77
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities

, , , , , & show all

References

  • Ajayi, F. F., P. Mudgil, A. Jobe, P. Antony, R. Vijayan, C. Y. Gan, and S. Maqsood. 2023. Novel plant-protein (quinoa) derived bioactive peptides with potential anti-hypercholesterolemic activities: Identification, characterization and molecular docking of bioactive peptides. Foods 12 (6):1327. doi: 10.3390/foods12061327.
  • Akbarian, M., A. Khani, S. Eghbalpour, and V. N. Uversky. 2022. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences 23 (3):1445. doi: 10.3390/ijms23031445.
  • Akishino, M., Y. Aoki, H. Baba, M. Asakawa, Y. Hama, and S. Mitsutake. 2022. Red algae-derived isofloridoside activates the sweet taste receptor T1R2/T1R3. Food Bioscience 50:102186. doi: 10.1016/j.fbio.2022.102186.
  • Aluko, R. E. 2015. Antihypertensive peptides from food proteins. Annual Review of Food Science and Technology 6 (1):235–62. doi: 10.1146/annurev-food-022814-015520.
  • Ambigaipalan, P., and F. Shahidi. 2015. Date seed flour and hydrolysates affect physicochemical properties of muffin. Food Bioscience 12:54–60. doi: 10.1016/j.fbio.2015.06.001.
  • Anwar, S., Q. A. Syed, F. Munawar, M. Arshad, W. Ahmad, M. A. Rehman, and M. K. Arshad. 2023. Inclusive overview of sweeteners trends: Nutritional safety and commercialization. ACS Food Science & Technology 3 (2):245–58. doi: 10.1021/acsfoodscitech.2c00325.
  • Ayati, S., J. B. Eun, N. Atoub, and A. Mirzapour-Kouhdasht. 2021. Functional yogurt fortified with fish collagen-derived bioactive peptides: Antioxidant capacity, ACE and DPP-IV inhibitory. Journal of Food Processing and Preservation 46 (1):e16208. doi: 10.1111/jfpp.16208.
  • Balti, R., A. Bougatef, N. El-Hadj Ali, D. Zekri, A. Barkia, and M. Nasri. 2010. Influence of degree of hydrolysis on functional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of the Science of Food and Agriculture 90 (12):2006–14. doi: 10.1002/jsfa.4045.
  • Bersi, G., S. E. Barberis, A. L. Origone, and M. O. Adaro. 2018. Bioactive peptides as functional food ingredients. Role of Materials Science in Food Bioengineering, 147–86. 105953. doi: 10.1016/B978-0-12-811448-3.00005-X.
  • Bian, Y. R., W. J. Li, L. H. Pan, Q. M. Peng, S. You, S. Sheng, J. Wang, and F. A. Wu. 2022. Sweet-flavored peptides with biological activities from mulberry seed protein treated by multifrequency countercurrent ultrasonic technology. Food Chemistry 367:130647. doi: 10.1016/j.foodchem.2021.130647.
  • Brennan, S. C., T. S. Davies, M. Schepelmann, and D. Riccardi. 2014. Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: Control of taste modulation and intestinal hormone secretion. The British Journal of Nutrition 111 (S1):S16–S22. doi: 10.1017/S0007114513002250.
  • Brown, T. D., K. A. Whitehead, and S. Mitragotri. 2019. Materials for oral delivery of proteins and peptides. Nature Reviews Materials 5 (2):127–48. doi: 10.1038/s41578-019-0156-6.
  • Byeon, J. C., S. E. Lee, T. H. Kim, J. B. Ahn, D. H. Kim, J. S. Choi, and J. S. Park. 2019. Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Delivery 26 (1):216–25. doi: 10.1080/10717544.2018.1551441.
  • Cao, H., X. Zheng, H. Liu, M. Yuan, T. Ye, X. Wu, F. Yin, Y. Li, J. Yu, and F. Xu. 2020. Cryo-protective effect of ice-binding peptides derived from collagen hydrolysates on the frozen dough and its ice-binding mechanisms. LWT 131:109678. doi: 10.1016/j.lwt.2020.109678.
  • Carocho, M., M. F. Barreiro, P. Morales, and I. C. Ferreira. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13 (4):377–99. doi: 10.1111/1541-4337.12065.
  • Carvalho, G. R. d., Milani, T. M. G. Trinca, N. R. R. Nagai, L. Y. Barretto, A., and C. d S. 2017. Textured soy protein, collagen and maltodextrin as extenders to improve the physicochemical and sensory properties of beef burger. Food Science and Technology 37 (suppl 1):10–6. doi: 10.1590/1678-457x.31916.
  • Chai, K. F., A. Y. H. Voo, W. N. J. C. R. i F. S. Chen, and F. Safety. 2020. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety 19 (6):3825–85. doi: 10.1111/j.1365-2621.2003.tb05778.x.
  • Chang, S.-L., Q.-S. Zhao, H. Li, X.-D. Wang, L.-W. Wang, and B. Zhao. 2022. Effect of pectin on epsilon-polylysine purification: Study on preparation, physicochemical property, and bioactivity of pectin-epsilon-polylysine complex. Food Hydrocolloids. 124:107314. doi: 10.1016/j.foodhyd.2021.107314.
  • Charve, J., S. Manganiello, and A. Glabasnia. 2018. Analysis of umami taste compounds in a fermented corn sauce by means of sensory-guided fractionation. Journal of Agricultural and Food Chemistry 66 (8):1863–71. doi: 10.1021/acs.jafc.7b05633.
  • Chen, X., X. Shi, X. Cai, F. Yang, L. Li, J. Wu, and S. Wang. 2021. Ice-binding proteins: A remarkable ice crystal regulator for frozen foods. Critical Reviews in Food Science and Nutrition 61 (20):3436–49. doi: 10.1080/10408398.2020.1798354.
