149
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Natural chlorophyll: a review of analysis methods, health benefits, and stabilization strategies

, , , , , , , , & show all

References

  • Aktas, E. T., and H. Yildiz. 2011. Effects of electroplasmolysis treatment on chlorophyll and carotenoid extraction yield from spinach and tomato. Journal of Food Engineering 106 (4):339–46. doi: 10.1016/j.jfoodeng.2011.05.033.
  • Allenmark, S. G. 2000. Chiroptical methods in the stereochemical analysis of natural products. Natural Product Reports 17 (2):145–55. doi: 10.1039/a809629e.
  • An, X. Y., D. N. Zhong, W. S. Wu, R. X. Wang, L. Yang, Q. Jiang, M. Zhou, and X. Q. Xu. 2024. Doxorubicin-loaded microalgal delivery system for combined chemotherapy and enhanced photodynamic therapy of osteosarcoma. ACS Applied Materials & Interfaces 16 (6):6868–78. doi: 10.1021/acsami.3c16995.
  • Baxter, J. H. 1968. Absorption of chlorophyll phytol in normal man and in patients with refsum’s disease. Journal of Lipid Research 9 (5):636–41. doi: 10.1016/S0022-2275(20)42711-7.
  • Bechaieb, R., A. B. Fredj, A. B. Akacha, and H. Gérard. 2016. Interactions of copper(ii) and zinc(ii) with chlorophyll: Insights from density functional theory studies. New Journal of Chemistry 40 (5):4543–9. doi: 10.1039/C5NJ03244J.
  • Berlanga-Del Pozo, M., L. Gallardo-Guerrero, and B. Gandul-Rojas. 2020. Influence of alkaline treatment on structural modifications of chlorophyll pigments in naoh-treated table olives preserved without fermentation. Foods 9 (6):701. doi: 10.3390/foods9060701.
  • Bouslama, L., K. Hayashi, J. Lee, A. Ghorbel, and T. Hayashi. 2011. Potent virucidal effect of pheophorbide a and pyropheophorbide a on enveloped viruses. Journal of Natural Medicines 65 (1):229–33. doi: 10.1007/s11418-010-0468-8.
  • Bui-Xuan, N., P. M. Tang, C. Wong, J. Y. Chan, K. K. Y. Cheung, J. L. Jiang, and K. Fung. 2011. Pheophorbide a: A photosensitizer with immunostimulating activities on mouse macrophage raw 264.7 cells in the absence of irradiation. Cellular Immunology 269 (1):60–7. doi: 10.1016/j.cellimm.2011.02.010.
  • Cao, J. R., F. W. Li, Y. Y. Li, H. P. Chen, X. J. Liao, and Y. Zhang. 2021. Hydrophobic interaction driving the binding of soybean protein isolate and chlorophyll: Improvements to the thermal stability of chlorophyll. Food Hydrocolloids 113:106465. doi: 10.1016/j.foodhyd.2020.106465.
  • Carvalho, A. M. S., L. Heimfarth, E. W. M. Pereira, F. S. Oliveira, I. R. A. Menezes, H. D. M. Coutinho, L. Picot, A. R. Antoniolli, J. S. S. Quintans, and L. J. Quintans-Júnior. 2020. Phytol, a chlorophyll component, produces antihyperalgesic, antiinflammatory, and antiarthritic effects: Possible nf kappa b pathway involvement and reduced levels of the proinflammatory cytokines tnf-alpha and il-6. Journal of Natural Products 83 (4):1107–17. doi: 10.1021/acs.jnatprod.9b01116.
  • Cha, K. H., H. J. Lee, S. Y. Koo, D. Song, D. Lee, and C. Pan. 2010. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from chlorella vulgaris. Journal of Agricultural and Food Chemistry 58 (2):793–7. doi: 10.1021/jf902628j.
  • Chen, D., S. Lu, G. Yang, X. Pan, S. Fan, X. Xie, Q. Chen, F. Li, Z. Li, S. Wu, et al. 2020. The seafood musculus senhousei shows anti-influenza a virus activity by targeting virion envelope lipids. Biochemical Pharmacology 177:113982. doi: 10.1016/j.bcp.2020.113982.
