189
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications

, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Al Janobi, A. A., R. F. Mithen, A. V. Gasper, P. N. Shaw, R. J. Middleton, C. A. Ortori, and D. A. Barrett. 2006. Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography – tandem electrospray ionisation mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 844 (2):223–34. doi:10.1016/j.jchromb.2006.07.007.
  • Alumkal, J. J.,R. Slottke,J. Schwartzman,G. Cherala,M. Munar,J. N. Graff,T. M. Beer,C. W. Ryan,D. R. Koop,A. Gibbs, et al. 2015. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational New Drugs 33 (2):480–9. doi: 10.1007/s10637-014-0189-z.
  • Amin, P. J., and B. S. Shankar. 2015. Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sciences 126:19–27. doi:10.1016/j.lfs.2015.01.026.
  • Angelino, D., and E. Jeffery. 2014. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. Journal of Functional Foods 7:67–76. doi:10.1016/j.jff.2013.09.029.
  • Arfaoui, L. 2021. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules (Basel, Switzerland) 26 (10):2959. doi:10.3390/molecules26102959.
  • Atwell, L. L.,Z. Zhang,M. Mori,P. Farris,J. T. Vetto,A. M. Naik,K. Y. Oh,P. Thuillier,E. Ho, andJ. Shannon. 2015. Sulforaphane Bioavailability and Chemopreventive Activity in Women Scheduled for Breast Biopsy. Cancer Prevention Research (Philadelphia, Pa.) 8 (12):1184–91. doi: 10.1158/1940-6207.CAPR-15-0119.
  • Axelsson, A. S., E. Tubbs, B. Mecham, S. Chacko, H. A. Nenonen, Y. Tang, J. W. Fahey, J. M. J. Derry, C. B. Wollheim, N. Wierup, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9 (394):4477. doi:10.1126/scitranslmed.aah4477.
  • Azarashkan, Z.,Ali. Motamedzadegan,A. Ghorbani-HasanSaraei,S. Rahaiee, andP. Biparva. 2022. Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. Food and Bioprocess Technology 15 (7):1573–87. doi: 10.1007/s11947-022-02826-z.
  • Bahadoran, Z., M. Tohidi, P. Nazeri, M. Mehran, F. Azizi, and P. Mirmiran. 2012. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: A randomized double-blind clinical trial. International Journal of Food Sciences and Nutrition 63 (7):767–71. doi:10.3109/09637486.2012.665043.
  • Bauman, J. E., Y. Zang, M. Sen, C. Y. Li, L. Wang, P. A. Egner, J. W. Fahey, D. P. Normolle, J. R. Grandis, T. W. Kensler, et al. 2016. Prevention of carcinogen-induced oral cancer by sulforaphane. Cancer Prevention Research (Philadelphia, Pa.) 9 (7):547–57. doi:10.1158/1940-6207.Capr-15-0290.
  • Bernkopf, D. B., G. Daum, M. Brückner, and J. Behrens. 2018. Sulforaphane inhibits growth and blocks Wnt/β-catenin signaling of colorectal cancer cells. Oncotarget 9 (74):33982–94. doi:10.18632/oncotarget.26125.
  • Bhat, R., and D. Vyas. 2019. Myrosinase: Insights on structural, catalytic, regulatory, and environmental interactions. Critical Reviews in Biotechnology 39 (4):508–23. doi:10.1080/07388551.2019.1576024.
  • Bouranis, J. A., L. M. Beaver, and E. Ho. 2021. Metabolic fate of dietary glucosinolates and their metabolites: A role for the microbiome. Frontiers in Nutrition 8:748433. doi:10.3389/fnut.2021.748433.
  • Burow, M., A. Bergner, J. Gershenzon, and U. Wittstock. 2007. Glucosinolate hydrolysis in Lepidium sativum – identification of the thiocyanate-forming protein. Plant Molecular Biology 63 (1):49–61. doi:10.1007/s11103-006-9071-5.
  • Bauman, J. E.,C.-H. Hsu,S. Centuori,J. Guillen-Rodriguez,L. L. Garland,E. Ho,M. Padi,V. Bageerathan,L. Bengtson,M. Wojtowicz, et al. 2022. Randomized Crossover Trial Evaluating Detoxification of Tobacco Carcinogens by Broccoli Seed and Sprout Extract in Current Smokers. Cancers 14 (9):2129.doi: 10.3390/cancers14092129.
  • Bent, S.,B. Lawton,T. Warren,F. Widjaja,K. Dang,J. W. Fahey,B. Cornblatt,J. M. Kinchen,K. Delucchi, andR. L. Hendren. 2018. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Molecular Autism 9 (1) doi: 10.1186/s13229-018-0218-4.
  • Cao, X., L. Cao, W. Zhang, R. Lu, J. S. Bian, and X. Nie. 2020. Therapeutic potential of sulfur-containing natural products in inflammatory diseases. Pharmacology & Therapeutics 216:107687. doi:10.1016/j.pharmthera.2020.107687.
