59
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Emerging non-invasive microwave and millimeter-wave imaging technologies for food inspection

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmed, M., H. Mustafa, M. Wu, M. Babaei, L. Kong, N. Jeong, and Y. Gan. 2024. Few shot learning for avocado maturity determination from microwave images. Journal of Agriculture and Food Research 15:100977. doi: 10.1016/j.jafr.2024.100977.
  • Akhter, Z., B. N. Abhijith, and M. J. Akhtar. 2016. Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects. Journal of Electromagnetic Waves and Applications 30 (9):1183–97. doi: 10.1080/09205071.2016.1186574.
  • Ates, K., S. Ozen, and H. F. Carlak. 2017, 22–25 May. The freshness analysis of an apple and a potato using dielectric properties at the microwave frequency region. 2017 Progress In Electromagnetics Research Symposium – Spring (PIERS).
  • Austin, J., A. Gupta, R. McDonnell, G. V. Reklaitis, and M. T. Harris. 2014. A novel microwave sensor to determine particulate blend composition on-line. Analytica Chimica Acta 819:82–93. doi: 10.1016/j.aca.2014.02.016.
  • Awad, T. S., H. A. Moharram, O. E. Shaltout, D. Asker, and M. M. Youssef. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International 48 (2):410–27. doi: 10.1016/j.foodres.2012.05.004.
  • Basaran, P., N. Basaran-Akgul, and B. Rasco. 2010. Dielectric properties of chicken and fish muscle treated with microbial transglutaminase. Food Chemistry 120 (2):361–70. doi: 10.1016/j.foodchem.2009.09.050.
  • Becker, F., C. Schwabig, J. Krause, S. Leuchs, C. Krebs, R. Gruna, A. Kuter, T. Langle, D. Nuessler, and J. Beyerer. 2020. From visual spectrum to millimeter wave: A broad spectrum of solutions for food inspection. IEEE Antennas and Propagation Magazine 62 (5):55–63. doi: 10.1109/MAP.2020.3003225.
  • Buhari, M. D., G. Y. Tian, and R. Tiwari. 2019. Microwave-based SAR technique for pipeline inspection using autofocus range-doppler algorithm. IEEE Sensors Journal 19 (5):1777–87. doi: 10.1109/JSEN.2018.2879348.
  • Cheng, E., M. Fareq, A. Shahriman, R. Mohd Afendi, Y. Lee, S. Khor, W. Tan, M. Nashrul Fazli, A. Abdullah, and M. Jusoh. 2014. Development of microstrip patch antenna sensing system for salinity and sugar detection in water. International Journal of Mechanical and Mechatronics Engineering 15 (5):31–6.
  • Daschner, F., M. Kent, R. Knochel, and U.-K. Berger. 2000. Optimization of the microwave determination of water in foods using principal component analysis. Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference.
  • Dev, S., G. Raghavan, and Y. Gariepy. 2008. Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs. Journal of Food Engineering 86 (2):207–14. doi: 10.1016/j.jfoodeng.2007.09.027.
  • Dingle Robertson, L., A. Davidson, H. McNairn, M. Hosseini, S. Mitchell, D. De Abelleyra, S. Verón, and M. H. Cosh. 2020. Synthetic aperture radar (SAR) image processing for operational space-based agriculture mapping. International Journal of Remote Sensing 41 (18):7112–44. doi: 10.1080/01431161.2020.1754494.
  • Fawwaz, T., and U. R. Ulaby. 2018. Fundamentals of applied electromagnetics. Pearson.
  • Frimpong, A. 2011. Introduction of full body image scanners at the airports: A delicate balance of protecting privacy and ensuring national security. Journal of Transportation Security 4 (3):221–9. doi: 10.1007/s12198-011-0068-1.
  • Garvin, J., F. Abushakra, Z. Choffin, B. Shiver, Y. Gan, L. Kong, and N. Jeong. 2023. Microwave imaging for watermelon maturity determination. Current Research in Food Science 6:100412. doi: 10.1016/j.crfs.2022.100412.