  • Chen, K., J. J. Ríos, A. Pérez-Gálvez, and M. Roca. 2017. Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry 228:625–33. doi: 10.1016/j.foodchem.2017.02.036.
  • Chen, K., and M. Roca. 2018. In vitro bioavailability of chlorophyll pigments from edible seaweeds. Journal of Functional Foods 41:25–33. doi: 10.1016/j.jff.2017.12.029.
  • Chen, K. W., and M. Roca. 2018. In vitro digestion of chlorophyll pigments from edible seaweeds. Journal of Functional Foods 40:400–7. doi: 10.1016/j.jff.2017.11.030.
  • Chen, M. 2019. Chlorophylls d and f: Synthesis, occurrence, light-harvesting, and pigment organization in chlorophyll-binding protein complexes. Advances in Botanical Research 90:121–39. doi: 10.1016/bs.abr.2019.03.006.
  • Chen, Z. Q., C. Wang, X. D. Gao, Y. Chen, R. K. Santhanam, C. L. Wang, L. L. Xu, and H. X. Chen. 2019. Interaction characterization of preheated soy protein isolate with cyanidin-3-o-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chemistry 271:266–273. doi: 10.1016/j.foodchem.2018.07.170.
  • Cheng, J., W. Li, G. Tan, Z. Wang, S. Li, and Y. Jin. 2017. Synthesis and in vitro photodynamic therapy of chlorin derivative 13(1)-ortho-trifluoromethyl-phenylhydrazone modified pyropheophorbide-a. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 87:263–273. doi: 10.1016/j.biopha.2016.12.081.
  • Choi, W. Y., J. Sim, J. Lee, D. H. Kang, and H. Y. Lee. 2019. Increased anti-inflammatory effects on lps-induced microglia cells by Spirulina maxima extract from ultrasonic process. Applied Sciences 9 (10):2144. doi: 10.3390/app9102144.
  • Delpino-Rius, A., D. Cosovanu, J. Eras, F. Vilaró, M. Balcells, and R. Canela-Garayoa. 2018. A fast and reliable ultrahigh-performance liquid chromatography method to assess the fate of chlorophylls in teas and processed vegetable foodstuff. Journal of Chromatography. A 1568:69–79. doi: 10.1016/j.chroma.2018.07.016.
  • Diers, J. R., Y. Zhu, R. E. Blankenship, and D. F. Bocian. 1996. Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. The Journal of Physical Chemistry 100 (20):8573–9. doi: 10.1021/jp953544+.
  • Emek, S. C., A. Szilagyi, H.-E. Akerlund, P.-A. Albertsson, R. Köhnke, A. Holm, and C. Erlanson-Albertsson. 2010. A large scale method for preparation of plant thylakoids for use in body weight regulation. Preparative Biochemistry & Biotechnology 40 (1):13–27. doi: 10.1080/10826060903413057.
  • Fernandes, T. M., B. B. Gomes, and U. M. Lanfer-Marquez. 2007. Apparent absorption of chlorophyll from spinach in an assay with dogs. Innovative Food Science & Emerging Technologies 8 (3):426–32. doi: 10.1016/j.ifset.2007.03.019.
  • Ferruzzi, M. G., and J. Blakeslee. 2007. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research 27 (1):1–12. doi: 10.1016/j.nutres.2006.12.003.
  • Ferruzzi, M. G., M. L. Failla, and S. J. Schwartz. 2001. Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and caco-2 human cell model. Journal of Agricultural and Food Chemistry 49 (4):2082–9. doi: 10.1021/jf000775r.
  • Fiedor, L., M. Stasiek, B. Myśliwa-Kurdziel, and K. Strzałka. 2003. Phytol as one of the determinants of chlorophyll interactions in solution. Photosynthesis Research 78 (1):47–57. doi: 10.1023/A:1026042005536.
  • Friday, C., O. UchennaIgwe, and U. C. Akwada. 2021. Nmr characterization and free radical scavenging activity of pheophytin ‘a’ from the leaves of Dissotis rotundifolia. Bulletin of the Chemical Society of Ethiopia 35 (1):207–15. doi: 10.4314/bcse.v35i1.18.