  • Carrasco-Pozo, C., K. N. Tan, M. Gotteland, K. Borges, and C. Longevity. 2017. Sulforaphane protects against high cholesterol-induced mitochondrial bioenergetics impairments, inflammation, and oxidative stress and preserves pancreatic β-cells function. Oxidative Medicine and Cellular Longevity 2017:1–14. doi:10.1155/2017/3839756.
  • Chauhan, A.,A. U. Islam,H. Prakash, andS. Singh. 2022. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. Journal of Pharmaceutical Analysis 12 (3):394–405. doi: 10.1016/j.jpha.2021.07.002.
  • Choi, K. M., Y. S. Lee, W. Kim, S. J. Kim, K. O. Shin, J. Y. Yu, M. K. Lee, Y. M. Lee, J. T. Hong, Y. P. Yun, et al. 2014. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. The Journal of Nutritional Biochemistry 25 (2):201–7. doi:10.1016/j.jnutbio.2013.10.007.
  • Cipolla, B. G., E. Mandron, J. M. Lefort, Y. Coadou, E. Della Negra, L. Corbel, R. Le Scodan, A. R. Azzouzi, and N. Mottet. 2015. Effect of sulforaphane in men with biochemical recurrence after radical prostatectomy. Cancer Prevention Research (Philadelphia, Pa.) 8 (8):712–9. doi:10.1158/1940-6207.Capr-14-0459.
  • Clarke, J. D., R. H. Dashwood, and E. Ho. 2008. Multi-targeted prevention of cancer by sulforaphane. Cancer Letters 269 (2):291–304. doi:10.1016/j.canlet.2008.04.018.
  • Clarke, J. D., A. Hsu, D. E. Williams, R. H. Dashwood, J. F. Stevens, M. Yamamoto, and E. Ho. 2011. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharmaceutical Research 28 (12):3171–9. doi:10.1007/s11095-011-0500-z.
  • Cramer, J. M., and E. H. Jeffery. 2011. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutrition and Cancer 63 (2):196–201. doi:10.1080/01635581.2011.523495.
  • Danafar, H.,Ali. Sharafi,S. Kheiri, andH. Kheiri Manjili. 2018. Co-delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for Delivery to Breast Cancer Cell Line. Iranian Journal of Pharmaceutical Research : IJPR 17 (2):480–94.
  • Darand, M., S. Alizadeh, and M. Mansourian. 2022. The effect of Brassica vegetables on blood glucose levels and lipid profiles in adults. A systematic review and meta-analysis. Phytotherapy Research: PTR 36 (5):1914–29. doi:10.1002/ptr.7410.
  • Souza, D. C. G., L. L. da Motta, A. M. de Assis, A. Rech, R. Bruch, F. Klamt, and D. O. Souza. 2016. Sulforaphane ameliorates the insulin responsiveness and the lipid profile but does not alter the antioxidant response in diabetic rats. Food & Function 7 (4):2060–5. doi:10.1039/c5fo01620g.
  • Deng, W., H. Du, D. Liu, and Z. Ma. 2022. The role of natural products in chronic inflammation. Frontiers in Pharmacology 13:901538. doi:10.3389/fphar.2022.901538.
  • Deramaudt, T. B., M. Ali, S. Vinit, and M. Bonay. 2020. Sulforaphane reduces intracellular survival of Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPK-induced inflammation. International Journal of Molecular Medicine 45 (6):1927–41. doi:10.3892/ijmm.2020.4563.
  • Desai, P., A. Thakkar, D. Ann, J. Wang, and S. Prabhu, t. research. 2019. Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer. Drug Delivery and Translational Research 9 (3):641–51. doi:10.1007/s13346-019-00619-0.
  • Dickerson, F., A. Origoni, E. Katsafanas, A. Squire, T. Newman, J. Fahey, J. C. Xiao, C. Stallings, J. Goga, S. Khushalani, et al. 2021. Randomized controlled trial of an adjunctive sulforaphane nutraceutical in schizophrenia. Schizophrenia Research 231:142–4. doi:10.1016/j.schres.2021.03.018.
  • Dinkova-Kostova, A. T.,J. W. Fahey,R. V. Kostov, andT. W. Kensler. 2017. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane. Trends in Food Science & Technology 69 (Pt B):257–69. doi: 10.1016/j.tifs.2017.02.002.
  • Egner, P. A., J.-G. Chen, A. T. Zarth, D. K. Ng, J.-B. Wang, K. H. Kensler, L. P. Jacobson, A. Muñoz, J. L. Johnson, J. D. Groopman, et al. 2014. Rapid and Sustainable Detoxication of Airborne Pollutants by Broccoli Sprout Beverage: Results of a Randomized Clinical Trial in China. Cancer Prevention Research (Philadelphia, Pa.) 7 (8):813–23. doi:10.1158/1940-6207.Capr-14-0103.
  • Essien, E. N., N. Revi, V. Khatri, S. Liu, G. Van Thiel, and D. Bijukumar. 2023. Methotrexate and Sulforaphane loaded PBA-G5-PAMAM dendrimers as a combination therapy for anti-inflammatory response in an intra-articular joint arthritic animal model. International Journal of Pharmaceutics 642:123150. doi:10.1016/j.ijpharm.2023.123150.