  • Chen, X., J-h Wu, L. Li, and S. Wang. 2016. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze–thaw cycles. European Food Research and Technology 243 (7):1149–56. doi: 10.1007/s00217-016-2830-x.
  • Chen, X., J. Wu, X. Cai, and S. Wang. 2021. Production, structure-function relationships, mechanisms, and applications of antifreeze peptides. Comprehensive Reviews in Food Science and Food Safety 20 (1):542–62. doi: 10.1111/1541-4337.12655.
  • Choyam, S., P. M. Jain, and R. Kammara. 2021. Characterization of a potent new-generation antimicrobial peptide of bacillus. Frontiers in Microbiology 12:710741. doi: 10.3389/fmicb.2021.710741.
  • Cui, F., Q. Wang, L. Han, D. Wang, J. Li, T. Li, and X. Li. 2023. Effect of Maillard conjugates of peptides and polydextrose on Antarctic krill oil emulsion stability and digestibility. LWT 179:114648. doi: 10.1016/j.lwt.2023.114648.
  • Cui, P., T. Shao, W. Liu, M. Li, M. Yu, W. Zhao, Y. Song, Y. Ding, and J. Liu. 2023. Advanced review on type II collagen and peptide: Preparation, functional activities and food industry application. Critical Reviews in Food Science and Nutrition 2023:1–18. doi: 10.1080/10408398.2023.2236699.
  • Cumby, N., Y. Zhong, M. Naczk, and F. Shahidi. 2008. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry 109 (1):144–8. doi: 10.1016/j.foodchem.2007.12.039.
  • Daher, M. I., J. M. Matta, and A. M. Abdel Nour. 2019. Non-nutritive sweeteners and type 2 diabetes: Should we ring the bell? Diabetes Research and Clinical Practice 155:107786. doi: 10.1016/j.diabres.2019.107786.
  • Damodaran, S., and S. Wang. 2017. Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocolloids. 70:46–56. doi: 10.1016/j.foodhyd.2017.03.029.
  • Dang, Y., L. Hao, J. Cao, Y. Sun, X. Zeng, Z. Wu, and D. Pan. 2019. Molecular docking and simulation of the synergistic effect between umami peptides, monosodium glutamate and taste receptor T1R1/T1R3. Food Chemistry 271:697–706. doi: 10.1016/j.foodchem.2018.08.001.
  • De Leon Rodriguez, L. M., and Y. Hemar. 2020. Prospecting the applications and discovery of peptide hydrogels in food. Trends in Food Science & Technology 104:37–48. doi: 10.1016/j.tifs.2020.07.025.
  • De Quadros, C. D. C., K. O. Lima, C. H. L. Bueno, F. H. d S. Fogaça, M. Da Rocha, and C. Prentice. 2019. Evaluation of the antioxidant and antimicrobial activity of protein hydrolysates and peptide fractions derived from colossoma macropomum and their effect on ground beef lipid oxidation. Journal of Aquatic Food Product Technology 28 (6):677–88. doi: 10.1080/10498850.2019.1628152.
  • Deng, Y., L. Huang, C. Zhang, P. Xie, J. Cheng, X. Wang, and S. Li. 2019. Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chemistry 283:539–48. doi: 10.1016/j.foodchem.2019.01.083.
  • Dey, P., S. Kadharbasha, M. Bajaj, J. Das, T. Chakraborty, C. Bhat, and P. Banerjee. 2021. Contribution of quasifibrillar properties of collagen hydrolysates towards lowering of interface tension in emulsion-based food leading to shelf-Life enhancement. Food and Bioprocess Technology 14 (8):1566–86. doi: 10.1007/s11947-021-02640-z.
  • Dickinson, E. 2019. Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocolloids. 96:209–23. doi: 10.1016/j.foodhyd.2019.05.021.
  • Ding, Y., L. Chen, Y. Shi, M. Akhtar, J. Chen, and R. Ettelaie. 2021. Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocolloids. 113:106519. doi: 10.1016/j.foodhyd.2020.106519.
  • Du, Z., Q. Li, J. Li, E. Su, X. Liu, Z. Wan, and X. Yang. 2019. Self-assembled egg yolk peptide micellar nanoparticles as a versatile emulsifier for food-grade oil-in-water pickering nanoemulsions. Journal of Agricultural and Food Chemistry 67 (42):11728–40. doi: 10.1021/acs.jafc.9b04595.
  • Duan, R., J. Zhang, L. Liu, W. Cui, and J. M. Regenstein. 2018. The functional properties and application of gelatin derived from the skin of channel catfish (Ictalurus punctatus). Food Chemistry 239:464–9. doi: 10.1016/j.foodchem.2017.06.145.
  • Ebdali, S., A. Motamedzadegan, S. H. Hosseini-Parvar, and S. A. Shahidi. 2013. Comparative study on effect of pectin, gelatin and modified starch replacement with fish gelatin in textural properties and graininess of non-fat yogurt.
  • Eckert, E., J. Han, K. Swallow, Z. Tian, M. Jarpa-Parra, and L. Chen. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of Faba bean protein. Cereal Chemistry 96 (4):725–41. doi: 10.1002/cche.10169.
  • Erdem Büyükkiraz, M., and Z. Kesmen. 2022. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of Applied Microbiology 132 (3):1573–96. doi: 10.1111/jam.15314.
  • Fadimu, G. J., C. Y. Gan, O. A. Olalere, A. Farahnaky, H. Gill, and T. Truong. 2023. Novel antihypertensive peptides from lupin protein hydrolysate: An in-silico identification and molecular docking studies. Food Chemistry 407:135082. doi: 10.1016/j.foodchem.2022.135082.