  • Furukawa, H., T. Oba, H. Tamiaki, and T. Watanabe. 2000. Effect of c13(2)-stereochemistry on the molecular properties of chlorophylls. Bulletin of the Chemical Society of Japan 73 (6):1341–51. doi: 10.1246/bcsj.73.1341.
  • Galindev, O., N. Badraa, M. Dalantai, G. Sengee, D. Dorjnamjin, and Y. K. Shim. 2008. Synthesis of pyrazole substituted methyl pheophorbide-a derivatives and their preliminary in vitro cell viabilities. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 7 (10):1273–81. doi: 10.1039/b802433m.
  • Gallardo-Guerrero, L., B. Gandul-Rojas, and M. I. Mínguez-Mosquera. 2008. Digestive stability, micellarization, and uptake by caco-2 human intestinal cell of chlorophyll derivatives from different preparations of pea (Pisum sativum l.). Journal of Agricultural and Food Chemistry 56 (18):8379–86. doi: 10.1021/jf8013684.
  • Gandul-Rojas, B., L. Gallardo-Guerrero, and M. I. Mínguez-Mosquera. 2009. Influence of the chlorophyll pigment structure on its transfer from an oily food matrix to intestinal epithelium cells. Journal of Agricultural and Food Chemistry 57 (12):5306–14. doi: 10.1021/jf900426h.
  • Gauthier-Jaques, A., K. Bortlik, J. Hau, and L. B. Fay. 2001. Improved method to track chlorophyll degradation. Journal of Agricultural and Food Chemistry 49 (3):1117–22. doi: 10.1021/jf000384c.
  • Gelzinis, A., V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas. 2015. Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochimica et Biophysica Acta 1847 (2):241–7. doi: 10.1016/j.bbabio.2014.11.004.
  • Gross, J. 1991. Chlorophylls. In: Pigments in vegetables: Chlorophylls and carotenoids, ed. J. Gross, 3–74. Boston, MA: Springer US.
  • Hayes, M., and M. G. Ferruzzi. 2020. Update on the bioavailability and chemopreventative mechanisms of dietary chlorophyll derivatives. Nutrition Research (New York, N.Y.) 81:19–37. doi: 10.1016/j.nutres.2020.06.010.
  • He, S. Y., N. Zhang, and P. Jing. 2019. Insights into interaction of chlorophylls with sodium caseinate in aqueous nanometre-scale dispersion: Color stability, spectroscopic, electrostatic, and morphological properties. RSC Advances 9 (8):4530–8. doi: 10.1039/c8ra09329f.
  • Heaton, J. W., R. W. Lencki, and A. G. Marangoni. 1996. Kinetic model for chlorophyll degradation in green tissue. Journal of Agricultural and Food Chemistry 44 (2):399–402. doi: 10.1021/jf950448x.
  • Heim, M., J. Johnson, F. Boess, I. Bendik, P. Weber, W. Hunziker, and B. Fluhmann. 2002. Phytanic acid, a natural peroxisome proliferator-activated receptor agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 16 (7):718–20. doi: 10.1096/fj.01-0816fje.
  • Herritt, M. T., J. C. Long, M. D. Roybal, D. C. Moller, T. C. Mockler, D. Pauli, and A. L. Thompson. 2021. Flip: Fluorescence imaging pipeline for field-based chlorophyll fluorescence images. SoftwareX 14:100685. doi: 10.1016/j.softx.2021.100685.
  • Hsiao, C. J., J. F. Lin, H. Y. Wen, Y. M. Lin, C. H. Yang, K. S. Huang, and J. F. Shaw. 2020. Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chemistry 306:125300. doi: 10.1016/j.foodchem.2019.125300.
  • Hsu, C., T. Yeh, M. Huang, S. Hu, P. Chao, and C. Yang. 2014. Organ-specific distribution of chlorophyll-related compounds from dietary spinach in rabbits. Indian Journal of Biochemistry & Biophysics 51 (5):388–95.
  • Hu, X. Y., T. Y. Gu, I. Khan, A. Zada, and T. Jia. 2021. Research progress in the interconversion, turnover and degradation of chlorophyll. Cells 10 (11):3134. doi: 10.3390/cells10113134.
  • Jeffrey, S. W., M. Vesk, and R. Mantoura. 1997. Phytoplankton pigments: Windows into the pastures of the sea. Nature & Resources 33 (2):14–29.