  • Fahey, J. W., K. L. Wade, S. L. Wehage, W. D. Holtzclaw, H. Liu, P. Talalay, E. Fuchs, and K. K. Stephenson. 2017. Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Molecular Nutrition & Food Research 61 (4):1600766. doi:10.1002/mnfr.201600766.
  • Fernandez-Prades, L., M. Brasal-Prieto, G. Alba, V. Martin, S. Montserrat-de la Paz, M. Cejudo-Guillen, C. Santa-Maria, H. Dakhaoui, B. Granados, F. Sobrino, et al. 2023. Sulforaphane reduces chronic inflammatory immune response of human dendritic cells. Nutrients 15 (15):3405. doi:10.20944/preprints202306.0318.v1.
  • Furman, D., J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D. W. Gilroy, A. Fasano, G. W. Miller, et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25 (12):1822–32. doi:10.1038/s41591-019-0675-0.
  • García-Saldaña, J. S., O. N. Campas-Baypoli, J. López-Cervantes, D. I. Sánchez-Machado, E. U. Cantú-Soto, and R. Rodríguez-Ramírez. 2016. Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chemistry 201:94–100. doi:10.1016/j.foodchem.2016.01.087.
  • Geisel, J., J. Brück, I. Glocova, K. Dengler, T. Sinnberg, O. Rothfuss, M. Walter, K. Schulze-Osthoff, M. Röcken, and K. Ghoreschi. 2014. Sulforaphane protects from T cell–mediated autoimmune disease by inhibition of IL-23 and IL-12 in dendritic cells. Journal of Immunology (Baltimore, Md.: 1950) 192 (8):3530–9. doi:10.4049/jimmunol.1300556.
  • Gonzalez, H., C. Hagerling, and Z. J. G. Werb, development. 2018. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes & Development 32 (19-20):1267–84. doi:10.1101/gad.314617.118.
  • Gu, H-f., X-y Mao, and M. Du. 2022. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update. Critical Reviews in Food Science and Nutrition 62 (13):3437–52. doi:10.1080/10408398.2020.1865871.
  • Gu, H.-F., F. Ren, X.-Y. Mao, and M. Du. 2021. Mineralized and GSH-responsive hyaluronic acid based nano-carriers for potentiating repressive effects of sulforaphane on breast cancer stem cells-like properties. Carbohydrate Polymers 269:118294. doi:10.1016/j.carbpol.2021.118294.
  • Guan, R., Q. Van Le, H. Yang, D. Zhang, H. Gu, Y. Yang, C. Sonne, S. S. Lam, J. Zhong, Z. Jianguang, et al. 2021. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 271:129499. doi:10.1016/j.chemosphere.2020.129499.
  • Halkier, B. A., and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57 (1):303–33. doi:10.1146/annurev.arplant.57.032905.105228.
  • Ho, C.-Y., C.-J. Weng, J.-J. Jhang, Y.-T. Cheng, S.-M. Huang, and G.-C. Yen. 2014. Diallyl sulfide as a potential dietary agent to reduce TNF-α-and histamine-induced proinflammatory responses in A 7r5 cells. Molecular Nutrition & Food Research 58 (5):1069–78. doi:10.1002/mnfr.201300617.
  • Howard, E. J., T. K. Lam, and F. Duca. 2022. The gut microbiome: Connecting diet, glucose homeostasis, and disease. Annual Review of Medicine 73 (1):469–81. doi:10.1146/annurev-med-042220-012821.
  • Hu, K., H. Zhou, Y. Liu, Z. Liu, J. Liu, J. Tang, J. Li, J. Zhang, W. Sheng, Y. Zhao, et al. 2015. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 7 (18):8607–18. doi:10.1039/c5nr01084e.
  • Huang, C.,T. Xu,Y. Li, andJ. Ren. 2023. Mapping the effect of plant-based extracts on immune and tumor cells from a bioactive compound standpoint. Food Frontiers 4 (1):333–42. doi: 10.1002/fft2.162.
  • Janczewski, L. 2022. Sulforaphane and its bifunctional analogs: Synthesis and biological activity. Molecules (Basel, Switzerland) 27 (5):1750. doi:10.3390/molecules27051750.
  • Jensen, K., E. Slattery, L. Housley, and E. Hansen. 2019. Sulforaphane impacts invasion capacity and proliferation of triple negative breast cancer cells grown in the presence of tumor-associated macrophages (P05-003-19). Current Developments in Nutrition 3: Nzz030.P05-003-19. doi:10.1093/cdn/nzz030.P05-003-19.
  • Kaiser, A. E.,M. Baniasadi,D. Giansiracusa,M. Giansiracusa,M. Garcia,Z. Fryda, andA. Bishayee. 2021. Sulforaphane: A broccoli bioactive phytocompound with cancer preventive potential. Cancers 13 (19):4796.doi: 10.3390/cancers13194796.
  • Sipper, Khan, Kanza Aziz, Awan, Muhammad Jawad, Iqbal, Iahtisham-Ul-Haq,. 2022. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. Journal of Food biochemistry 46(3):e13886. doi:10.1111/jfbc.13886.
