143
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Mineral-element-chelating activity of food-derived peptides: influencing factors and enhancement strategies

, , , , , & show all

References

  • Abeynayake, R., S. Zhang, W. Yang, and L. Chen. 2022. Development of antioxidant peptides from brewers’ spent grain proteins. LWT 158:113162. doi: 10.1016/j.lwt.2022.113162.
  • Aletta, J. M., T. R. Cimato, and M. J. Ettinger. 1998. Protein methylation: A signal event in post-translational modification. Trends in Biochemical Sciences 23 (3):89–91. doi: 10.1016/S0968-0004(98)01185-2.
  • An, J., I. S. N. Tsopmejio, Z. Wang, and W. Li. 2023. Review on extraction, modification, and synthesis of natural peptides and their beneficial effects on skin. Molecules (Basel, Switzerland) 28 (2):908. doi: 10.3390/molecules28020908.
  • An, J., Y. Zhang, Z. Ying, H. Li, W. Liu, J. Wang, and X. Liu. 2022. The formation, structural characteristics, absorption pathways and bioavailability of calcium-peptide chelates. Foods (Basel, Switzerland) 11 (18):2762. doi: 10.3390/foods11182762.
  • Athira, S., B. Mann, R. Sharma, R. Pothuraju, and R. K. Bajaj. 2021. Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Research International 141:110133. doi: 10.1016/j.foodres.2021.110133.
  • Aung, S. H., E. D. N. S. Abeyrathne, M. Ali, D. U. Ahn, Y.-S. Choi, and K.-C. Nam. 2023. Comparison of functional properties of blood plasma collected from black goat and Hanwoo cattle. Food Science of Animal Resources 43 (1):46–60. doi: 10.1016/j.foodres.2021.110133.
  • Bi, J., X. Wang, Y. Zhou, and J. Hou. 2018. Preparation and characterization for peptide-chelated calcium of deer bone. Food Science and Technology Research 24 (4):717–28. doi: 10.3136/fstr.24.717.
  • Budseekoad, S., C. Takahashi Yupanqui, N. Sirinupong, A. M. Alashi, R. E. Aluko, and W. Youravong. 2018. Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate. Journal of Functional Foods 49:333–41. doi: 10.1016/j.jff.2018.07.041.
  • Caetano-Silva, M. E., F. M. Netto, M. T. Bertoldo-Pacheco, A. Alegría, and A. Cilla. 2021. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Critical Reviews in Food Science and Nutrition 61 (9):1470–89. doi: 10.1080/10408398.2020.1761770.
  • Cai, X., Q. Yang, J. Lin, N. Fu, and S. Wang. 2017. A specific peptide with calcium-binding capacity from defatted Schizochytrium sp. protein hydrolysates and the molecular properties. Molecules (Basel, Switzerland) 22 (4):544. doi: 10.3390/molecules22040544.
  • Cao, C., Z. Xiao, C. Ge, and Y. Wu. 2022. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems—A comprehensive review. Critical Reviews in Food Science and Nutrition 62 (31):8703–27. doi: 10.1080/10408398.2021.1931807.
  • Cheirsilp, B., W. Maneechote, S. Srinuanpan, and I. Angelidaki. 2023. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Bioresource Technology 387:129620. doi: 10.1016/j.biortech.2023.129620.
  • Chen, D., Z. Liu, W. Huang, Y. Zhao, S. Dong, and M. Zeng. 2013. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. Journal of Functional Foods 5 (2):689–97. doi: 10.1016/j.jff.2013.01.012.
  • Chen, J., X. Qiu, G. Hao, M. Zhang, and W. Weng. 2017. Preparation and bioavailability of calcium‐chelating peptide complex from tilapia skin hydrolysates. Journal of the Science of Food and Agriculture 97 (14):4898–903. doi: 10.1002/jsfa.8363.
  • Chen, M., C. Chen, Y. Zhang, H. Jiang, Y. Fang, and G. Huang. 2023. Effects of iron-peptides chelate nanoliposomes on iron supplementation in rats. Biological Trace Element Research 201 (9):4508–17. doi: 10.1007/s12011-022-03539-2.