  • Ghanem, T. 2010. Dielectric properties of liquid foods affected by moisture contents and temperatures. MISR Journal of Agricultural Engineering 27 (2):688–98. doi: 10.21608/mjae.2010.105937.
  • Ghavami, N., I. Sotiriou, and P. Kosmas. 2019, 31 March–5 April. Experimental Investigation of Microwave Imaging as Means to Assess Fruit Quality. 2019 13th European Conference on Antennas and Propagation (EuCAP).
  • Guo, W., X. Zhu, H. Liu, R. Yue, and S. Wang. 2010. Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering 99 (3):344–50. doi: 10.1016/j.jfoodeng.2010.03.015.
  • Gutiérrez-Cano, J. D., J. M. Catalá-Civera, F. L. Penaranda-Foix, and P. J. Plaza-González. 2022. Improved open-ended coaxial probe for temperature-dependent permittivity measurements of foodstuff at radio frequencies. Journal of Food Engineering 316:110823. doi: 10.1016/j.jfoodeng.2021.110823.
  • Henry, D., H. Aubert, T. Veronese, and E. Serrano. 2017. Remote estimation of intra-parcel grape quantity from three-dimensional imagery technique using ground-based microwave FMCW radar. IEEE Instrumentation & Measurement Magazine 20 (3):20–4. doi: 10.1109/MIM.2017.7951687.
  • Islam, M. T., M. N. Rahman, M. S. J. Singh, and M. Samsuzzaman. 2018. Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor. IEEE Access. 6:4118–26. doi: 10.1109/ACCESS.2017.2787689.
  • Jol, H. M. 2009. Ground penetrating radar: Theory and applications. Jol, 978.
  • Kent, M. 1987. Electrical and dielectric properties of food materials: a bibliography and tabulated data. Science and Technology.
  • Kent, M., K. MacKenzie, U.-K. Berger, R. Knöchel, and F. Daschner. 2000. Determination of prior treatment of fish and fish products using microwave dielectric spectra. European Food Research and Technology 210 (6):427–33. doi: 10.1007/s002170050576.
  • Knight, R. 2001. Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Sciences 29 (1):229–55. doi: 10.1146/annurev.earth.29.1.229.
  • Kristiawan, M., V. Sobolik, L. Klíma, and K. Allaf. 2011. Effect of expansion by instantaneous controlled pressure drop on dielectric properties of fruits and vegetables. Journal of Food Engineering 102 (4):361–8. doi: 10.1016/j.jfoodeng.2010.09.014.
  • Krraoui, H., F. Mejri, and T. Aguili. 2016. Dielectric constant measurement of materials by a microwave technique: Application to the characterization of vegetation leaves. Journal of Electromagnetic Waves and Applications 30 (12):1643–60. doi: 10.1080/09205071.2016.1208592.
  • Kurrant, D., M. Omer, N. Abdollahi, P. Mojabi, E. Fear, and J. LoVetri. 2021. Evaluating performance of microwave image reconstruction algorithms: Extracting tissue types with segmentation using machine learning. Journal of Imaging 7 (1):5. doi: 10.3390/jimaging7010005.
  • Liu, Y., Ying, Y., & Jiang, H. (2006). Rapid determination of maturity in apple using outlier detection and calibration model optimization. Transactions of the ASABE, 49(1), 91–5. doi: 10.13031/2013.20215.
  • Llave, Y., Y. Terada, M. Fukuoka, and N. Sakai. 2014. Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies. Journal of Food Engineering 139:1–9. doi: 10.1016/j.jfoodeng.2014.04.012.
  • Lodi, M. B., N. Curreli, A. Melis, E. Garau, F. Fanari, A. Fedeli, A. Randazzo, G. Mazzarella, and A. Fanti. 2021. Microwave characterization and modeling of the Carasau bread doughs during leavening. IEEE Access. 9:159833–47. doi: 10.1109/ACCESS.2021.3131207.
  • LoVetri, J., M. Asefi, C. Gilmore, and I. Jeffrey. 2020. Innovations in electromagnetic imaging technology: The stored-grain-monitoring case. IEEE Antennas and Propagation Magazine 62 (5):33–42. doi: 10.1109/MAP.2020.3003206.