  • Khan, Z., A. Alhalmi, N. Tyagi, W. U. Khan, A. Sheikh, M. A. S. Abourehab, K. Kohli, and P. Kesharwani. 2023. Folic acid engineered sulforaphane loaded microbeads for targeting breast cancer. Journal of Biomaterials Science. Polymer Edition 34 (5):674–94. doi:10.1080/09205063.2022.2144692.
  • Kheiri Manjili, H., L. Ma’mani, S. Tavaddod, M. Mashhadikhan, A. Shafiee, and H. Naderi-Manesh. 2016. D, L-sulforaphane loaded Fe3O4@ gold core shell nanoparticles: A potential sulforaphane delivery system. PloS One 11 (3):e0151344. doi:10.1371/journal.pone.0151344.
  • Kim, J., S. Lee, B. R. Choi, H. Yang, Y. Hwang, J. H. Y. Park, F. M. LaFerla, J. S. Han, K. W. Lee, J. J. M. N. Kim, et al. 2017. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Molecular Nutrition & Food Research 61 (2):1600194. doi:10.1002/mnfr.201600194.
  • Kliebenstein, D. J. 2004. Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment 27 (6):675–84. doi:10.1111/j.1365-3040.2004.01180.x.
  • Ko, J.-Y.,Y.-J. Choi,G.-J. Jeong, andG.-I. Im. 2013. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials 34 (21):5359–68. doi: 10.1016/j.biomaterials.2013.03.066.
  • Kuran, D., A. Pogorzelska, and K. Wiktorska. 2020. Breast cancer prevention-is there a future for sulforaphane and its analogs? Nutrients 12 (6):1559. doi:10.3390/nu12061559.
  • Lee, J. H., B. Y. Cho, S. H. Choi, T. D. Jung, S. I. Choi, J. H. Lim, and O. H. Lee. 2018. Sulforaphane attenuates bisphenol A-induced 3T3-L1 adipocyte differentiation through cell cycle arrest. Journal of Functional Foods 44:17–23. doi:10.1016/j.jff.2018.02.021.
  • Lee, S., B. R. Choi, J. Kim, F. M. LaFerla, J. H. Y. Park, J. S. Han, K. W. Lee, and J. Kim. 2018. Sulforaphane upregulates the heat shock protein co-chaperone CHIP and clears amyloid-β and tau in a mouse model of Alzheimer’s disease. Molecular Nutrition & Food Research 62 (12):e1800240. doi:10.1002/mnfr.201800240.
  • Lenzi, M., C. Fimognari, and P. Hrelia. 2014. Sulforaphane as a promising molecule for fighting cancer. Cancer Treatment and Research 159:207–23. doi:10.1007/978-3-642-38007-5_12.
  • Lewinska, A., J. Adamczyk-Grochala, A. Deregowska, and M. Wnuk. 2017. Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics 7 (14):3461–77. doi:10.7150/thno.20657.
  • Li, X., Z. Zhao, M. Li, M. Liu, A. Bahena, Y. Zhang, Y. Zhang, C. Nambiar, and G. Liu. 2018. Sulforaphane promotes apoptosis, and inhibits proliferation and self-renewal of nasopharyngeal cancer cells by targeting STAT signal through miRNA-124-3p. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 103:473–81. doi:10.1016/j.biopha.2018.03.121.
  • Liang, Jie.,B. Jahraus,E. Balta,J. D. Ziegler,K. Hübner,N. Blank,B. Niesler,G. H. Wabnitz, andY. Samstag. 2018. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Frontiers in Immunology 9. doi: 10.3389/fimmu.2018.02584.
  • Liang, J., G. M. Hänsch, K. Hübner, and Y. Samstag. 2019. Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Advances in Biological Regulation 71:79–87. doi:10.1016/j.jbior.2018.11.006.
  • Liang, J., B. Jahraus, E. Balta, J. D. Ziegler, K. Hübner, N. Blank, B. Niesler, G. H. Wabnitz, and Y. Samstag. 2018. Sulforaphane inhibits inflammatory responses of primary human T-cells by increasing ROS and depleting glutathione. Frontiers in Immunology 9:2584. doi:10.3389/fimmu.2018.02584.
  • Licznerska, B.,H. Szaefer,I. Matuszak,M. Murias, andW. Baer-Dubowska. 2015. Modulating potential of L-sulforaphane in the expression of cytochrome p450 to identify potential targets for breast cancer chemoprevention and therapy using breast cell lines. Phytotherapy Research : PTR 29 (1):93–9. doi: 10.1002/ptr.5232.
  • Licznerska, B., H. Szaefer, V. J. M. Krajka-Kuźniak, and C. Biochemistry. 2021. R-sulforaphane modulates the expression profile of AhR, ERα, Nrf2, NQO1, and GSTP in human breast cell lines. Molecular and Cellular Biochemistry 476 (2):525–33. doi:10.1007/s11010-020-03913-5.
  • Liu, G. H., J. Qu, and X. Shen. 2008. NF-kappa B/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta 1783 (5):713–27. doi:10.1016/j.bbamcr.2008.01.002.