  • Cruz-Huerta, E., D. Martínez Maqueda, L. de la Hoz, V. S. Nunes da Silva, M. T. B. Pacheco, L. Amigo, and I. Recio. 2016. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatographyand reversed phase-HPLC-tandem mass spectrometry. Journal of Dairy Science 99 (1):77–82. doi: 10.3168/jds.2015-9839.
  • Du, Y., J. Hong, S. Xu, Y. Wang, X. Wang, J. Yan, B. Lai, and H. Wu. 2022. Iron-chelating activity of large yellow croaker (Pseudosciaena crocea) roe hydrolysates. Journal of Food Processing and Preservation 46 (11):17080. doi: 10.1111/jfpp.17080.
  • Duan, M., T. Li, B. Liu, S. Yin, J. Zang, C. Lv, G. Zhao, and T. Zhang. 2023. Zinc nutrition and dietary zinc supplements. Critical Reviews in Food Science and Nutrition 63 (9):1277–92. doi: 10.1080/10408398.2021.1963664.
  • Fan, C., X. Ge, J. Hao, T. Wu, R. Liu, W. Sui, J. Geng, and M. Zhang. 2023. Identification of high iron–chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode. Food Chemistry 399:133912. doi: 10.1016/j.foodchem.2022.133912.
  • Fan, C., X. Wang, X. Song, R. Sun, R. Liu, W. Sui, Y. Jin, T. Wu, and M. Zhang. 2023. Identification of a novel walnut iron chelating peptide with potential high antioxidant activity and analysis of its possible binding sites. Foods (Basel, Switzerland) 12 (1):226. doi: 10.3390/foods12010226.
  • Fan, W., Z. Wang, Z. Mu, M. Du, L. Jiang, H. R. Ei‐SeEdi, and C. Wang. and Cong %J eFood Wang. 2020. Characterizations of a food decapeptide chelating with Zn (II.)eFood 1 (4):326–31. doi: 10.2991/efood.k.200727.001.
  • Gentilucci, L., R. De Marco, and L. Cerisoli. 2010. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Current Pharmaceutical Design 16 (28):3185–203. doi: 10.2174/138161210793292555.
  • Gu, H., L. Liang, Y. Kang, R. Yu, J. Wang, and D. Fan. 2023. Preparation, characterization, and property evaluation of Hericium erinaceus peptide–calcium chelate. Frontiers in Nutrition 10:1337407. doi: 10.3389/fnut.2023.1337407.
  • Guo, H. H., Z. Hong, and G. Y. Yan. 2023. Collagen peptide chelated zinc nanoparticles from tilapia scales for zinc supplementation. International Food Research Journal 30 (2):386–97. doi: 10.47836/ifrj.30.2.10.
  • Guo, L., P. A. Harnedy, B. Li, H. Hou, Z. Zhang, X. Zhao, and R. J. FitzGerald. 2014. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology 37 (2):92–105. doi: 10.1016/j.tifs.2014.02.007.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A.-D. Moltke Sørensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Hu, G., X. Li, R. Su, M. Corazzin, L. Dou, L. Sun, P. Hou, L. Su, Y. Jin, and L. Zhao. 2024. Effects of sheep bone peptide-chelated calcium on calcium absorption and bone deposition in rats fed a low-calcium diet. Journal of Food Biochemistry 2024:1–14. doi: 10.1155/2024/8434888.
  • Hu, G., D. Wang, R. Su, M. Corazzin, X. Liu, X. Sun, L. Dou, C. Liu, D. Yao, L. Sun, et al. 2022. Calcium-binding capacity of peptides obtained from sheep bone and structural characterization and stability of the peptide-calcium chelate. Journal of Food Measurement and Characterization 16 (6):4934–46. doi: 10.1007/s11694-022-01580-2.
  • Hu, S., S. Lin, X. He, and N. Sun. 2023. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Critical Reviews in Food Science and Nutrition 63 (29):10197–216. doi: 10.1080/10408398.2022.2076652.
  • Ikram, S., H. Zhang, M. Saad Ahmed, and J. Wang. 2020. Ultrasonic pretreatment improved the antioxidant potential of enzymatic protein hydrolysates from highland barley brewer’s spent grain (BSG). Journal of Food Science 85 (4):1045–59. doi: 10.1111/1750-3841.15063.