  • Farag, M. A., M. M. Rezk, M. Hamdi Elashal, M. El-Araby, S. A. M. Khalifa, and H. R. El-Seedi. 2022. An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety. Food Research International 162 (Pt A):111853. doi: 10.1016/j.foodres.2022.111853.
  • Feng, R., X. Zou, K. Wang, H. Liu, H. Hong, Y. Luo, and Y. Tan. 2023. Antifatigue and microbiome reshaping effects of yak bone collagen peptides on Balb/c mice. Food Bioscience 52:102447. doi: 10.1016/j.fbio.2023.102447.
  • Feng, T., Y. Wu, Z. Zhang, S. Song, H. Zhuang, Z. Xu, L. Yao, and M. Sun. 2019. Purification, identification, and sensory evaluation of kokumi peptides from agaricus bisporus mushroom. Foods (Basel, Switzerland) 8 (2):43. doi: 10.3390/foods8020043.
  • Feng, X., R. Wang, J. Lu, Q. Du, K. Cai, B. Zhang, and B. Xu. 2024. Taste properties and mechanism of umami peptides from fermented goose bones based on molecular docking and molecular dynamics simulation using umami receptor T1R1/T1R3. Food Chemistry 443:138570. doi: 10.1016/j.foodchem.2024.138570.
  • Fiocchi, A., L. Dahda, C. Dupont, C. Campoy, V. Fierro, and A. Nieto. 2016. Cow’s milk allergy: Towards an update of DRACMA guidelines. The World Allergy Organization Journal 9 (1):35. 11. doi: 10.1186/s40413-016-0125-0.
  • Fu, W., P. Wang, Y. Chen, J. Lin, B. Zheng, H. Zeng, and Y. Zhang. 2019. Preparation, primary structure and antifreeze activity of antifreeze peptides from Scomberomorus niphonius skin. LWT 101:670–7. doi: 10.1016/j.lwt.2018.11.067.
  • García-Moreno, P. J., S. Gregersen, E. R. Nedamani, T. H. Olsen, P. Marcatili, M. T. Overgaard, M. L. Andersen, E. B. Hansen, and C. Jacobsen. 2020. Identification of emulsifier potato peptides by bioinformatics: Application to omega-3 delivery emulsions and release from potato industry side streams. Scientific Reports 10 (1):690. doi: 10.1038/s41598-019-57229-6.
  • García-Moreno, P. J., C. Jacobsen, P. Marcatili, S. Gregersen, M. T. Overgaard, M. L. Andersen, A. M. Sørensen, and E. B. Hansen. 2020. Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocolloids. 101:105529. doi: 10.1016/j.foodhyd.2019.105529.
  • García-Moreno, P. J., J. Yang, S. Gregersen, N. C. Jones, C. C. Berton-Carabin, L. M. C. Sagis, S. V. Hoffmann, P. Marcatili, M. T. Overgaard, E. B. Hansen, et al. 2021. The structure, viscoelasticity and charge of potato peptides adsorbed at the oil-water interface determine the physicochemical stability of fish oil-in-water emulsions. Food Hydrocolloids. 115:106605. doi: 10.1016/j.foodhyd.2021.106605.
  • Gharsallaoui, A., N. Oulahal, C. Joly, and P. Degraeve. 2016. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition 56 (8):1262–74. doi: 10.1080/10408398.2013.763765.
  • Glorieux, S., O. Goemaere, L. Steen, and I. Fraeye. 2017. Phosphate reduction in emulsified meat products: Impact of phosphate type and dosage on quality characteristics. Food Technology and Biotechnology 55 (3):390–7. doi: 10.17113/ft.
  • Green Corkins, K., and T. Shurley. 2016. What’s in the bottle? A review of infant formulas. Nutrition in Clinical Practice 31 (6):723–9. doi: 10.1177/0884533616669362.
  • Guo, Z., D. Yi, B. Hu, L. Zhu, J. Zhang, Y. Yang, C. Liu, Y. Shi, Z. Gu, Y. Xin, et al. 2023. Supplementation with yak (Bos grunniens) bone collagen hydrolysate altered the structure of gut microbiota and elevated short-chain fatty acid production in mice. Food Science and Human Wellness 12 (5):1637–45. doi: 10.1016/j.fshw.2023.02.017.
  • Guy, M. M., and N. Voyer. 2012. Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide. Biophysical Chemistry 163–164:1–10. doi: 10.1016/j.bpc.2011.12.005.
  • H, M. R., S. J. M, and G. A. H. 1969. Structure-taste relationships of some dipeptides. Journal of the American Chemical Society 91 (10):2684–91. doi: 10.1021/ja01038a046.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A.-D. Moltke Sørensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Hauptstein, N., L. M. De Leon-Rodriguez, A. K. Mitra, Y. Hemar, I. Kavianinia, N. Li, V. Castelletto, I. W. Hamley, and M. A. Brimble. 2018. Supramolecular threading of peptide hydrogel fibrils. ACS Biomaterials Science & Engineering 4 (8):2733–8. doi: 10.1021/acsbiomaterials.8b00283.
  • Jain, A., M. Prakash, and C. Radha. 2015. Extraction and evaluation of functional properties of groundnut protein concentrate. Journal of Food Science and Technology 52 (10):6655–62. doi: 10.1007/s13197-015-1758-7.
  • Morris, J. A., and R. H. Cagan. 1976. Enzymic proteolysis of monellin. Absence of sweet peptides. Journal of Agricultural and Food Chemistry 24 (5):1075–7. doi: 10.3390/molecules21010072.
  • Ju, Y., L. Sun, X. Zhang, W. Li, and L. Hou. 2023. Fractionation, identification and umami characteristics of flavor peptides in natural brewed soy sauce. Food Chemistry 425:136501. doi: 10.1016/j.foodchem.2023.136501.