  • Liu, H., A. W. Zimmerman, K. Singh, S. L. Connors, E. Diggins, K. K. Stephenson, A. T. Dinkova-Kostova, and J. W. Fahey. 2020. Biomarker exploration in human peripheral blood mononuclear cells for monitoring sulforaphane treatment responses in autism spectrum disorder. Scientific Reports 10 (1):5822. doi:10.1038/s41598-020-62714-4.
  • Liu, Y., X. Fu, Z. Chen, T. Luo, C. Zhu, Y. Ji, and Z. J. Bian. 2021. The protective effects of sulforaphane on high-fat diet-induced obesity in mice through browning of white fat. Frontiers in Pharmacology 12:665894. doi:10.3389/fphar.2021.665894.
  • Liu, Y., Z. Yang, Y. Du, S. Shi, Y. J. Cheng, and B. Psychiatry. 2022. Antioxidant interventions in autism spectrum disorders: A meta-analysis. Progress in Neuro-Psychopharmacology & Biological Psychiatry 113:110476. doi:10.1016/j.pnpbp.2021.110476.
  • Livingstone, T. L.,S. Saha,F. Bernuzzi,G. M. Savva,P. Troncoso-Rey,M. H. Traka,R. D. Mills,R. Y. Ball, andR. F. Mithen. 2022. Accumulation of Sulforaphane and Alliin in Human Prostate Tissue. Nutrients 14 (16):3263.doi: 10.3390/nu14163263.
  • Lozanovski, V. J.,G. Polychronidis,W. Gross,N. Gharabaghi,A. Mehrabi,T. Hackert,P. Schemmer, andI. Herr. 2020. Broccoli sprout supplementation in patients with advanced pancreatic cancer is difficult despite positive effects-results from the POUDER pilot study. Investigational New Drugs 38 (3):776–84. doi: 10.1007/s10637-019-00826-z.
  • Lu, Y., X. Pang, and T. Yang. 2020. Microwave cooking increases sulforaphane level in broccoli. Food Science & Nutrition 8 (4):2052–8. doi:10.1002/fsn3.1493.
  • Luang-In, V., S. Deeseenthum, P. Udomwong, W. Saengha, and M. Gregori. 2018. Formation of sulforaphane and iberin products from Thai cabbage fermented by myrosinase-positive bacteri. Molecules (Basel, Switzerland) 23 (4):955. doi:10.3390/molecules23040955.
  • Magner, M.,K. Thorová,V. Župová,M. Houška,I. Švandová,P. Novotná,Jan. Tříska,N. Vrchotová,Ivo. Soural, andL. Jílek. 2023. Sulforaphane Treatment in Children with Autism: A Prospective Randomized Double-Blind Study. Nutrients 15 (3):718.doi: 10.3390/nu15030718.
  • Mahn, A., and A. Castillo. 2021. Potential of sulforaphane as a natural immune system enhancer: A review. Molecules (Basel, Switzerland) 26 (3):752. doi:10.3390/molecules26030752.
  • Mangla, B., Y. R. Neupane, A. Singh, P. Kumar, S. Shafi, and K. Kohli. 2020. Lipid-nanopotentiated combinatorial delivery of tamoxifen and sulforaphane: Ex vivo, in vivo and toxicity studies. Nanomedicine (London, England) 15 (26):2563–83. doi:10.2217/nnm-2020-0277.
  • Mi, L., A. J. Di Pasqua, and F. L. Chung. 2011. Proteins as binding targets of isothiocyanates in cancer preventio. Carcinogenesis 32 (10):1405–13. doi:10.1093/carcin/bgr111.
  • Momtazmanesh, S.,Z. Amirimoghaddam-Yazdi,H. S. Moghaddam,M. R. Mohammadi, andS. Akhondzadeh. 2020. Sulforaphane as an adjunctive treatment for irritability in children with autism spectrum disorder: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry and Clinical Neurosciences 74 (7):398–405. doi: 10.1111/pcn.13016.
  • Monteiro do Nascimento, M. H., F. N. Ambrosio, D. C. Ferraraz, H. Windisch-Neto, S. M. Querobino, M. Nascimento-Sales, C. Alberto-Silva, M. A. Christoffolete, M. Franco, B. Kent, et al. 2021. Sulforaphane-loaded hyaluronic acid-poloxamer hybrid hydrogel enhances cartilage protection in osteoarthritis models. Materials Science & Engineering. C, Materials for Biological Applications 128:112345. doi:10.1016/j.msec.2021.112345.
  • Morroni, F., A. Tarozzi, G. Sita, C. Bolondi, J. M. Z. Moraga, G. Cantelli-Forti, and P. Hrelia. 2013. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36:63–71. doi:10.1016/j.neuro.2013.03.004.
  • Müller, L., M. Meyer, R. N. Bauer, H. Zhou, H. Zhang, S. Jones, C. Robinette, T. L. Noah, and I. Jaspers. 2016. Effect of broccoli sprouts and live attenuated influenza virus on peripheral blood natural killer cells: A randomized, double-blind study. PloS One 11 (1):e0147742. doi:10.1371/journal.pone.0147742.
  • Nguyen, T. H.,R. Nagasaka, andT. Ohshima. 2012. Effects of extraction solvents, cooking procedures and storage conditions on the contents of ergothioneine and phenolic compounds and antioxidative capacity of the cultivated mushroom Flammulina velutipes. International Journal of Food Science & Technology 47 (6):1193–205. doi: 10.1111/j.1365-2621.2012.02959.x.