  • Jia, J., Q. Liu, H. Liu, C. Yang, Q. Zhao, Y. Xu, and W. Wu. 2024. Structure characterization and antioxidant activity of abalone visceral peptides-selenium in vitro. Food Chemistry 433:137398. doi: 10.1016/j.foodchem.2023.137398.
  • Jiang, B., and Y. Mine. 2000. Preparation of novel functional oligophosphopeptides from hen egg yolk phosvitin. Journal of Agricultural and Food Chemistry 48 (4):990–4. doi: 10.1021/jf990600l.
  • Joshua Ashaolu, T., C. C. Lee, J. Opeolu Ashaolu, H. Pourjafar, and S. M. Jafari. 2023. Metal-binding peptides and their potential to enhance the absorption and bioavailability of minerals. Food Chemistry 428:136678. doi: 10.1016/j.foodchem.2023.136678.
  • Ju, X., S. Cheng, H. Li, X. Xu, Z. Wang, and M. Du. 2022. Tyrosinase inhibitory effects of the peptides from fish scale with the metal copper ions chelating ability. Food Chemistry 390:133146. doi: 10.1016/j.foodchem.2022.133146.
  • Katimba, H. A., R. C. Wang, and C. L. Cheng. 2023. Current findings support the potential use of bioactive peptides in enhancing zinc absorption in humans. Critical Reviews in Food Science and Nutrition 63 (19):3959–79. doi: 10.1080/10408398.2021.1996328.
  • Ke, X., X. Hu, L. Li, X. Yang, S. Chen, Y. Wu, and C. Xue. 2021. A novel zinc-binding peptide identified from tilapia (Oreochromis niloticus) skin collagen and transport pathway across Caco-2 monolayers. Food Bioscience 42:101127. doi: 10.1016/j.fbio.2021.101127.
  • Kheeree, N., K. Kuptawach, S. Puthong, P. Sangtanoo, P. Srimongkol, P. Boonserm, O. Reamtong, K. Choowongkomon, and A. Karnchanatat. 2022. Discovery of calcium-binding peptides derived from defatted lemon basil seeds with enhanced calcium uptake in human intestinal epithelial cells, Caco-2. Scientific Reports 12 (1):4659. doi: 10.1038/s41598-022-08380-0.
  • Kong, X., Z. Xiao, Y. Chen, M. Du, Z. Zhang, Z. Wang, B. Xu, Y. Cheng, T. Yu, and J. Gan. 2023. Calcium-binding properties, stability, and osteogenic ability of phosphorylated soy peptide-calcium chelate. Frontiers in Nutrition 10:1129548. doi: 10.3389/fnut.2023.1129548.
  • Kumar, R., A. S. Hegde, K. Sharma, P. Parmar, and V. Srivatsan. 2022. Microalgae as a sustainable source of edible proteins and bioactive peptides-Current trends and future prospects. Food Research International (Ottawa, Ont.) 157:111338. doi: 10.1016/j.foodres.2022.111338.
  • Lao, L., J. He, W. Liao, C. Zeng, G. Liu, Y. Cao, and J. Miao. 2023. Casein calcium-binding peptides: Preparation, characterization, and promotion of calcium uptake in Caco-2 cell monolayers. Process Biochemistry 130:78–86. doi: 10.1016/j.procbio.2023.03.031.
  • Lee, S.-H., J.-I. Yang, S.-M. Hong, D.-H. Hahm, S.-Y. Lee, I.-H. Kim, and S.-Y. Choi. 2005. Phosphorylation of peptides derived from isolated soybean protein: Effects on calcium binding, solubility and influx into Caco‐2 cells. BioFactors (Oxford, England) 23 (3):121–8. doi: 10.1002/biof.5520230301.
  • Li, B., H. He, W. Shi, and T. Hou. 2019. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization. Journal of the Science of Food and Agriculture 99 (4):1834–41. doi: 10.1002/jsfa.9377.
  • Li, C., L. Cao, T. Liu, Z. Huang, Y. Liu, R. Fan, and Y. Wang. 2023. Preparation of soybean meal peptide for chelation with copper/zinc using Aspergillus oryzae in solid-state fermentation. Food Bioscience 53:102610. doi: 10.1016/j.fbio.2023.102610.
