. H. Schaaper, E. Cuzange, R. de Lescar, G. de Revel, and G. Sicard. 2016. The olfactory masking effect of ethylphenols: Characterization and elucidation of its origin. Food Quality and Preference 50:135–44. doi: 10.1016/j.foodqual.2016.02.004.
  • Tong, W., H. Zhai, M. Qi, Y. Hua, T. Shi, H. Shang, Y. Shi, C. Duan, and Y. Lan. 2024. Characterization of chemical and sensory properties of Cabernet Sauvignon and Marselan wines made by flash détente technique. Food Research International (Ottawa, Ont.) 184:114229. doi: 10.1016/j.foodres.2024.114229.
  • Topakas, E., C. Vafiadi, and P. Christakopoulos. 2007. Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry 42 (4):497–509. doi: 10.1016/j.procbio.2007.01.007.
  • Udatha, D., I. Kouskoumvekaki, L. Olsson, and G. Panagiotou. 2011. The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnology Advances 29 (1):94–110. doi: 10.1016/j.biotechadv.2010.09.003.
  • van der Hulst, L., P. Munguia, J. A. Culbert, C. M. Ford, R. A. Burton, and K. L. Wilkinson. 2019. Accumulation of volatile phenol glycoconjugates in grapes following grapevine exposure to smoke and potential mitigation of smoke taint by foliar application of kaolin. Planta 249 (3):941–52. doi: 10.1007/s00425-018-03079-x.
  • Vanbeneden, N., F. Gils, F. Delvaux, and F. R. Delvaux. 2008. Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chemistry 107 (1):221–30. doi: 10.1016/j.foodchem.2007.08.008.
  • Vendramin, V., A. Viel, and S. Vincenzi. 2021. Caftaric acid isolation from unripe grape: A “green” alternative for hydroxycinnamic acids recovery. Molecules (Basel, Switzerland) 26 (4):1148. doi: 10.3390/molecules26041148.
  • Wang, H. W., and E. Chambers. 2018. Sensory characteristics of various concentrations of phenolic compounds potentially associated with smoked aroma in foods. Molecules (Basel, Switzerland) 23 (4):780. doi: 10.3390/molecules23040780.
  • Wang, L., G. Hu, L. Lei, L. Lin, D. Wang, and J. Wu. 2016. Identification and aroma impact of volatile terpenes in Moutai liquor. International Journal of Food Properties 19 (6):1335–52. doi: 10.1080/10942912.2015.1064442.
  • Wang, C., J. Li, X. Wu, Y. Zhang, Z. He, Y. Zhang, X. Zhang, Q. Li, J. Huang, and Z. Liu. 2022. Pu-erh tea unique aroma: Volatile components, evaluation methods and metabolic mechanism of key odor-active compounds. Trends in Food Science & Technology 124:25–37. doi: 10.1016/j.tifs.2022.03.031.
  • Waterhouse, A. L., G. L. Sacks, and D. W. Jeffery. 2016. Understanding wine chemistry. Oxford, UK: John Wiley and Sons.
  • Whitmore, B. A., S. E. McCann, M. Noestheden, E. G. Dennis, S. M. Lyons, D. M. Durall, and W. F. Zandberg. 2021. Glycosidically-bound volatile phenols linked to smoke taint: Stability during fermentation with different yeasts and in finished wine. Molecules (Basel, Switzerland) 26 (15):4519. doi: 10.3390/molecules26154519.
  • Wilkinson, K. L., R. Ristic, C. Szeto, D. L. Capone, L. Yu, and D. Losic. 2022. Novel use of activated carbon fabric to mitigate smoke taint in grapes and wine. Australian Journal of Grape and Wine Research 28 (3):500–7. doi: 10.1111/ajgw.12548.
  • Wittkowski, R., J. Ruther, H. Drinda, and F. Rafieitaghanaki. 1992. Formation of smoke flavor compounds by thermal lignin degradation. ACS Symposium Series 490:232–43. Washington, DC: American Chemical Society. doi: 10.1021/bk-1992-0490.ch018.
  • Wu, Y. S., S. Y. Duan, L. P. Zhao, Z. Gao, M. Luo, S. R. Song, W. P. Xu, C. X. Zhang, C. Ma, and S. P. Wang. 2016. Aroma characterization based on aromatic series analysis in table grapes. Scientific Reports 6 (16):31116. doi: 10.1038/srep31116.