  • Park, H. S., M. H. Han, G. Y. Kim, S. K. Moon, W. J. Kim, H. J. Hwang, K. Y. Park, and Y. H. Choi. 2014. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 64:157–65. doi:10.1016/j.fct.2013.11.034.
  • Passi, M., V. Kumar, and G. Packirisamy. 2020. Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. Materials Science & Engineering. C, Materials for Biological Applications 107:110255. doi:10.1016/j.msec.2019.110255.
  • Prasad, A. K., and P. C. Mishra. 2015. Mechanism of action of sulforaphane as a superoxide radical anion and hydrogen peroxide scavenger by double hydrogen transfer: A model for iron superoxide dismutase. The Journal of Physical Chemistry. B 119 (25):7825–36. doi:10.1021/acs.jpcb.5b01496.
  • Recio, R., E. Elhalem, J. M. Benito, I. Fernández, and N. Khiar. 2018. NMR study on the stabilization and chiral discrimination of sulforaphane enantiomers and analogues by cyclodextrins. Carbohydrate Polymers 187:118–25. doi:10.1016/j.carbpol.2017.12.022.
  • Ren, Z., H. Yang, C. Zhu, D. Fan, and J. Deng. 2023. Dietary phytochemicals: As a potential natural source for treatment of Alzheimer’s disease. Food Innovation and Advances 2 (1):36–43. doi:10.48130/FIA-2023-0007.
  • Ribeiro, M., L. F. Cardozo, B. R. Paiva, B. G. Baptista, S. Fanton, L. Alvarenga, L. S. Lima, I. Britto, L. S. Nakao, D. Fouque, et al. 2023. Sulforaphane supplementation did not modulate NRF2 and NF-kB mRNA expressions in hemodialysis patients. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 34 (1):68–75. doi:10.1053/j.jrn.2023.08.008.
  • Ruhee, R. T., and K. Suzuki. 2020. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants (Basel, Switzerland) 9 (6):521. doi:10.3390/antiox9060521.
  • Schepici, G., P. Bramanti, and E. Mazzon. 2020. Efficacy of sulforaphane in neurodegenerative diseases. International Journal of Molecular Sciences 21 (22):8637. doi:10.3390/ijms21228637.
  • Seo, M.-S., and J. S. Kim. 2017. Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules (Basel, Switzerland) 22 (9):1549. doi:10.3390/molecules22091549.
  • Sepanlou, S. G., S. Safiri, C. Bisignano, K. S. Ikuta, S. Merat, M. Saberifiroozi, H. Poustchi, D. Tsoi, and D. V. Colombar. 2020. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet Gastroenterolog & Hepayology 5 (3):245–66. doi:10.1016/S2468-1253(19)30349-8.
  • Shen, C., Z. Zhang, Y. Tian, F. Li, L. Zhou, W. Jiang, L. Yang, B. Zhang, L. Wang, and Y. Zhang. 2021. Sulforaphane enhances the antitumor response of chimeric antigen receptor T cells by regulating PD-1/PD-L1 pathway. BMC Medicine 19 (1):283. doi:10.1186/s12916-021-02161-8.
  • Shih, Y. L., L. Y. Wu, C. H. Lee, Y. L. Chen, S. C. Hsueh, H. F. Lu, N. C. Liao, and J. G. Chung. 2016. Sulforaphane promotes immune responses in a WEHI‑3‑induced leukemia mouse model through enhanced phagocytosis of macrophages and natural killer cell activities in vivo. Molecular Medicine Reports 13 (5):4023–9. doi:10.3892/mmr.2016.5028.
  • Shiina, A.,N. Kanahara,T. Sasaki,Y. Oda,T. Hashimoto,T. Hasegawa,T. Yoshida,M. Iyo, andK. Hashimoto. 2015. An Open Study of Sulforaphane-rich Broccoli Sprout Extract in Patients with Schizophrenia. Clinical Psychopharmacology and Neuroscience : The Official Scientific Journal of the Korean College of Neuropsychopharmacology 13 (1):62–7. doi: 10.9758/cpn.2015.13.1.62.
  • Singh, K.,S. L. Connors,E. A. Macklin,K. D. Smith,J. W. Fahey,P. Talalay, andA. W. Zimmerman. 2014. Sulforaphane treatment of autism spectrum disorder (ASD). Proceedings of the National Academy of Sciences of the United States of America 111 (43):15550–5. doi: 10.1073/pnas.1416940111.
  • Singh, S. V., R. Warin, D. Xiao, A. A. Powolny, S. D. Stan, J. A. Arlotti, Y. Zeng, E.-R. Hahm, S. W. Marynowski, A. Bommareddy, et al. 2009. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Research 69 (5):2117–25. doi:10.1158/0008-5472.CAN-08-3502.
  • Subedi, L., J. H. Lee, S. Yumnam, E. Ji, and S. Y. Kim. 2019. Anti-inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation. Cells 8 (2):194. doi:10.3390/cells8020194.