  • Li, J., C. Gong, Z. Wang, R. Gao, J. Ren, X. Zhou, H. Wang, H. Xu, F. Xiao, Y. Cao, et al. 2019. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc. Marine Drugs 17 (6):341. doi: 10.3390/md17060341.
  • Liao, W., H. Chen, W. Jin, Z. Yang, Y. Cao, and J. Miao. 2020. Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal Caco-2 cells. Journal of Agricultural and Food Chemistry 68 (7):2091–8. doi: 10.1021/acs.jafc.9b07602.
  • Lin, H., S. Deng, and S. Huang. 2014. Antioxidant activities of ferrous-chelating peptides isolated from five types of low-value fish protein hydrolysates. Journal of Food Biochemistry 38 (6):627–33. doi: 10.1111/jfbc.12103.
  • Lin, S., X. Hu, L. Li, X. Yang, S. Chen, Y. Wu, and S. Yang. 2021. Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. Lwt 149:111796. doi: 10.1016/j.lwt.2021.111796.
  • Liu, D., Y. Guo, and H. Ma. 2023. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: A review. Critical Reviews in Food Science and Nutrition 63 (26):8032–47. doi: 10.1080/10408398.2022.2054933.
  • Liu, L., K. Chen, M. Zhang, S. Shi, and W. Cheng. 2020. Preparation and characterization of a novel peptide chelating calcium from bovine bone hydrolysates. Chiang Mai Journal of Science 47 (5):943–57.
  • Liu, Q., B. Kong, Y. L. Xiong, and X. Xia. 2010. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry 118 (2):403–10. doi: 10.1016/j.foodchem.2009.05.013.
  • Liu, X., J. Sun, Y. Li, X. Yu, F. Yin, D. Li, P. Jiang, Y. Nakamura, and D. Zhou. 2023. Characterisation of zinc‐chelating peptides derived from scallop (Patinopecten yessoensis) mantle and their intestinal transport in everted rat sacs. International Journal of Food Science & Technology 58 (5):2236–46. doi: 10.1111/ijfs.16208.
  • Liu, Y., Z. Wang, A. Kelimu, S. A. Korma, I. Cacciotti, H. Xiang, and C. Cui. 2023. Novel iron-chelating peptide from egg yolk: Preparation, characterization, and iron transportation. Food Chemistry: X 18:100692. doi: 10.1016/j.fochx.2023.100692.
  • Luo, J., X. Yao, O. P. Soladoye, Y. Zhang, and Y. Fu. 2022. Phosphorylation modification of collagen peptides from fish bone enhances their calcium-chelating and antioxidant activity. Lwt 155:112978. doi: 10.1016/j.lwt.2021.112978.
  • Luo, J., Z. Zhou, X. Yao, and Y. Fu. 2020. Mineral-chelating peptides derived from fish collagen: Preparation, bioactivity and bioavailability. LWT 134:110209. doi: 10.1016/j.lwt.2021.112978.
  • Lv, J., J. Feng, H. Zhong, Y. Lou, Y. Wang, S. Liu, H. Xu, and G. Xia. 2023. Preparation, characterization and antioxidant effect of polypeptide mineral-chelate from Yanbian cattle bone. LWT 187:115353. doi: 10.1016/j.lwt.2023.115353.
  • Malison, A., P. Arpanutud, and S. Keeratipibul. 2021. Chicken foot broth byproduct: A new source for highly effective peptide-calcium chelate. Food Chemistry 345:128713. doi: 10.1016/j.foodchem.2020.128713.
  • Man, Y., T. Xu, B. Adhikari, C. Zhou, Y. Wang, and B. Wang. 2022. Iron supplementation and iron-fortified foods: A review. Critical Reviews in Food Science and Nutrition 62 (16):4504–25. doi: 10.1080/10408398.2021.1876623.
  • Mandecka, A., A. Dąbrowska, Ł. Bobak, and M. Szołtysik. 2022. Casein hydrolysate and casein–iron chelate as natural bioactive compounds for yoghurt fortification. Applied Sciences 12 (24):12903. doi: 10.3390/app122412903.