  • Karami, Z., and B. Akbari-Adergani. 2019. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology 56 (2):535–47. doi: 10.1007/s13197-018-3549-4.
  • Kondrashina, A., A. Brodkorb, and L. Giblin. 2020. Dairy-derived peptides for satiety. Journal of Functional Foods 66:103801. doi: 10.1016/j.jff.2020.103801.
  • Kong, C. H. Z., N. Hamid, Q. Ma, J. Lu, B.-G. Wang, and V. Sarojini. 2017. Antifreeze peptide pretreatment minimizes freeze-thaw damage to cherries: An in-depth investigation. LWT 84:441–8. doi: 10.1016/j.lwt.2017.06.002.
  • Kong, L., C. Liu, H. Tang, P. Yu, R. Wen, X. Peng, X. Xu, and X. Yu. 2023. Hygroscopicity and antioxidant activity of whey protein hydrolysate and its ability to improve the water holding capacity of pork patties during freeze − thaw cycles. LWT 182:114784. doi: 10.1016/j.lwt.2023.114784.
  • Kristinsson, H. G., and B. A. Rasco. 2000. Biochemical and functional properties of atlantic salmon (salmo salar) muscle proteins hydrolyzed with various alkaline proteases. American Chemical Society 48:657–66. doi: 10.1021/jf990447v.
  • Kumar, A., K. Elavarasan, M. D. Hanjabam, P. K. Binsi, C. O. Mohan, A. A. Zynudheen, and A. Kumar K. 2019. Marine collagen peptide as a fortificant for biscuit: Effects on biscuit attributes. LWT 109:450–6. doi: 10.1016/j.lwt.2019.04.052.
  • Ladha, G., and K. Jeevaratnam. 2020. Characterization of purified antimicrobial peptide produced by Pediococcus pentosaceus LJR1, and its application in preservation of white leg shrimp. World Journal of Microbiology & Biotechnology 36 (5):72. doi: 10.1007/s11274-020-02847-w.
  • Le, B., B. Yu, M. S. Amin, R. Liu, N. Zhang, O. P. Soladoye, R. E. Aluko, Y. Zhang, and Y. Fu. 2022. Salt taste receptors and associated salty/salt taste-enhancing peptides: A comprehensive review of structure and function. Trends in Food Science & Technology 129:657–66. doi: 10.1016/j.tifs.2022.11.014.
  • Leni, G., L. Soetemans, A. Caligiani, S. Sforza, and L. Bastiaens. 2020. Degree of hydrolysis affects the techno-functional properties of lesser mealworm protein hydrolysates. Foods 9 (4):381. doi: 10.3390/foods9040381.
  • Li, J., X. Jia, and L. Yin. 2021. Hydrogel: Diversity of structures and applications in food science. Food Reviews International 37 (3):313–72. doi: 10.1080/87559129.2020.1858313.
  • Li, J. T., J. L. Zhang, H. He, Z. L. Ma, Z. K. Nie, Z. Z. Wang, and X. G. Xu. 2013. Apoptosis in human hepatoma HepG2 cells induced by corn peptides and its anti-tumor efficacy in H22 tumor bearing mice. Food and Chemical Toxicology 51:297–305. doi: 10.1016/j.fct.2012.09.038.
  • Li, Q., J. Liu, L. Cao, L. Zhang, W. L. P. Bredie, J. Otte, and R. Lametsch. 2022. Effects of γ-glutamylated hydrolysates from porcine hemoglobin and meat on kokumi enhancement and oxidative stability of emulsion-type sausages. Food and Bioprocess Technology 15 (8):1851–65. doi: 10.1007/s11947-022-02851-y.
  • Li, Q., J. Liu, C. De Gobba, L. Zhang, W. L. Bredie, and R. Lametsch. 2020. Production of taste enhancers from protein hydrolysates of porcine hemoglobin and meat using bacillus amyloliquefaciens γ-glutamyltranspeptidase. Journal of Agricultural and Food Chemistry 68 (42):11782–9. doi: 10.1021/acs.jafc.0c04513.
  • Li, Q., L. Zhang, and R. Lametsch. 2022. Current progress in kokumi-active peptides, evaluation and preparation methods: A review. Critical Reviews in Food Science and Nutrition 62 (5):1230–41. doi: 10.1080/10408398.2020.1837726.
  • Lima, P. G., C. D. T. Freitas, J. T. A. Oliveira, N. A. S. Neto, J. L. Amaral, A. F. B. Silva, J. S. Sousa, O. L. Franco, and P. F. N. Souza. 2021. Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Research International 147:110582. doi: 10.1016/j.foodres.2021.110582.
  • Lin, D., L.-C. Sun, Y.-L. Chen, G.-M. Liu, S. Miao, and M.-J. Cao. 2022. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement of physical and oxidative stability of emulsions. Trends in Food Science & Technology 129:11–24. doi: 10.1016/j.tifs.2022.08.012.
  • Liu, W. J., X. L. Li, S. G. Li, B. C. Xu, and B. Zhang. 2022. Emulsifying and emulsion stabilizing properties of hydrolysates of high-density lipoprotein from egg yolk. Food Chemistry 369:130891. doi: 10.1016/j.foodchem.2021.130891.
  • Liu, Y., Y.-P. Xie, X.-Y. Ma, L.-N. Liu, and Y.-J. Ke. 2021. Preparation and properties of antioxidant peptides from wampee seed protein. Journal of Food Measurement and Characterization 16 (1):410–9. doi: 10.1007/s11694-021-01164-6.
  • Lu, R., X. Li, Y. Wang, and L. Jin. 2021. Expression of functional plant sweet protein Thaumatin II in the milk of transgenic mice. Food and Bioproducts Processing 125:222–7. doi: 10.1016/j.fbp.2020.11.006.