  • Lu, L., G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang. 2014. An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing 8 (5):742–58. doi: 10.1109/JSTSP.2014.2317671.
  • Lyng, J., L. Zhang, and N. Brunton. 2005. A survey of the dielectric properties of meats and ingredients used in meat product manufacture. Meat Science 69 (4):589–602. doi: 10.1016/j.meatsci.2004.09.011.
  • Mahafza, B. R. 2017. Introduction to radar analysis. CRC press.
  • Mahesh, M. 2010. Airport full-body scanners. Journal of the American College of Radiology 7 (5):379–81. doi: 10.1016/j.jacr.2010.02.003.
  • Matsukawa, S., K. Yoshida, T. Okuda, M. Hazama, S. Kurokawa, and H. Murata. 2020. Non-destructive inspection method for FRPM pipelines utilising time-domain responses of microwave guided-modes. Electronics Letters 56 (19):982–5. doi: 10.1049/el.2020.1587.
  • McCarthy, B. H. 2021. IBM unveils world’s first 2 nanometer chip technology, opening a new frontier for semiconductors. IBM.
  • McNairn, H., and J. Shang. 2016. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. Multitemporal Remote Sensing: Methods and Applications :317–40.
  • Meng, Z., Z. Wu, and J. Gray. 2017. Microwave sensor technologies for food evaluation and analysis: Methods, challenges and solutions. Transactions of the Institute of Measurement and Control 40 (12):3433–48. doi: 10.1177/0142331217721968.
  • Moonesan, M. S., and S. H. Jayaram. 2011, 9–13 October. Effect of pulse width on pulse electric field food treatment. 2011 IEEE Industry Applications Society Annual Meeting.
  • Nelson, S. O., and P. G. Bartley, Jr. (2002). Frequency and temperature dependence of the dielectric properties of food materials. Transactions of the ASAE, 45(4), 1223. doi: 10.13031/2013.9931.
  • Nelson, S. O., W. R. Forbus, Jr., & K. C. Lawrence. (1994). Microwave permittivities of fresh fruits and vegetables from 0.2 to 20 GHz.Transactions of the ASAE, 37(1), 183–189. doi: 10.13031/2013.28069.
  • Nelson, S., Trabelsi, S., & Kays, S. (2008). Dielectric spectroscopy of melons for quality sensing. Transactions of the ASABE 51(6), 2209–14. doi: 10.13031/2013.25384.
  • Nelson, S. O., W-c Guo, S. Trabelsi, and S. J. Kays. 2007. Dielectric properties of Watermelons and Correlation with Soluble Solids Content. 2007 ASAE Annual Meeting.
  • O’Loughlin, D., M. A. Elahi, B. R. Lavoie, E. C. Fear, and M. O’Halloran. 2021. Assessing patient-specific microwave breast imaging in clinical case studies. Sensors 21 (23):8048. doi: 10.3390/s21238048.
  • O’Loughlin, D., M. A. Elahi, E. Porter, A. Shahzad, B. L. Oliveira, M. Glavin, E. Jones, and M. O’Halloran, 2018, 9–13 April. Open-source software for microwave radar-based image reconstruction. Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP), London UK.
  • Occhiuzzi, C., N. D’Uva, S. Nappi, S. Amendola, C. Giallucca, V. Chiabrando, L. Garavaglia, G. Giacalone, and G. Marrocco. 2020. Radio-frequency-identification-based intelligent packaging: Electromagnetic classification of tropical fruit ripening. IEEE Antennas and Propagation Magazine 62 (5):64–75. doi: 10.1109/MAP.2020.3003212.
  • OhIsson, T., N. Bengtsson, and P. Risman. 1974. The frequency and temperature dependence of dielectric food data as determined by a cavity perturbation technique. Journal of Microwave Power 9 (2):129–45. doi: 10.1080/00222739.1974.11688910.
  • Otles, S., and V. H. Ozyurt. 2017. Ultrasound spectroscopy in food analysis. In Spectroscopic methods in food analysis. 225–236. Boca Raton, FL: CRC Press.