  • Manzoor, M. F., X.-A. Zeng, A. Rahaman, A. Siddeeg, R. M. Aadil, Z. Ahmed, J. Li, and D. Niu. 2019. Combined impact of pulsed electric field and ultrasound on bioactive compounds and FT-IR analysis of almond extract. Journal of Food Science and Technology 56 (5):2355–64. doi: 10.1007/s13197-019-03627-7.
  • Mei, Z., H. Jinlun, P. Hongyu, S. Liping, and Z. Yongliang. 2023. Phosphorylation modification of tilapia skin gelatin hydrolysate and identification and characterization of calcium-binding peptides. Process Biochemistry 127:1–9. doi: 10.1016/j.procbio.2023.01.020.
  • Mukhamedov, N., A. Asrorov, A. Yashinov, M. Kayumov, A. Wali, S. Mirzaakhmedov, H. A. Aisa, and A. Yili. 2023. Synthesis and characterisation of chickpea peptides-zinc chelates having ACE2 inhibitory activity. The Protein Journal 42 (5):547–62. doi: 10.1007/s10930-023-10133-5.
  • Peng, B., Z. Chen, and Y. Wang. 2023. Preparation and characterization of an oyster peptide-zinc complex and its antiproliferative activity on HepG2 cells. Marine Drugs 21 (10):542. doi: 10.3390/md21100542.
  • Peng, M., D. Lu, M. Yu, B. Jiang, and J. Chen. 2022. Identification of zinc‐chelating pumpkin seed (Cucurbita pepo L.) peptides and in vitro transport of peptide–zinc chelates. Journal of Food Science 87 (5):2048–57. doi: 10.1111/1750-3841.16132.
  • Qu, W., Y. Feng, T. Xiong, Y. Li, H. Wahia, and H. Ma. 2022. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses. Ultrasonics Sonochemistry 83:105937. doi: 10.1016/j.ultsonch.2022.105937.
  • Qu, W., Y. Li, T. Xiong, Y. Feng, H. Ma, and N. Dzidzorgbe Kwaku Akpabli-Tsigbe. 2022. Calcium-chelating improved zein peptide stability, cellular uptake, and bioactivity by influencing the structural characterization. Food Research International (Ottawa, Ont.) 162 (Pt A):112033. doi: 10.1016/j.foodres.2022.112033.
  • Sathya, R., D. MubarakAli, J. MohamedSaalis, and J.-W. Kim. 2021. A systemic review on microalgal peptides: Bioprocess and sustainable applications. Sustainability 13 (6):3262. doi: 10.3390/su13063262.
  • Shao, J., M. Wang, G. Zhang, B. Zhang, and Z. Hao. 2022. Preparation and characterization of sesame peptide-calcium chelate with different molecular weight. International Journal of Food Properties 25 (1):2198–210. doi: 10.1080/10942912.2022.2130355.
  • Sun, L., J. Liu, H. Pei, M. Shi, W. Chen, Y. Zong, Y. Zhao, J. Li, R. Du, and Z. He. 2024. Structural characterisation of deer sinew peptides as calcium carriers, their promotion of MC3T3-E1 cell proliferation and their effect on bone deposition in mice. Food & Function 15 (5):2587–603. doi: 10.1039/D3FO04627C.
  • Sun, N., Y. Wang, Z. Bao, P. Cui, S. Wang, and S. Lin. 2020. Calcium binding to herring egg phosphopeptides: Binding characteristics, conformational structure and intermolecular forces. Food Chemistry 310:125867. doi: 10.1016/j.foodchem.2019.125867.
  • Sun, R., X. Liu, Y. Yu, J. Miao, K. Leng, and H. Gao. 2021. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chemistry 340:128056. doi: 10.1016/j.foodchem.2020.128056.
  • Sun, X., R. A. Sarteshnizi, R. T. Boachie, O. D. Okagu, R. O. Abioye, R. Pfeilsticker Neves, I. Christian Ohanenye, and C. C. Udenigwe. 2020. Peptide-mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods (Basel, Switzerland) 9 (10):1402. doi: 10.3390/foods9101402.
  • Tang, L-w., X-c Gao, Y. Sun, T. Tian, and S. Li. 2023. Preparation process optimisation, structural characterisation and stability analysis of sika deer blood-selenium chelate. Animal Production Science 63 (13):1349–60. doi: 10.1071/AN22415.