  • Sun, Y., Z. Tang, T. Hao, Z. Qiu, and B. Zhang. 2022. Simulated digestion and fermentation in vitro by obese human gut microbiota of sulforaphane from broccoli seeds. Foods (Basel, Switzerland) 11 (24):4016. doi:10.3390/foods11244016.
  • Thejass, P., and G. Kuttan. 2006. Augmentation of natural killer cell and antibody-dependent cellular cytotoxicity in BALB/c mice by sulforaphane, a naturally occurring isothiocyanate from broccoli through enhanced production of cytokines IL-2 and IFN-γ. Immunopharmacology and Immunotoxicology 28 (3):443–57. doi:10.1080/08923970600928049.
  • Tian, S., X. Liu, P. Lei, X. Zhang, and Y. Shan. 2018. Microbiota: A mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. Journal of the Science of Food and Agriculture 98 (4):1255–60. doi:10.1002/jsfa.8654.
  • Tian, S., Y. Wang, X. Li, J. Liu, J. Wang, and Y. Lu. 2021. Sulforaphane regulates glucose and lipid metabolisms in obese mice by restraining JNK and activating insulin and FGF21 signal pathways. Journal of Agricultural and Food Chemistry 69 (44):13066–79. doi:10.1021/acs.jafc.1c04933.
  • Traka, M. H.,A. Melchini,J. Coode-Bate,O. Al Kadhi,S. Saha,M. Defernez,P. Troncoso-Rey,H. Kibblewhite,C. M. O’Neill,F. Bernuzzi, et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. The American Journal of Clinical Nutrition 109 (4):1133–44. doi: 10.1093/ajcn/nqz012.
  • Tříska, J., J. Balík, M. Houška, P. Novotná, M. Magner, N. Vrchotová, P. Híc, L. Jílek, K. Thorová, P. Šnurkovič, et al. 2021. Factors influencing sulforaphane content in broccoli sprouts and subsequent sulforaphane extraction. Foods (Basel, Switzerland) 10 (8):1927. doi:10.3390/foods10081927.
  • Tufekci, K. U., I. Ercan, K. B. Isci, M. Olcum, B. Tastan, C. P. Gonul, K. Genc, and S. Genc. 2021. Sulforaphane inhibits NLRP3 inflammasome activation in microglia through Nrf2-mediated miRNA alteration. Immunology Letters 233:20–30. doi:10.1016/j.imlet.2021.03.004.
  • Veeranki, O. L., A. Bhattacharya, J. R. Marshall, and Y. Zhang. 2013. Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: Implications for cancer prevention. The British Journal of Nutrition 109 (1):25–32. doi:10.1017/S0007114512000657.
  • Wang, Z.,C. Tu,R. Pratt,T. Khoury,Jun. Qu,J. W. Fahey,S. E. McCann,Y. Zhang,Yue. Wu,A. D. Hutson, et al. 2022. A Presurgical-Window Intervention Trial of Isothiocyanate-Rich Broccoli Sprout Extract in Patients with Breast Cancer. Molecular Nutrition & Food Research 66 (12). doi: 10.1002/mnfr.202101094.
  • Wang, L., D. Rose, P. Rao, and Y. Zhang. 2020. Development of prolamin-based composite nanoparticles for controlled release of sulforaphane. Journal of Agricultural and Food Chemistry 68 (46):13083–92. doi:10.1021/acs.jafc.9b06970.
  • Wang, Y., E. Petrikova, W. Gross, C. Sticht, N. Gretz, I. Herr, and S. Karakhanova. 2020. Sulforaphane promotes dendritic cell stimulatory capacity through modulation of regulatory molecules, JAK/STAT3-and microRNA-signaling. Frontiers in Immunology 11:589818. doi:10.3389/fimmu.2020.589818.
  • Wu, Y.,L. Zou,J. Mao,Jun. Huang, andS. Liu. 2014. Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohydrate Polymers 102:497–503. doi: 10.1016/j.carbpol.2013.11.057.
  • Wu, Y. F., C. Z. Lv, L. G. Zou, J. Sun, X. J. Song, Y. Zhang, and J. W. Mao. 2021. Approaches for enhancing the stability and formation of sulforaphane. Food Chemistry 345:128771. doi:10.1016/j.foodchem.2020.128771.
  • Xu, X., M. Dai, F. Lao, F. Chen, X. Hu, Y. Liu, and J. Wu. 2020. Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. Journal of Functional Foods 68:103858. doi:10.1016/j.jff.2020.103858.
  • Xu, Y., J. F. Fu, J. H. Chen, Z. W. Zhang, Z. Q. Zou, L. Y. Han, Q. H. Hua, J. S. Zhao, X. H. Zhang, and Y. J. Shan. 2018. Sulforaphane ameliorates glucose intolerance in obese mice via the upregulation of the insulin signaling pathway. Food & Function 9 (9):4695–701. doi:10.1039/c8fo00763b.
  • Xu, Y., X. Huang, B. Huangfu, Y. Hu, J. Xu, R. Gao, K. Huang, and X. He. 2023. Sulforaphane ameliorates nonalcoholic fatty liver disease induced by high-fat and high-fructose diet via LPS/TLR4 in the gut–liver axis. Nutrients 15 (3):743. doi:10.3390/nu15030743.