  • Ji, P., Y. Luo, and W. Xue. 2012. Preparation technology of paste chlorophyll from the bamboo leaf. Chemistry and Industry of Forest Products 32 (5):88–92.
  • Kang, Y., Y. Lee, Y. J. Kim, and Y. H. Chang. 2019. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum arabic and maltodextrin. Food Chemistry 272:337–46. doi: 10.1016/j.foodchem.2018.08.063.
  • Karolczak, J., D. Kowalska, A. Lukaszewicz, A. Maciejewski, and R. P. Steer. 2004. Photophysical studies of porphyrins and metalloporphyrins: Accurate measurements of fluorescence spectra and fluorescence quantum yields for soret band excitation of zinc tetraphenylporphyrin. Journal of Physical Chemistry a 108 (21):4570–5. doi: 10.1021/jp049898v.
  • Koca, N., F. Karadeniz, and H. S. Burdurlu. 2007. Effect of ph on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry 100 (2):609–15. doi: 10.1016/j.foodchem.2005.09.079.
  • Köhnke, R., A. Lindqvist, N. Göransson, S. C. Emek, P.-A. Albertsson, J. F. Rehfeld, A. Hultgårdh-Nilsson, and C. Erlanson-Albertsson. 2009. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice. Phytotherapy Research: PTR 23 (12):1778–83. doi: 10.1002/ptr.2855.
  • Kotkowiak, M., A. Dudkowiak, and L. Fiedor. 2017. Intrinsic photoprotective mechanisms in chlorophylls. Angewandte Chemie (International ed. in English) 56 (35):10457–61. doi: 10.1002/anie.201705357.
  • Lanfer-Marquez, U. M., R. Barros, and P. Sinnecker. 2005. Antioxidant activity of chlorophylls and their derivatives. Food Research International 38 (8-9):885–91. doi: 10.1016/j.foodres.2005.02.012.
  • Lee, E., H. Ahn, and E. Choe. 2014. Effects of light and lipids on chlorophyll degradation. Food Science and Biotechnology 23 (4):1061–5. doi: 10.1007/s10068-014-0145-x.
  • Lee, J., M. Kwak, Y. K. Chang, and D. Kim. 2021. Green solvent-based extraction of chlorophyll a from nannochloropsis sp. Using 2,3-butanediol. Separation and Purification Technology 276:119248. doi: 10.1016/j.seppur.2021.119248.
  • Leite, A. C., A. M. Ferreira, E. S. Morais, I. Khan, M. G. Freire, and J. A. P. Coutinho. 2018. Cloud point extraction of chlorophylls from spinach leaves using aqueous solutions of nonionic surfactants. ACS Sustainable Chemistry & Engineering 6 (1):590–9. doi: 10.1021/acssuschemeng.7b02931.
  • Li, F., Z. Yang, S. Shen, Z. Wang, and Y. Zhang. 2023. Ternary synergistic aggregation of chlorophyll/soy protein isolate improves chlorophyll stability. Food Hydrocolloids 140:108662. doi: 10.1016/j.foodhyd.2023.108662.
  • Li, F. W., J. R. Cao, Z. H. Wang, X. J. Liao, X. S. Hu, and Y. Zhang. 2022. Dual aggregation in ground state and ground-excited state induced by high concentrations contributes to chlorophyll stability. Food Chemistry 383:132447. doi: 10.1016/j.foodchem.2022.132447.
  • Li, F. W., L. Zhou, J. R. Cao, Z. H. Wang, X. J. Liao, and Y. Zhang. 2022. Aggregation induced by the synergy of sodium chloride and high-pressure improves chlorophyll stability. Food Chemistry 366:130577. doi: 10.1016/j.foodchem.2021.130577.
  • Li, M., N. Li, G. Chen, S-i Sasaki, T. Miyasaka, H. Tamiaki, C. Dall’Agnese, and X.-F. Wang. 2019. Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at c17-propionate residue. Dyes and Pigments 162:763–70. doi: 10.1016/j.dyepig.2018.11.005.
  • Li, Y. Y., J. R. Cao, H. L. Zheng, X. S. Hu, X. J. Liao, and Y. Zhang. 2021. Transformation pathways and metabolic activity of free chlorophyll compounds from chloroplast thylakoid membrane under in vitro gastrointestinal digestion and colonic fermentation in early life. Food Bioscience 42:101196. doi: 10.1016/j.fbio.2021.101196.