  • Tian, Q., Y. Fan, L. Hao, J. Wang, C. Xia, J. Wang, and H. Hou. 2023. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Critical Reviews in Food Science and Nutrition 63 (20):4418–30. doi: 10.1080/10408398.2021.2001786.
  • Udechukwu, M. C., B. Downey, and C. C. Udenigwe. 2018. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chemistry 240:1227–32. doi: 10.1016/j.foodchem.2017.08.063.
  • Vo, T. D. L., and K. T. Pham. 2020. Copper-chelating peptide from salmon by-product proteolysate. International Journal of Food Engineering 16 (4):20190280. doi: 10.1515/ijfe-2019-0280.
  • Wang, J., Y. Zhang, H. Huai, W. Hou, Y. Qi, Y. Leng, X. Liu, X. Wang, D. Wu, and W. Min. 2023. Purification, identification, chelation mechanism, and calcium absorption activity of a novel calcium-binding peptide from peanut (Arachis hypogaea) protein hydrolysate. Journal of Agricultural and Food Chemistry 71 (31):11970–81. doi: 10.1021/acs.jafc.3c03256.
  • Wang, J., K. Green, G. McGibbon, and B. McCarry. 2007. Analysis of effect of casein phosphopeptides on zinc binding using mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 21 (9):1546–54. doi: 10.1002/rcm.2992.
  • Wang, Y., M. Cai, H. Zeng, H. Zhao, M. Zhang, and Z. Yang. 2022. Preparation, characterization and iron absorption by Caco-2 cells of the casein peptides-iron chelate. International Journal of Peptide Research and Therapeutics 28 (4):116. doi: 10.1007/s10989-022-10423-z.
  • Wang, Y., R. Wang, H. Bai, S. Wang, T. Liu, X. Zhang, and Z. Wang. 2024. Casein phosphopeptide calcium chelation: Preparation optimization, in vitro gastrointestinal simulated digestion, and peptide fragment exploration. Journal of the Science of Food and Agriculture 104 (2):788–96. doi: 10.1002/jsfa.12970.
  • Wang, Z., S. Cheng, D. Wu, Z. Xu, S. Xu, H. Chen, and M. Du. 2021. Hydrophobic peptides from oyster protein hydrolysates show better zinc-chelating ability. Food Bioscience 41:100985. doi: 10.1016/j.fbio.2021.100985.
  • Wu, C., H. Guo, A. K. Patel, R. R. Singhania, Y. Chen, J. Kuo, and C. Dong. 2022. Production and characterization of lucrative hypoglycemic collagen-peptide-chromium from tilapia scale. Process Biochemistry 115:10–8. doi: 10.1016/j.procbio.2022.02.004.
  • Wu, H., Z. Liu, Y. Zhao, and M. Zeng. 2012. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Research International 48 (2):435–41. doi: 10.1016/j.foodres.2012.04.013.
  • Wu, S., Z. Zhu, M. Chen, A. Huang, Y. Xie, H. Hu, J. Zhang, Q. Wu, J. Wang, and Y. Ding. 2023. Comparison of neuroprotection and regulating properties on gut microbiota between selenopeptide Val-Pro-Arg-Lys-Leu-SeMet and its native peptide Val-Pro-Arg-Lys-Leu-Met in vitro and in vivo. Journal of Agricultural and Food Chemistry 71 (32):12203–15. doi: 10.1021/acs.jafc.3c02918.
  • Wu, W., L. He, Y. Liang, L. Yue, W. Peng, G. Jin, and M. Ma. 2019. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chemistry 284:80–9. doi: 10.1016/j.foodchem.2019.01.103.
  • Wu, X., F. Wang, X. Cai, and S. Wang. 2023. Glycosylated peptide-calcium chelate: Characterization, calcium absorption promotion and prebiotic effect. Food Chemistry 403:134335. doi: 10.1016/j.foodchem.2022.134335.
  • Xun, X., Z. Zhang, Z. Yuan, K. Tuhong, C. Yan, Y. Zhan, S. He, S. Liu, G. Kang, and J. Wang. 2023. A novel low molecule peptides-calcium chelate from silkworm pupae protein hydrolysate: Preparation, antioxidant activity, and bioavailability. Current Pharmaceutical Design 29 (9):675–85. doi: 10.2174/1381612829666230404134044.