  • Xiang, X.-F., Y.-B. Lan, X.-T. Gao, H. Xie, Z.-Y. An, Z.-H. Lv, S. Yin, C.-Q. Duan, and G.-F. Wu. 2020. Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Research International (Ottawa, Ont.) 137:109388. doi: 10.1016/j.foodres.2020.109388.
  • Yang, R. W., A. Alcazar-Magana, Y. P. L. Qian, and M. C. Qian. 2021. Smoked-derived volatile phenol analysis in wine by stir bar sorptive extraction-gas chromatography-mass spectrometry. Molecules (Basel, Switzerland) 26 (18):5613. doi: 10.3390/molecules26185613.
  • Yang, W. X., Y. Z. You, M. Q. Ling, D. Q. Ye, Y. Shi, C. Q. Duan, and Y. B. Lan. 2023. Identification of the key odor-active compounds responsible for varietal smoky aroma in wines made from the East Asian species. Food Research International (Ottawa, Ont.) 171:113052. doi: 10.1016/j.foodres.2023.113052.
  • Yang, W. X., S. Q. Zhang, X. Xiang, Y. Shi, C. Q. Duan, and Y. B. Lan. 2022. Determination of volatile phenols in grape and wine by gas chromatography-triple quadrupole mass spectrometry. Food Science 43 (12):252–9. doi: 10.7506/spkx1002-6630-20210731-380.
  • Yue, M., K. Tang, Y. Xu, and J.-M. Li. 2017. Characterization of the key aroma compounds in Chinese Vidal icewine by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission tests. Journal of Agricultural and Food Chemistry 65 (2):394–401. doi: 10.1021/acs.jafc.6b04509.
  • Zeller, A., and M. Rychlik. 2006. Character impact odorants of fennel fruits and fennel tea. Journal of Agricultural and Food Chemistry 54 (10):3686–92. doi: 10.1021/jf052944j.
  • Zhang, B., H. E. Fei, J. Cai, Y. Wang, C. Duan, and S. Han. 2017. Effect of toasting intensity and wood grain on polyphenolic compounds and aroma components in oak (Quercus petraea) heartwood. Food Science 38 (20):70–82. doi: 10.7506/spkx1002-6630-201720011.
  • Zhang, X. K., S. Y. Li, X. Zhao, Q. H. Pan, Y. Shi, and C. Q. Duan. 2020. HPLC-MS/MS-based targeted metabolomic method for profiling of malvidin derivatives in dry red wines. Food Research International (Ottawa, Ont.) 134:109226. doi: 10.1016/j.foodres.2020.109226.
  • Zhang, P., W. Ma, Y. Meng, Y. Zhang, G. Jin, and Z. Fang. 2021. Wine phenolic profile altered by yeast: Mechanisms and influences. Comprehensive Reviews in Food Science and Food Safety 20 (4):3579–619. doi: 10.1111/1541-4337.12788.
  • Zhang, J. J., and H. Yang. 2021. Metabolism and detoxification of pesticides in plants. Science of the Total Environment 790:148034. doi: 10.1016/j.scitotenv.2021.148034.
  • Zhao, M. Y., Y. H. Luo, Y. Li, X. Liu, J. H. Wu, X. J. Liao, and F. Chen. 2013. The identification of degradation products and degradation pathway of malvidin-3-glucoside and malvidin-3,5-diglucoside under microwave treatment. Food Chemistry 141 (3):3260–7. doi: 10.1016/j.foodchem.2013.05.147.
  • Zhou, Q., Y. P. Qian, and M. C. Qian. 2015. Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography-mass spectrometry. Journal of Chromatography. A 1390:22–7. doi: 10.1016/j.chroma.2015.02.064.
  • Zhu, L. X., M. M. Zhang, X. F. Xiang, Y. B. Lan, Y. Shi, C. Q. Duan, and R. L. Zhang. 2021. Aromatic characterization of traditional Chinese wine Msalais by partial least-square regression analysis based on sensory quantitative descriptive and odor active values, aroma extract dilution analysis, and aroma recombination and omission tests. Food Chemistry 361:129781. doi: 10.1016/j.foodchem.2021.129781.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.