  • Lu, Y., J. Wang, O. P. Soladoye, R. E. Aluko, Y. Fu, and Y. Zhang. 2021. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends in Food Science & Technology 113:301–14. doi: 10.1016/j.tifs.2021.04.051.
  • Lyu, S., M. Chen, Y. Wang, D. Zhang, S. Zhao, J. Liu, F. Pan, and T. Zhang. 2023. Foaming properties of egg white proteins improved by enzymatic hydrolysis: The changes in structure and physicochemical properties. Food Hydrocolloids. 141:108681. doi: 10.1016/j.foodhyd.2023.108681.
  • Mardani, M., K. Badakné, J. Farmani, and R. E. Aluko. 2023. Antioxidant peptides: Overview of production, properties, and applications in food systems. Comprehensive Reviews in Food Science and Food Safety 22 (1):46–106. doi: 10.1111/1541-4337.13061.
  • Martínez, K. D., C. Carrera Sánchez, J. M. Rodríguez Patino, and A. M. R. Pilosof. 2009. Interfacial and foaming properties of soy protein and their hydrolysates. Food Hydrocolloids. 23 (8):2149–57. doi: 10.1016/j.foodhyd.2009.03.015.
  • Maryniak, N. Z., A. I. Sancho, E. B. Hansen, and K. L. Bøgh. 2022. Alternatives to cow’s milk-based infant formulas in the prevention and management of cow’s milk allergy. Foods 11 (7):926. doi: 10.3390/foods11070926.
  • Miguel, M., A. Dávalos, M. A. Manso, G. de la Peña, M. A. Lasunción, and R. López-Fandiño. 2008. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Molecular Nutrition & Food Research 52 (12):1507–13. doi: 10.1002/mnfr.200700503.
  • Mondal, S., S. Das, and A. K. Nandi. 2020. A review on recent advances in polymer and peptide hydrogels. Soft Matter 16 (6):1404–54. doi: 10.1039/c9sm02127b.
  • Morell, P., and S. Fiszman. 2017. Revisiting the role of protein-induced satiation and satiety. Food Hydrocolloids. 68:199–210. doi: 10.1016/j.foodhyd.2016.08.003.
  • Mudgil, P., H. Kamal, B. Priya Kilari, M. A. S. Mohd Salim, C. Y. Gan, and S. Maqsood. 2021. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides. Food Chemistry 353:129374. doi: 10.1016/j.foodchem.2021.129374.
  • Ning, Y., P. Han, J. Ma, Y. Liu, Y. Fu, Z. Wang, and Y. Jia. 2021. Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacillus laterosporus S62-9, and their application in real food system. Food Bioscience 42:101091. doi: 10.1016/j.fbio.2021.101091.
  • Nishimura, T., and H. Kato. 1988. Taste of free amino acids and peptides. Food Reviews International 4 (2):175–94. doi: 10.1080/87559128809540828.
  • Niu, H., W. Wang, Z. Dou, X. Chen, X. Chen, H. Chen, and X. Fu. 2023. Multiscale combined techniques for evaluating emulsion stability: A critical review. Advances in Colloid and Interface Science 311:102813. doi: 10.1016/j.cis.2022.102813.
  • Nuñez, S. M., C. Cárdenas, P. Valencia, Y. Masip, M. Pinto, and S. Almonacid. 2021. Water-holding capacity of enzymatic protein hydrolysates: A study on the synergistic effects of peptide fractions. LWT 152:112357. doi: 10.1016/j.lwt.2021.112357.
  • Phongthai, S., N. Singsaeng, R. Nhoo-Ied, T. Suwannatrai, R. Schönlechner, K. Unban, W. Klunklin, T. Laokuldilok, Y. Phimolsiripol, and S. Rawdkuen. 2020. Properties of peanut (KAC431) protein hydrolysates and their impact on the quality of gluten-free rice bread. Foods 9 (7):942. doi: 10.3390/foods9070942.
  • Plaza, M., A. Cifuentes, and E. Ibanez. 2008. In the search of new functional food ingredients from algae. Trends in Food Science & Technology 19 (1):31–9. doi: 10.1016/j.tifs.2007.07.012.
  • Power-Grant, O., C. Bruen, L. Brennan, L. Giblin, P. Jakeman, and R. J. FitzGerald. 2015. In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: Targeting the enteroinsular axis. Food & Function 6 (3):972–80. doi: 10.1039/C4FO00983E.
  • Pulidindi, K., and K. Ahuja. 2023. Food additives market size by product (flavors & enhancers, sweeteners, acidulants, shelf-life stabilizers, enzymes, hydrocolloids, preservatives), by application (bakery & confectionery, food & nutrition, beverages, dairy & frozen desserts, sauces & dressings), 2023–2032. Retrieved from https://www.gminsights.com/industry-analysis/food-additives-market-size.
  • Qiao, M., M. Tu, Z. Wang, F. Mao, H. Chen, L. Qin, and M. Du. 2018. Identification and antithrombotic activity of peptides from blue mussel (mytilus edulis) protein. International Journal of Molecular Sciences 19 (1):138. doi: 10.3390/ijms19010138.
  • Raza, F., Y. Zhu, L. Chen, X. You, J. Zhang, A. Khan, M. W. Khan, M. Hasnat, H. Zafar, J. Wu, et al. 2019. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomaterials Science 7 (5):2023–36. doi: 10.1039/c9bm00139e.
  • Rhyu, M.-R., A.-Y. Song, E.-Y. Kim, H.-J. Son, Y. Kim, S. Mummalaneni, J. Qian, J. R. Grider, and V. Lyall. 2020. Kokumi taste active peptides modulate salt and umami taste. Nutrients 12 (4):1198. doi: 10.3390/nu12041198.