  • Yang, X., Y. Chen, J. Kuo, S. Chou, and C. Lin. 2023. Chelation of the collagen peptide of seabass (Lates calcarifer) scales with calcium and its product development. Sustainability 15 (8):6653. doi: 10.3390/su15086653.
  • Ye, Q., X. Wu, X. Zhang, and S. Wang. 2019. Organic selenium derived from chelation of soybean peptide-selenium and its functional properties in vitro and in vivo. Food & Function 10 (8):4761–70. doi: 10.1039/C9FO00729F.
  • Yu, H., Y. Chen, and J. Zhu. 2022. Osteogenic activities of four calcium‐chelating microalgae peptides. Journal of the Science of Food and Agriculture 102 (14):6643–9. doi: 10.1002/jsfa.12031.
  • Zhai, W., D. Lin, R. Mo, X. Zou, Y. Zhang, L. Zhang, and Y. Ge. 2023. Process optimization, structural characterization, and calcium release rate evaluation of mung bean peptides-calcium chelate. Foods (Basel, Switzerland) 12 (5):1058. doi: 10.3390/foods12051058.
  • Zhang, C., B. Du, Z. Song, G. Deng, Y. Shi, T. Li, and Y. Huang. 2023. Antioxidant activity analysis of collagen peptide-magnesium chelate. Polymer Testing 117:107822. doi: 10.1016/j.polymertesting.2022.107822.
  • Zhang, H., L. Qi, X. Wang, Y. Guo, J. Liu, Y. Xu, C. Liu, C. Zhang, and A. Richel. 2023. Preparation of a cattle bone collagen peptide-calcium chelate by the ultrasound method and its structural characterization, stability analysis, and bioactivity on MC3T3-E1 cells. Food & Function 14 (2):978–89. doi: 10.1039/D2FO02146C.
  • Zhang, H., L. Zhao, Q. Shen, L. Qi, S. Jiang, Y. Guo, C. Zhang, and A. Richel. 2021. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. Lwt 144:111264. doi: 10.1016/j.lwt.2021.111264.
  • Zhang, J., Y. Tang, S. Zhou, X. Yin, X. Zhuang, Y. Ren, X. Chen, J. Fan, and Y. Zhang. 2023. Novel strategy to improve the bioactivity and anti-hydrolysis ability of oat peptides via zinc ion-induced assembling. Food Chemistry 416:135468. doi: 10.1016/j.foodchem.2023.135468.
  • Zhang, M., and K. Liu. 2022. Calcium supplements and structure–activity relationship of peptide-calcium chelates: A review. Food Science and Biotechnology 31 (9):1111–22. doi: 10.1007/s10068-022-01128-6.
  • Zhang, Y., X. Ding, and M. Li. 2021. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chemistry 349:129101. doi: 10.1016/j.foodchem.2021.129101.
  • Zhang, Z., J. Sun, Y. Li, K. Yang, G. Wei, and S. Zhang. 2023. Ameliorative effects of pine nut peptide-zinc chelate (Korean pine) on a mouse model of Alzheimer’s disease. Experimental Gerontology 183:112308. doi: 10.1016/j.exger.2023.112308.
  • Zheng, Y., M. Guo, C. Cheng, J. Li, Y. Li, Z. Hou, and Y. Ai. 2023. Structural and physicochemical characteristics, stability, toxicity and antioxidant activity of peptide-zinc chelate from coconut cake globulin hydrolysates. LWT 173:114367. doi: 10.1016/j.lwt.2022.114367.
  • Zhu, C., X. Ma, Y. Wang, Y. Mi, D. Fan, J. Deng, and W. Xue. 2014. A novel thiolated human-like collage zinc complex as a promising zinc supplement: Physicochemical characteristics and biocompatibility. Materials Science & Engineering. C, Materials for Biological Applications 44:411–6. doi: 10.1016/j.msec.2014.08.010.
  • Zhu, K., X. Wang, and X. Guo. 2015. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. Journal of Functional Foods 12:23–32. doi: 10.1016/j.jff.2014.10.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.