  • Yagishita, Y., J. W. Fahey, A. T. Dinkova-Kostova, and T. W. Kensler. 2019. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules (Basel, Switzerland) 24 (19):3593. doi:10.3390/molecules24193593.
  • Zandani, G., N. Kaftori-Sandler, N. Sela, A. Nyska, and Z. Madar. 2021. Dietary broccoli improves markers associated with glucose and lipid metabolism through modulation of gut microbiota in mice. Nutrition (Burbank, Los Angeles County, Calif.) 90:111240. doi:10.1016/j.nut.2021.111240.
  • Zhang, D. D., and M. Hannink. 2003. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Molecular and Cellular Biology 23 (22):8137–51. doi:10.1128/mcb.23.22.8137-8151.2003.
  • Zhang, H. Q., S. Y. Chen, A. S. Wang, A. J. Yao, J. F. Fu, J. S. Zhao, F. Chen, Z. Q. Zou, X. H. Zhang, Y. J. Shan, et al. 2016. Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Molecular Nutrition & Food Research 60 (10):2185–97. doi:10.1002/mnfr.201500915.
  • Zhang, J., R. Zhang, Z. Zhan, X. Li, F. Zhou, A. Xing, C. Jiang, Y. Chen, and L. An. 2017. Beneficial effects of sulforaphane treatment in Alzheimer’s disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Frontiers in Aging Neuroscience 9:121. doi:10.3389/fnagi.2017.00121.
  • Zhang, R., J. Zhang, L. Fang, X. Li, Y. Zhao, W. Shi, and L. An. 2014. Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer’s disease-like lesions. International Journal of Molecular Sciences 15 (8):14396–410. doi:10.3390/ijms150814396.
  • Zhang, Y. J, and Q. Wu. 2021. Sulforaphane protects intestinal epithelial cells against lipopolysaccharide-induced injury by activating the AMPK/SIRT1/PGC-1α pathway. Bioengineered 12 (1):4349–60. doi:10.1080/21655979.2021.1952368.
  • Zhang, Y., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structur. Proceedings of the National Academy of Sciences of the United States of America 89 (6):2399–403. doi:10.1073/pnas.89.6.2399.
  • Zhang, Y., Q. F. Wu, J. Liu, Z. S. Zhang, X. J. Ma, Y. Y. Zhang, J. W. Zhu, R. W. Thring, M. J. Wu, Y. T. Gao, et al. 2022. Sulforaphane alleviates high fat diet-induced insulin resistance via AMPK/Nrf2/GPx4 axis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 152:113273. doi:10.1016/j.biopha.2022.113273.
  • Zhang, Y. S. 2001. Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanate. Carcinogenesis 22 (3):425–31. doi:10.1093/carcin/22.3.425.
  • Zhang, Z., L. L. Atwell, P. E. Farris, E. Ho, and J. Shannon. 2016. Associations between cruciferous vegetable intake and selected biomarkers among women scheduled for breast biopsies. Public Health Nutrition 19 (7):1288–95. doi:10.1017/S136898001500244X.
  • Zhang, Z., M. Garzotto, E. W. Davis, M. Mori, W. A. Stoller, P. E. Farris, C. P. Wong, L. M. Beaver, G. V. Thomas, D. E. Williams, et al. 2020. Sulforaphane bioavailability and chemopreventive activity in men presenting for biopsy of the prostate gland: A randomized controlled trial. Nutrition and Cancer 72 (1):74–87. doi:10.1080/01635581.2019.1619783.
  • Zhao, F.,J. Zhang, andNa. Chang. 2018. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. European Journal of Pharmacology 824:1–10. doi: 10.1016/j.ejphar.2018.01.046.
  • Zhao, Y., Y. Zhang, H. Yang, Z. Xu, Z. Li, Z. Zhang, W. Zhang, and J. Deng. 2024. A comparative metabolomics analysis of phytochemcials and antioxidant activity between broccoli floret and by-products (leaves and stalks). Food Chemistry 443:138517. doi:10.1016/j.foodchem.2024.138517.
  • Zhou, Rui.,Y. Xu,D. Dong,J. Hu,Lin. Zhang, andH. Liu. 2023. The effects of microcapsules with different protein matrixes on the viability of probiotics during spray drying, gastrointestinal digestion, thermal treatment, and storage. eFood 4 (4). doi: 10.1002/efd2.98.
  • Zimmerman, A. W.,K. Singh,S. L. Connors,Hua. Liu,A. A. Panjwani,L.-C. Lee,E. Diggins,Ann. Foley,S. Melnyk,I. N. Singh, et al. 2021. Randomized controlled trial of sulforaphane and metabolite discovery in children with Autism Spectrum Disorder. Molecular Autism 12 (1). doi: 10.1186/s13229-021-00447-5.
  • Żuryń, A., A. Litwiniec, B. Safiejko-Mroczka, A. Klimaszewska-Wiśniewska, M. Gagat, A. Krajewski, L. Gackowska, and D. Grzanka. 2016. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line. International Journal of Oncology 48 (6):2521–33. doi:10.3892/ijo.2016.3444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.