  • Ricardo, F., D. Pradilla, J. C. Cruz, and O. Alvarez. 2021. Emerging emulsifiers: Conceptual basis for the identification and rational design of peptides with surface activity. International Journal of Molecular Sciences 22 (9):4615. doi: 10.3390/ijms22094615.
  • Rivero-Pino, F. 2023. Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices. Food Chemistry 406:135046. doi: 10.1016/j.foodchem.2022.135046.
  • Sadowska, A., F. Świderski, K. Kulik, and B. Waszkiewicz-Robak. 2021. Designing functional fruit-based recovery drinks in powder form that contain electrolytes, peptides, carbohydrates and prebiotic fiber taking into account each component’s osmolality. Molecules (Basel, Switzerland) 26 (18):5607. doi: 10.3390/molecules26185607.
  • Said, M. I. 2020. Role and function of gelatin in the development of the food and non-food industry: A review. IOP Conference Series: Earth and Environmental Science 492 (1):012086. doi: 10.1088/1755-1315/492/1/012086.
  • Sánchez-Navarro, M., J. Garcia, E. Giralt, and M. Teixidó. 2016. Using peptides to increase transport across the intestinal barrier. Advanced Drug Delivery Reviews 106 (Pt B):355–66. doi: 10.1016/j.addr.2016.04.031.
  • Sarker, A. 2022. A review on the application of bioactive peptides as preservatives and functional ingredients in food model systems. Journal of Food Processing and Preservation 46 (8):e16800. doi: 10.1111/jfpp.16800.
  • Shen, Q., L. Sun, Z. He, J. Xie, and Y. Zhuang. 2023. Isolation, taste characterization and molecular docking study of novel umami peptides from Lactarius volemus (Fr.). Food Chemistry 401:134137. doi: 10.1016/j.foodchem.2022.134137.
  • Sheng, Y., W.-Y. Wang, M.-F. Wu, Y.-M. Wang, W.-Y. Zhu, C.-F. Chi, and B. Wang. 2023. Eighteen novel bioactive peptides from monkfish (Lophius litulon) swim bladders: Production, identification, antioxidant activity, and stability. Marine Drugs 21 (3):169. doi: 10.3390/md21030169.
  • Shi, C., M. Liu, H. Zhao, Z. Lv, L. Liang, and B. Zhang. 2022. A novel insight into screening for antioxidant peptides from hazelnut protein: Based on the properties of amino acid residues. Antioxidants 11 (1):127. doi: 10.3390/antiox11010127.
  • Silva, C. C. G., S. P. M. Silva, and S. C. Ribeiro. 2018. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology 9:594. doi: 10.3389/fmicb.2018.00594.
  • Singh, T. P., R. A. Siddiqi, and D. S. Sogi. 2021. Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties. LWT 138:110648. doi: 10.1016/j.lwt.2020.110648.
  • Sinha, R., C. Radha, J. Prakash, and P. Kaul. 2007. Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry 101 (4):1484–91. doi: 10.1016/j.foodchem.2006.04.021.
  • Song, S., J. Zhuang, C. Ma, T. Feng, L. Yao, C. T. Ho, and M. Sun. 2023. Identification of novel umami peptides from Boletus edulis and its mechanism via sensory analysis and molecular simulation approaches. Food Chemistry 398:133835. doi: 10.1016/j.foodchem.2022.133835.
  • Sun, X., S. Li, O. D. Okagu, H. Wang, S. Zhang, X. Liu, and C. C. Udenigwe. 2023. Identification of peptides from defatted wheat germ proteins with dual functionality: Emulsifying activity and anti-adhesive activity against Helicobacter pylori. Innovative Food Science & Emerging Technologies 86:103367. doi: 10.1016/j.ifset.2023.103367.
  • Sun, Z.-H., M.-J. Yao, X. Bian, Q.-Q. Guo, H.-N. Guan, Y. Yang, B. Wang, Y.-G. Shi, W. Piekoszewski, X.-W. Yang, et al. 2021. The influence of soy protein hydrolysate (SPH) addition to infant formula powder on Streptococcus thermophilus proliferation and metabolism. Food Research International 141:110103. doi: 10.1016/j.foodres.2020.110103.
  • Suzuki, H., Y. Nakafuji, and T. Tamura. 2017. New method to produce kokumi seasoning from protein hydrolysates using bacterial enzymes. Journal of Agricultural and Food Chemistry 65 (48):10514–9. doi: 10.1021/acs.jafc.7b03690.
  • Taheri, A., Anvar, S. A. A. H. A, and Fogliano, V. 2013. Comparison the functional properties of protein hydrolysates from poultry byproducts and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences 12 (1):154–69.
  • Tang, T., H. Du, S. Tang, Y. Jiang, Y. Tu, M. Hu, and M. Xu. 2021. Effects of incorporating different kinds of peptides on the foaming properties of egg white powder. Innovative Food Science & Emerging Technologies 72:102742. doi: 10.1016/j.ifset.2021.102742.
  • Tang, T., J. Liu, S. Tang, N. Xiao, Y. Jiang, Y. Tu, and M. Xu. 2022. Effects of soy peptides and pH on foaming and physicochemical properties of egg white powder. LWT 153:112503. doi: 10.1016/j.lwt.2021.112503.
  • Tong, T., L. Wang, X. You, and J. Wu. 2020. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomaterials Science 8 (21):5804–23. doi: 10.1039/d0bm01151g.
  • Tulipano, G., L. Faggi, A. Cacciamali, and A. M. Caroli. 2017. Whey protein-derived peptide sensing by enteroendocrine cells compared with osteoblast-like cells: Role of peptide length and peptide composition, focussing on products of β-lactoglobulin hydrolysis. International Dairy Journal 72:55–62. doi: 10.1016/j.idairyj.2017.04.004.
  • Ulug, S. K., F. Jahandideh, and J. Wu. 2021. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology 108:27–39. doi: 10.1016/j.tifs.2020.12.002.