  • Li, Y. Y., Y. Cui, X. S. Hu, X. J. Liao, and Y. Zhang. 2019. Chlorophyll supplementation in early life prevents diet-induced obesity and modulates gut microbiota in mice. Molecular Nutrition & Food Research 63 (21):e1801219. doi: 10.1002/mnfr.201801219.
  • Li, Y. Y., Y. Cui, F. Lu, X. Wang, X. J. Liao, X. S. Hu, and Y. Zhang. 2019. Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice. Journal of Functional Foods 60:103436. doi: 10.1016/j.jff.2019.103436.
  • Li, Y. Y., F. Lu, X. Wang, X. S. Hu, X. J. Liao, and Y. Zhang. 2021. Biological transformation of chlorophyll-rich spinach (Spinacia oleracea l.) Extracts under in vitro gastrointestinal digestion and colonic fermentation. Food Research International (Ottawa, Ont.) 139:109941. doi: 10.1016/j.foodres.2020.109941.
  • Lin, C., C. Lee, Y. Chang, H. Wang, C. Chen, and Y. Chen. 2014. Pheophytin a inhibits inflammation via suppression of lps-induced nitric oxide synthase-2, prostaglandin e2, and interleukin-1 beta of macrophages. International Journal of Molecular Sciences 15 (12):22819–34. doi: 10.3390/ijms151222819.
  • Lötjönen, S., and P. H. Hynninen. 1983. C-13 nmr-spectra of chlorophyll-a, chlorophyll-a’, pyrochlorophyll-a and the corresponding pheophytins. Organic Magnetic Resonance 21 (12):757–65. doi: 10.1002/omr.1270211208.
  • Mackie, J. T., B. P. Atshaves, H. R. Payne, A. L. McIntosh, F. Schroeder, and A. B. Kier. 2009. Phytol-induced hepatotoxicity in mice. Toxicologic Pathology 37 (2):201–8. doi: 10.1177/0192623308330789.
  • Marquez, U., and P. Sinnecker. 2008. Chlorophylls in foods: Sources and stability, ed. C. Socaciu, 195–211.
  • Martins, M., C. M. Albuquerque, C. F. Pereira, J. A. P. Coutinho, M. G. P. M. Neves, D. C. G. A. Pinto, M. A. F. Faustino, and S. P. M. Ventura. 2021. Recovery of chlorophyll a derivative from spirulina maxima: Its purification and photosensitizing potential. ACS Sustainable Chemistry & Engineering 9 (4):1772–80. doi: 10.1021/acssuschemeng.0c07880.
  • Martins, M., A. P. M. Fernandes, M. A. Torres-Acosta, P. N. Collén, M. H. Abreu, and S. P. M. Ventura. 2021. Extraction of chlorophyll from wild and farmed ulva spp. Using aqueous solutions of ionic liquids. Separation and Purification Technology 254:117589. doi: 10.1016/j.seppur.2020.117589.
  • Marzorati, S., A. Schievano, A. Idà, and L. Verotta. 2020. Carotenoids, chlorophylls and phycocyanin from spirulina: Supercritical co2 and water extraction methods for added value products cascade. Green Chemistry 22 (1):187–96. doi: 10.1039/C9GC03292D.
  • Masami Kobayashi, S. A. D. F. 2013. Physicochemical properties of chlorophylls in oxygenic photosynthesis—succession of co-factors from anoxygenic to oxygenic photosynthesis, 47–90.
  • Mehdipoor Damiri, G. R., A. Motamedzadegan, R. Safari, S. A. Shahidi, and A. Ghorbani. 2021. Evaluation of stability, physicochemical and antioxidant properties of extracted chlorophyll from persian clover (trifolium resupinatuml.). Journal of Food Measurement and Characterization 15 (1):327–40. doi: 10.1007/s11694-020-00614-x.
  • Mínguez-Mosquera, M. I., and B. Gandul-Rojas. 1995. High-performance liquid chromatographic study of alkaline treatment of chlorophyll. Journal of Chromatography A 690 (2):161–76. doi: 10.1016/0021-9673(94)00924-X.