  • Praveen Kumar, A. V., A. Goel, R. Kumar, A. K. Ojha, J. K. John, and J. Joy. 2019. Dielectric characterization of common edible oils in the higher microwave frequencies using cavity perturbation. Journal of Microwave Power and Electromagnetic Energy 53 (1):48–56. doi: 10.1080/08327823.2019.1569899.
  • Ragni, L., A. Berardinelli, C. Cevoli, M. Filippi, E. Iaccheri, and A. Romani. 2017. Assessment of food compositional parameters by means of a waveguide vector spectrometer. Journal of Food Engineering 205:25–33. doi: 10.1016/j.jfoodeng.2017.02.016.
  • Raju, R., G. E. Bridges, and S. Bhadra. 2020. Wireless passive sensors for food quality monitoring: Improving the safety of food products. IEEE Antennas and Propagation Magazine 62 (5):76–89. doi: 10.1109/MAP.2020.3003216.
  • Rao, A. 2022. Industry-funded research and bias in food science. Quantitative Marketing and Economics 20 (1):39–67. doi: 10.1007/s11129-021-09244-z.
  • Ricci, M., B. Stitic, L. Urbinati, G. D. Guglielmo, J. A. T. Vasquez, L. P. Carloni, F. Vipiana, and M. R. Casu. 2021. Machine-learning based microwave sensing: A case study for the food industry. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11 (3):503–14. doi: 10.1109/JETCAS.2021.3097699.
  • Ricci, M., J. A. T. Vasquez, R. Scapaticci, L. Crocco, and F. Vipiana. 2022. Multi-antenna system for in-line food imaging at microwave frequencies. IEEE Transactions on Antennas and Propagation 70 (8):7094–105. doi: 10.1109/TAP.2022.3177436.
  • Risman, P., and N. Bengtsson. 1971. Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique. Journal of Microwave Power 6 (2):101–6. doi: 10.1080/00222739.1971.11688788.
  • Roelvink, J., S. Trabelsi, and S. O. Nelson. 2013. A planar transmission-line sensor for measuring the microwave permittivity of liquid and semisolid biological materials. IEEE Transactions on Instrumentation and Measurement 62 (11):2974–82. doi: 10.1109/TIM.2013.2265453.
  • Rücker, H., and B. Heinemann. 2018. High-performance SiGe HBTs for next generation BiCMOS technology. Semiconductor Science and Technology 33 (11):114003. doi: 10.1088/1361-6641/aade64.
  • Ruiz, Á. Y., M. N. Stevanovic, M. Cavagnaro, and L. Crocco. 2022, 27 March–1 April. A deep learning architecture for augmented shape reconstruction via microwave imaging. 2022 16th European Conference on Antennas and Propagation (EuCAP).
  • Schimmer, O., F. Daschner, and R. Knochel. 2008, 10–12 September. UWB-sensors in food quality management—the way from the concept to market. 2008 IEEE International Conference on Ultra-Wideband.
  • Schimmer, O., A. Gulck, F. Daschner, J. K. Piotrowski, and R. Knochel. 2005. Noncontacting determination of moisture content in bulk materials using sub-nanosecond UWB pulses. IEEE Transactions on Microwave Theory and Techniques 53 (6):2107–13. doi: 10.1109/TMTT.2005.848765.
  • Setiyono, T., F. Holecz, N. Khan, M. Barbieri, E. Quicho, F. Collivignarelli, A. Maunahan, L. Gatti, and G. Romuga. 2017. Synthetic aperture radar (SAR)-based paddy rice monitoring system: Development and application in key rice producing areas in Tropical Asia. IOP Conference Series: Earth and Environmental Science 54:012015. doi: 10.1088/1755-1315/54/1/012015.
  • Shi, X., J. Li, S. Mukherjee, S. Datta, V. Rathod, X. Wang, W. Lu, L. Udpa, and Y. Deng. 2022. Ultra-wideband microwave imaging system for root phenotyping. Sensors (Basel, Switzerland) 22 (5):2031. doi: 10.3390/s22052031.