  • Vishweshwaraiah, Y. L., A. Acharya, V. Hegde, and B. Prakash. 2021. Rational design of hyperstable antibacterial peptides for food preservation. NPJ Science of Food 5 (1):26. doi: 10.1038/s41538-021-00109-z.
  • Wang, C., J. Rao, X. Li, D. He, T. Zhang, J. Xu, X. Chen, L. Wang, Y. Yuan, and X. Zhu. 2023. Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: Insights into protein structure integrity and gelling behaviors. Food Research International 169:112871. doi: 10.1016/j.foodres.2023.112871.
  • Wang, L., J. Zhang, Q. Yuan, H. Xie, J. Shi, and X. Ju. 2016. Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food & Function 7 (5):2239–48. doi: 10.1039/c6fo00042h.
  • Wang, P., J. Zhang, Y. Tang, Z. Zhang, Y. Zhang, and J. Hu. 2021. Purification and characterization of antioxidant peptides from hairtail surimi hydrolysates and their effects on beef color stability. Journal of Food Science 86 (7):2898–909. doi: 10.1111/1750-3841.15804.
  • Wang, S., Z. Lv, W. Zhao, L. Wang, and N. He. 2020. Collagen peptide from Walleye pollock skin attenuated obesity and modulated gut microbiota in high-fat diet-fed mice. Journal of Functional Foods 74:104194. doi: 10.1016/j.jff.2020.104194.
  • Wang, W., M. Chen, J. Wu, and S. Wang. 2015. Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism. LWT - Food Science and Technology 63 (2):878–85. doi: 10.1016/j.lwt.2015.04.007.
  • Wang, X., Y. Fan, F. Xu, J. Xie, X. Gao, L. Li, Y. Tian, and J. Sheng. 2022. Characterization of the structure, stability, and activity of hypoglycemic peptides from Moringa oleifera seed protein hydrolysates. Food & Function 13 (6):3481–94. doi: 10.1039/d1fo03413h.
  • Wang, Y., J. Luan, X. Tang, W. Zhu, Y. Xu, Y. Bu, J. Li, F. Cui, and X. Li. 2023. Identification of umami peptides based on virtual screening and molecular docking from Atlantic cod (Gadus morhua). Food & Function 14 (3):1510–9. doi: 10.1039/d2fo03776a.
  • Wen, C., J. Zhang, H. Zhang, Y. Duan, and H. Ma. 2020. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology 105:308–22. doi: 10.1016/j.tifs.2020.09.019.
  • Wen, L., H. Bi, X. Zhou, Y. Jiang, H. Zhu, X. Fu, and B. Yang. 2022. Structure characterization of soybean peptides and their protective activity against intestinal inflammation. Food Chemistry 387:132868. doi: 10.1016/j.foodchem.2022.132868.
  • Wen, L., Y. Jiang, X. Zhou, H. Bi, and B. Yang. 2021. Structure identification of soybean peptides and their immunomodulatory activity. Food Chemistry 359:129970. doi: 10.1016/j.foodchem.2021.129970.
  • Wu, L., C. Zhang, Y. Long, Q. Chen, W. Zhang, and G. Liu. 2022. Food additives: From functions to analytical methods. Critical Reviews in Food Science and Nutrition 62 (30):8497–517. doi: 10.1080/10408398.2021.1929823.
  • Xu, D., and M. Zhao. 2022. Walnut protein hydrolysates ameliorate alcohol-induced cognitive impairment (AICI) by alleviating oxidative stress and inflammation in the brain and improving hippocampal synaptic plasticity in Sprague-Dawley rats. Food & Function 13 (22):11615–26. doi: 10.1039/d2fo01709a.
  • Xu, M., Z. Du, H. Liang, Y. Yang, Q. Li, Z. Wan, and X. Yang. 2021. Adsorption and foaming properties of edible egg yolk peptide nanoparticles: Effect of particle aggregation. Current Research in Food Science 4:270–8. doi: 10.1016/j.crfs.2021.04.002.
  • Xu, Q., H. Hong, J. Wu, and X. Yan. 2019. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 86:399–411. doi: 10.1016/j.tifs.2019.02.050.
  • Yan, C.-Y., J. Sun, G.-Y. Yu, J.-H.-Z. Liu, R.-P. Huang, S.-C. Han, Q.-Y. Zhang, X.-M. Li, J.-G. Yan, H. Kurihara, et al. 2022. Tripeptide Leu-Pro-Phe from corn protein hydrolysates attenuates hyperglycemia-induced neural Tube defect in chicken embryos. Oxidative Medicine and Cellular Longevity 2022:4932304–14. doi: 10.1155/2022/4932304.
  • Yan, J., Z. Yang, X. Qiao, Z. Kong, L. Dai, J. Wu, X. Xu, and D. J. McClements. 2022. Interfacial characteristics and in vitro digestion of emulsion coated by single or mixed natural emulsifiers: Lecithin and/or rice glutelin hydrolysates. Journal of the Science of Food and Agriculture 102 (7):2990–9. doi: 10.1002/jsfa.11639.
  • Yan, Y., Y. Li, Z. Zhang, X. Wang, Y. Niu, S. Zhang, W. Xu, and C. Ren. 2021. Advances of peptides for antibacterial applications. Colloids and Surfaces. B, Biointerfaces 202:111682. doi: 10.1016/j.colsurfb.2021.111682.
  • Yang, F., W. Jiang, X. Chen, J. Wu, J. Huang, X. Cai, and S. Wang. 2023. Investigation on the quality regulating mechanism of antifreeze peptides on frozen surimi: From macro to micro. Food Research International 163:112299. doi: 10.1016/j.foodres.2022.112299.