  • Mizoguchi, T., A. Shoji, M. Kunieda, H. Miyashita, T. Tsuchiya, M. Mimuro, and H. Tamiaki. 2006. Stereochemical determination of chlorophyll-d molecule from acaryochloris marina and its modification to a self-aggregative chlorophyll as a model of green photosynthetic bacterial antennae. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 5 (3):291–9. doi: 10.1039/b514088a.
  • Murador, D. C., L. Mesquita, B. V. Neves, A. R. Braga, P. Martins, L. Q. Zepka, and V. V. De Rosso. 2021. Bioaccessibility and cellular uptake by caco-2 cells of carotenoids and chlorophylls from orange peels: A comparison between conventional and ionic liquid mediated extractions. Food Chemistry 339:127818. doi: 10.1016/j.foodchem.2020.127818.
  • Najdanova, M., H. U. Siehl, and S. Berger. 2018. A comparison of the h-1, c-13-, and n-15-nmr data of chlorophyll a and chlorophyll b guided by quantum chemical calculation. Journal of Physical Organic Chemistry 31 (8):e3802. doi: 10.1002/poc.3802.
  • Nakano, T., Y. Hashimoto, and H. Tamiaki. 2023. Synthesis and self-aggregation of chlorophyll-a derivatives possessing a hydroxymethyl group in the c20-substituent with ethynylene and/or phenylene linkers. Photochemistry and Photobiology 99 (1):35–44. doi: 10.1111/php.13655.
  • Nayak, P. K., C. M. Chandrasekar, A. Haque, and R. K. Kesavan. 2021. Influence of pre-treatments on the degradation kinetics of chlorophylls in morisa xak (amaranthus caudatus) leaves after microwave drying. Journal of Food Process Engineering 44 (9):13790. doi: 10.1111/jfpe.13790.
  • Ngamwonglumlert, L., S. Devahastin, and N. Chiewchan. 2017a. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition 57 (15):3243–59. doi: 10.1080/10408398.2015.1109498.
  • Ngamwonglumlert, L., S. Devahastin, and N. Chiewchan. 2017b. Molecular structure, stability and cytotoxicity of natural green colorants produced from centella asiatica l. Leaves treated by steaming and metal complexations. Food Chemistry 232:387–94. doi: 10.1016/j.foodchem.2017.04.034.
  • Ordóñez-Santos, L. E., and A. M. Garzón-García. 2021. Optimizing homogenizer-assisted extraction of chlorophylls from plantain epicarp (musa paradisiacal.). Journal of Food Measurement and Characterization 15 (2):1108–15. doi: 10.1007/s11694-020-00703-x.
  • Palm, D. M., A. Agostini, A. Pohland, M. Werwie, E. Jaenicke, and H. Paulsen. 2019. Stability of water-soluble chlorophyll protein (wscp) depends on phytyl conformation. ACS Omega 4 (5):7971–9. doi: 10.1021/acsomega.9b00054.
  • Patel, A. H., H. P. Sharma, Vaishali. 2023. Physiological functions, pharmacological aspects and nutritional importance of green tomato- A future food. Critical Reviews in Food Science and Nutrition, 1, 29 doi: 10.1080/10408398.2023.2212766.
  • Qiu, N. W., D. C. Jiang, X. S. Wang, B. S. Wang, and F. Zhou. 2019. Advances in the members and biosynthesis of chlorophyll family. Photosynthetica 57 (4):974–84. doi: 10.32615/ps.2019.116.
  • Qu, F., N. Gong, S. H. Wang, Y. Gao, C. L. Sun, W. H. Fang, and Z. W. Men. 2020. Effect of ph on fluorescence and absorption of aggregates of chlorophyll a and carotenoids. Dyes and Pigments 173:107975. doi: 10.1016/j.dyepig.2019.107975.
  • Ratnoglik, S. L., C. Aoki, P. Sudarmono, M. Komoto, L. Deng, I. Shoji, H. Fuchino, N. Kawahara, and H. Hotta. 2014. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis c virus. Microbiology and Immunology 58 (3):188–94. doi: 10.1111/1348-0421.12133.