  • Song, H., S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa. 2017. Detectability of breast tumor by a hand-held impulse-radar detector: Performance evaluation and pilot clinical study. Scientific Reports 7 (1):16353. doi: 10.1038/s41598-017-16617-6.
  • Sosa-Morales, M., L. Valerio-Junco, A. López-Malo, and H. García. 2010. Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT-Food Science and Technology 43 (8):1169–79.
  • Su, L., J. Munoz-Enano, P. Velez, P. Casacuberta, M. Gil, and F. Martin. 2021. Phase-variation microwave sensor for permittivity measurements based on a high-impedance half-wavelength transmission line. IEEE Sensors Journal 21 (9):10647–56. doi: 10.1109/JSEN.2021.3063112.
  • Tai, T.-C., H.-W. Wu, C.-Y. Hung, and Y.-H. Wang. 2020. Food security sensing system using a waveguide antenna microwave imaging through an example of an egg. Sensors 20 (3):699. https://www.mdpi.com/1424-8220/20/3/699. doi: 10.3390/s20030699.
  • Torrealba-Meléndez, R., M. E. Sosa-Morales, J. L. Olvera-Cervantes, and A. Corona-Chávez. 2014. Dielectric properties of beans at ultra-wide band frequencies. Journal of Microwave Power and Electromagnetic Energy 48 (2):104–12. doi: 10.1080/08327823.2014.11689875.
  • Trabelsi, S., and S. Nelson. 2003. Free-space measurement of dielectric properties of cereal grain and oilseed at microwave frequencies. Measurement Science and Technology 14 (5):589–600. doi: 10.1088/0957-0233/14/5/308.
  • Urbinati, L., M. Ricci, G. Turvani, J. A. T. Vasquez, F. Vipiana, and M. R. Casu. 2020, 10–21 October. A machine-learning based microwave sensing approach to food contaminant detection. 2020 IEEE International Symposium on Circuits and Systems (ISCAS).
  • Vasquez, J. A. T., R. Scapaticci, G. Turvani, M. Ricci, L. Farina, A. Litman, M. R. Casu, L. Crocco, and F. Vipiana. 2020. Noninvasive inline food inspection via microwave imaging technology: An application example in the food industry. IEEE Antennas and Propagation Magazine 62 (5):18–32. doi: 10.1109/MAP.2020.3012898.
  • Wang, C.-X., S. Wu, L. Bai, X. You, and J. Wang. 2016. Recent advances and future challenges for massive MIMO channel measurements and models. Science China Information Sciences 59 (2):1. doi: 10.1007/s11432-015-5517-1.
  • Wang, Y., T. D. Wig, J. Tang, and L. M. Hallberg. 2003. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering 57 (3):257–68. doi: 10.1016/S0260-8774(02)00306-0.
  • Wee, F. H., P. J. Soh, A. H. M. Suhaizal, H. Nornikman, and A. A. M. Ezanuddin. 2009, 3–6 November. Free space measurement technique on dielectric properties of agricultural residues at microwave frequencies. 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC).
  • Zhang, J. A., F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu. 2021. An overview of signal processing techniques for joint communication and radar sensing. IEEE Journal of Selected Topics in Signal Processing 15 (6):1295–315. doi: 10.1109/JSTSP.2021.3113120.
  • Zidane, F., J. Lanteri, L. Brochier, N. Joachimowicz, H. Roussel, and C. Migliaccio. 2020. Damaged apple sorting with mmWave imaging and nonlinear support vector machine. IEEE Transactions on Antennas and Propagation 68 (12):8062–71. doi: 10.1109/TAP.2020.3016184.
  • Zidane, F., J. Lanteri, J. Marot, L. Brochier, N. Joachimowicz, H. Roussel, and C. Migliaccio. 2020. Nondestructive control of fruit quality via millimeter waves and classification techniques: Investigations in the automated health monitoring of fruits. IEEE Antennas and Propagation Magazine 62 (5):43–54. doi: 10.1109/MAP.2020.3003222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.