  • Yang, J., W. Bai, X. Zeng, and C. Cui. 2019. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties – A review. Trends in Food Science & Technology 91:339–46. doi: 10.1016/j.tifs.2019.07.022.
  • Yang, J., Y. Huang, C. Cui, H. Dong, X. Zeng, and W. Bai. 2021. Umami-enhancing effect of typical kokumi-active gamma-glutamyl peptides evaluated via sensory analysis and molecular modeling approaches. Food Chemistry 338:128018. doi: 10.1016/j.foodchem.2020.128018.
  • Yang, Z., Y. Wei, W. Wu, L. Zhang, J. Wang, and A. Shan. 2023. Characterization of simplified nonapeptides with broad-spectrum antimicrobial activities as potential food preservatives, and their antibacterial mechanism. Food & Function 14 (7):3139–54. doi: 10.1039/d2fo03861g.
  • Yesiltas, B., S. Gregersen, L. Lægsgaard, M. L. Brinch, T. H. Olsen, P. Marcatili, M. T. Overgaard, E. B. Hansen, C. Jacobsen, and P. J. García-Moreno. 2021. Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chemistry 362:130217. doi: 10.1016/j.foodchem.2021.130217.
  • Ying, F., S. Lin, J. Li, X. Zhang, and G. Chen. 2021. Identification of monoamine oxidases inhibitory peptides from soybean protein hydrolysate through ultrafiltration purification and in silico studies. Food Bioscience 44:101355. doi: 10.1016/j.fbio.2021.101355.
  • Ying, T., P. Wu, L. Gao, C. Wang, T. Zhang, S. Liu, and R. Huang. 2022. Isolation and characterization of a new strain of Bacillus amyloliquefaciens and its effect on strawberry preservation. LWT 165:113712. doi: 10.1016/j.lwt.2022.113712.
  • Yu, M., S. Lin, R. Ge, C. Xiong, L. Xu, M. Zhao, and J. Fan. 2022. Buckwheat self-assembling peptide-based hydrogel: Preparation, characteristics and forming mechanism. Food Hydrocolloids. 125:107378. doi: 10.1016/j.foodhyd.2021.107378.
  • Yu, S., Y. Huang, B. Shen, W. Zhang, Y. Xie, Q. Gao, D. Zhao, Z.Wu, and Y. Liu. 2023. Peptide hydrogels: Synthesis, properties, and applications in food science. Comprehensive Reviews in Food Science and Food Safety 22 (4):3053–83. doi: 10.1111/1541-4337.13171.
  • Yu, X., L. Zhang, X. Miao, Y. Li, and Y. Liu. 2017. The structure features of umami hexapeptides for the T1R1/T1R3 receptor. Food Chemistry 221:599–605. doi: 10.1016/j.foodchem.2016.11.133.
  • Yuan, C., A. Levin, W. Chen, R. Xing, Q. Zou, T. W. Herling, P. K. Challa, T. P. J. Knowles, and X. Yan. 2019. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid-liquid phase separation. Angewandte Chemie 58 (50):18116–23. doi: 10.1002/anie.201911782.
  • Zhang, J., D. Sun-Waterhouse, G. Su, and M. Zhao. 2019. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends in Food Science & Technology 88:429–38. doi: 10.1016/j.tifs.2019.04.008.
  • Zhang, N., H. Liu, X. Zhou, W. Wang, Y. Fan, and Y. Liu. 2022. Taste and stability characteristics of two key umami peptides from pufferfish (Takifugu obscurus). Food Chemistry 371:131124. doi: 10.1016/j.foodchem.2021.131124.
  • Zhang, S., L. Luo, X. Sun, and A. Ma. 2021. Bioactive peptides: A promising alternative to chemical preservatives for food preservation. Journal of Agricultural and Food Chemistry 69 (42):12369–84. doi: 10.1021/acs.jafc.1c04020.
  • Zhang, Y., F. Zhou, X. Zeng, P. Shen, D. Yuan, M. Zhong, Q. Zhao, and M. Zhao. 2022. pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D(3). Food Chemistry 383:132489. doi: 10.1016/j.foodchem.2022.132489.
  • Zhao, J., S. Liao, X. Bi, J. Zhao, P. Liu, W. Ding, Z. Che, Q. Wang, and H. Lin. 2022. Isolation, identification and characterization of taste peptides from fermented broad bean paste. Food & Function 13 (16):8730–40. doi: 10.1039/d2fo01389d.
  • Zhao, J., S. Liao, J. Han, Y. Xie, J. Tang, J. Zhao, W. Shao, Q. Wang, and H. Lin. 2023. Revealing the secret of umami taste of peptides derived from fermented broad bean paste. Journal of Agricultural and Food Chemistry 71 (11):4706–16. doi: 10.1021/acs.jafc.2c09178.
  • Zhao, L., S. Wang, and Y. Huang. 2014. Antioxidant function of tea dregs protein hydrolysates in liposome-meat system and its possible action mechanism. International Journal of Food Science & Technology 49 (10):2299–306. doi: 10.1111/ijfs.12546.
  • Zhu, X., J. Wang, Y. Lu, Y. Zhao, N. Zhang, W. Wu, Y. Zhang, and Y. Fu. 2023. Potential of Food Protein-Derived Bioactive Peptides against Sarcopenia: A Comprehensive Review. Journal of Agricultural and Food Chemistry 71 (14):5419–37. doi: 10.1021/acs.jafc.2c09094.
  • Zhu, Y., F. Lao, X. Pan, and J. Wu. 2022. Food protein-derived antioxidant peptides: Molecular mechanism, stability and bioavailability. Biomolecules 12 (11):1622. doi: 10.3390/biom12111622.
  • Zou, T. B., T. P. He, H. B. Li, H. W. Tang, and E. Q. Xia. 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21 (1):72. doi: 10.3390/molecules210100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.