  • Reboul, E., M. Richelle, E. Perrot, C. Desmoulins-Malezet, V. Pirisi, and P. Borel. 2006. Bioaccessibility of carotenoids and vitamin e from their main dietary sources. Journal of Agricultural and Food Chemistry 54 (23):8749–55. doi: 10.1021/jf061818s.
  • Reddy, M. K., R. L. Alexander-Lindo, and M. G. Nair. 2005. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. Journal of Agricultural and Food Chemistry 53 (23):9268–73. doi: 10.1021/jf051399j.
  • Rho, M. C., M. Y. Chung, H. Y. Song, O. E. Kwon, S. W. Lee, J. A. Baek, K. H. Jeune, K. Kim, H. S. Lee, and Y. K. Kim. 2003. Pheophorbide a-methyl ester, acyl-coa: Cholesterol acyltransferase inhibitor from Diospyros kaki. Archives of Pharmacal Research 26 (9):716–8. doi: 10.1007/BF02976679.
  • Roca, M., and A. Pérez-Gálvez. 2021. Metabolomics of chlorophylls and carotenoids: Analytical methods and metabolome-based studies. Antioxidants (Basel, Switzerland) 10 (10):1622. doi: 10.3390/antiox10101622.
  • Scheer, H. 2006. An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, eds. B. Grimm, R. J. Porra, W. Rüdiger, H. Scheer, 1–26. Dordrecht: Springer Netherlands.
  • Scherer, P., S. F. Fischer, P. Scherer, and S. F. Fischer. 2010. Photophysics of chlorophylls and carotenoids, 247–58.
  • Song, H. Y., M. C. Rho, S. W. Lee, O. E. Kwon, Y. D. Chang, H. S. Lee, and Y. K. Kim. 2002. Isolation of acyl-coa: Cholesterol acyltransferase inhibitor from Persicaria vulgaris. Planta Medica 68 (9):845–7. doi: 10.1055/s-2002-34395.
  • Strouse, C. E., N. A. Matwiyoff, and V. H. Kollman. 1972. C-13 NMR-spectra of c-13 enriched chlorophyll-a and chlorophyll-b. Biochemical and Biophysical Research Communications 46 (1):328–34. doi: 10.1016/0006-291X(72)90666-3.
  • Subramoniam, A., V. V. Asha, S. A. Nair, S. P. Sasidharan, P. K. Sureshkumar, K. N. Rajendran, D. Karunagaran, and K. Ramalingam. 2012. Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of tnf-alpha gene by the same. Inflammation 35 (3):959–66. doi: 10.1007/s10753-011-9399-0.
  • Suryani, C. L., T. D. Wahyuningsih, and U. Santoso. 2020. Derivatization of chlorophyll from pandan (Pandanus amaryllifolius roxb.) Leaves and their antioxidant activity. Periodico Tche Quimica 17 (36):1110–26. doi: 10.52571/PTQ.v17.n36.2020.1125_Periodico36_pgs_1110_1126.pdf.
  • Tajmirriahi, H.‐A., G. Wang, and R. M. Leblanc. 1991. Far-infrared spectra of Langmuir-Blodgett-films of chlorophyll-a, chlorophyll-b, pheophytin-a and their adducts with water and dioxane. Photochemistry and Photobiology 54 (2):265–71. doi: 10.1111/j.1751-1097.1991.tb02015.x.
  • Takahashi, Y., Y. Maeda, H. Kurata, R. Azuma, K. Shimokawa, and M. Adachi. 2000. Chlorophyll catabolism in ethylene-treated Citrus unshiu peel: On chlorophyll a oxidative degradating enzyme. Journal of the Japanese Society for Horticultural Science 69 (5):641–5.
  • Takamoto, H., K. Eguchi, T. Kawabata, Y. Fujiwara, M. Takeya, and S. Tsukamoto. 2015. Inhibitors for cholesterol ester accumulation in macrophages from Chinese cabbage. Bioscience, Biotechnology, and Biochemistry 79 (8):1315–9. doi: 10.1080/09168451.2015.1023247.
  • Taniguchi, M., and J. S. Lindsey. 2021. Absorption and fluorescence spectral database of chlorophylls and analogues. Photochemistry and Photobiology 97 (1):136–65. doi: 10.1111/php.13319.
  • Tavanandi, H. A., and K. S. M. S. Raghavarao. 2019. Recovery of chlorophylls from spent biomass of Arthrospira platensis obtained after extraction of phycobiliproteins. Bioresource Technology 271:391–401. doi: 10.1016/j.biortech.2018.09.141.
  • Teng, S. S., and B. H. Chen. 1999. Formation of pyrochlorophylls and their derivatives in spinach leaves during heating. Food Chemistry 65 (3):367–73. doi: 10.1016/S0308-8146(98)00237-4.
  • Tong, Y., L. Gao, G. Xiao, and X. Pan. 2012. Microwave pretreatment-assisted ethanol extraction of chlorophylls from spirulina platensis. Journal of Food Process Engineering 35 (5):792–9. doi: 10.1111/j.1745-4530.2010.00629.x.
  • van den Brink, D. M., J. N. I. van Miert, G. Dacremont, J. Rontani, and R. J. A. Wanders. 2005. Characterization of the final step in the conversion of phytol into phytanic acid*. The Journal of Biological Chemistry 280 (29):26838–44. doi: 10.1074/jbc.M501861200.
  • A., Van Loey, V., Ooms, C., Weemaes, I., Van den Broeck, L., Ludikhuyze, S., Denys, M., Hendrickx, Indrawati,. 1998. Thermal and pressure-temperature degradation of chlorophyll in broccoli (Brassica oleracea l italica) juice: A kinetic study.Journal of Agricultural and Food Chemistry 46(12): 5289–5294. doi: 10.1021/jf980505x.
  • Vergara-Domínguez, H., M. Roca, and B. Gandul-Rojas. 2013. Characterisation of chlorophyll oxidation mediated by peroxidative activity in olives (Olea europaea l.) Cv. Hojiblanca. Food Chemistry 139 (1-4):786–95. doi: 10.1016/j.foodchem.2013.01.120.
  • Viera, I., K. Chen, J. J. Ríos, I. Benito, A. Pérez-Gálvez, and M. Roca. 2018. First-pass metabolism of chlorophylls in mice. Molecular Nutrition & Food Research 62 (17):e1800562. doi: 10.1002/mnfr.201800562.
  • Viera, I., M. Roca, and A. Perez-Galvez. 2018. Mass spectrometry of non-allomerized chlorophylls a and b derivatives from plants. Current Organic Chemistry 22 (9):842–76. doi: 10.2174/1385272821666170920164836.
  • Wang, L., and Y. Zhang. 2017. Eugenol nanoemulsion stabilized with zein and sodium caseinate by self-assembly. Journal of Agricultural and Food Chemistry 65 (14):2990–8. doi: 10.1021/acs.jafc.7b00194.
  • Wang, R. R., S. H. Ding, X. S. Hu, X. J. Liao, and Y. Zhang. 2016. Effects of high hydrostatic pressure on chlorophylls and chlorophyll-protein complexes in spinach. European Food Research and Technology 242 (9):1533–43. doi: 10.1007/s00217-016-2654-8.
  • Wang, R. R., T. T. Wang, Q. Zheng, X. S. Hu, Y. Zhang, and X. J. Liao. 2012. Effects of high hydrostatic pressure on color of spinach puree and related properties. Journal of the Science of Food and Agriculture 92 (7):1417–23. doi: 10.1002/jsfa.4719.
  • Wang, X., Y. Y. Li, S. X. Shen, Z. T. Yang, H. F. Zhang, and Y. Zhang. 2022. Chlorophyll inhibits the digestion of soybean oil in simulated human gastrointestinal system. Nutrients 14 (9):1749. doi: 10.3390/nu14091749.
  • Yasuda, M., K. Oda, T. Ueda, and M. Tabata. 2019. Physico-chemical chlorophyll-a species in aqueous alcohol solutions determine the rate of its discoloration under UV light. Food Chemistry 277:463–70. doi: 10.1016/j.foodchem.2018.11.005.
  • Zulqarnain, A., A. I. Durrani, H. Saleem, and S. Rubab. 2021. Development of an ultrasonic-assisted extraction technique for the extraction of natural coloring substance chlorophyll from leaves of carica papaya. Journal of Oleo Science 70 (10):1367–72. doi: 10.5650/jos.ess21118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.