54
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Current trends of functional monomers and cross linkers used to produce molecularly imprinted polymers for food analysis

&

References

  • Aghoutane, Y., A. Diouf, L. Österlund, B. Bouchikhi, and N. El Bari. 2020. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 132:107404. doi: 10.1016/j.bioelechem.2019.107404.
  • Al-Hawary, SIS., A. Omar Bali, S. Askar, H. A. Lafta, Z. Jawad Kadhim, B. Kholdorov, Y. Riadi, R. Solanki, Q. Ismaeel Kadhem, and Y. Fakri Mustafa. 2023. Recent advances in nanomaterials-based electrochemical and optical sensing approaches for detection of food dyes in food samples: A comprehensive overview. Microchemical Journal 189:108540. doi: 10.1016/j.microc.2023.108540.
  • Alizadeh, T., M. Akhoundian, and M. R. Ganjali. 2018. An innovative method for synthesis of imprinted polymer nanomaterial holding thiamine (vitamin b1) selective sites and its application for thiamine determination in food samples. Journal of Chromatography B 1084:166–74. doi: 10.1016/j.jchromb.2018.03.036.
  • Amatatongchai, M., S. Thimoonnee, P. Jarujamrus, D. Nacapricha, and P. A. Lieberzeit. 2020. Novel amino-containing molecularly-imprinted polymer coating on magnetite-gold core for sensitive and selective carbofuran detection in food. Microchemical Journal 158:105298. doi: 10.1016/j.microc.2020.105298.
  • Amatatongchai, M., W. Sroysee, P. Sodkrathok, N. Kesangam, S. Chairam, and P. Jarujamrus. 2019. Novel three-dimensional molecularly imprinted polymer-coated carbon nanotubes (3d-cnts@ mip) for selective detection of profenofos in food. Analytica Chimica Acta 1076:64–72. doi: 10.1016/j.aca.2019.04.075.
  • Arabi, M., A. Ostovan, A. R. Bagheri, X. Guo, L. Wang, J. Li, X. Wang, B. Li, and L. Chen. 2020. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends in Analytical Chemistry 128:115923. doi: 10.1016/j.trac.2020.115923.
  • Ashley, J., M.-A. Shahbazi, K. Kant, V. A. Chidambara, A. Wolff, D. D. Bang, and Y. Sun. 2017. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors & Bioelectronics 91:606–15. doi: 10.1016/j.bios.2017.01.018.
  • Ashley, J., X. Feng, and Y. Sun. 2018. A multifunctional molecularly imprinted polymer-based biosensor for direct detection of doxycycline in food samples. Talanta 182:49–54. doi: 10.1016/j.talanta.2018.01.056.
  • Bagheri, A. R., M. Arabi, M. Ghaedi, A. Ostovan, X. Wang, J. Li, and L. Chen. 2019. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 195:390–400. doi: 10.1016/j.talanta.2018.11.065.
  • Balcer, E., M. Sobiech, and P. Luliński. 2023. Molecularly imprinted carriers for diagnostics and therapy—A critical appraisal. Pharmaceutics 15 (6):1647. doi: 10.3390/pharmaceutics15061647.
  • Basaglia, A. M., M. Z. Corazza, M. G. Segatelli, and C. R. Tarley. 2017. Synthesis of pb (ii)-imprinted poly (methacrylic acid) polymeric particles loaded with 1-(2-pyridylazo)-2-naphthol (pan) for micro-solid phase preconcentration of pb 2+ on-line coupled to flame atomic absorption spectrometry. RSC Advances 7 (52):33001–11. doi: 10.1039/C7RA02964K.
  • Basak, S., R. Venkatram, and R. S. Singhal. 2022. Recent advances in the application of molecularly imprinted polymers (mips) in food analysis. Food Control. 139:109074. doi: 10.1016/j.foodcont.2022.109074.
  • Belbruno, J. J. 2018. Molecularly imprinted polymers. Chemical Reviews 119 (1):94–119. doi: 10.1021/acs.chemrev.8b00171.
  • Bhogal, S., A. Grover, and I. Mohiuddin. 2023a. A review of the analysis of phthalates by gas chromatography in aqueous and food matrices. Critical Reviews in Analytical Chemistry:1–25. doi: 10.1080/10408347.2023.2250876.
  • Bhogal, S., I. Mohiuddin, A. K. Malik, R. J. Brown, P. M. Heynderickx, K.-H. Kim, and K. Kaur. 2022b. Mesoporous silica imprinted carbon dots for the selective fluorescent detection of triclosan. The Science of the Total Environment 845:157289. doi: 10.1016/j.scitotenv.2022.157289.
  • Bhogal, S., I. Mohiuddin, K. Kaur, J. Lee, R. J. Brown, A. K. Malik, and K.-H. Kim. 2021. Dual-template magnetic molecularly imprinted polymer-based sorbent for simultaneous and selective detection of phenolic endocrine disrupting compounds in foodstuffs. Environmental Pollution 275:116613. doi: 10.1016/j.envpol.2021.116613.
  • Bhogal, S., I. Mohiuddin, K. Kaur, K.-H. Kim, and A. K. Malik. 2024. Mesoporous silica imprinted nanocomposites for selective adsorption and detection of levofloxacin. Journal of Water Process Engineering 57:104693. doi: 10.1016/j.jwpe.2023.104693.
  • Bhogal, S., I. Mohiuddin, K.-H. Kim, A. K. Malik, and K. Kaur. 2023b. Restricted access medium magnetic molecularly imprinted polymers: Validation of their suitability as an effective quantitation tool against phthalates in food products packaged in plastic. Chemical Engineering Journal 457:141270. doi: 10.1016/j.cej.2023.141270.
  • Bhogal, S., I. Mohiuddin, S. Kumar, A. K. Malik, K.-H. Kim, and K. Kaur. 2022a. Self-polymerized polydopamine-imprinted layer-coated carbon dots as a fluorescent sensor for selective and sensitive detection of 17β-oestradiol. The Science of the Total Environment 847:157356. doi: 10.1016/j.scitotenv.2022.157356.
  • Bhogal, S., K. Kaur, A. K. Malik, C. Sonne, S. S. Lee, and K.-H. Kim. 2020. Core-shell structured molecularly imprinted materials for sensing applications. TrAC Trends in Analytical Chemistry 133:116043. doi: 10.1016/j.trac.2020.116043.
  • Blank, I. 2020. Gas chromatography–olfactometry in food aroma analysis. In Techniques for analyzing food aroma, ed. R. Marsili, 293–329. Boca Raton: CRC Press.
  • Bodbodak, S., J. Hesari, S. H. Peighambardoust, and M. Mahkam. 2018. Selective decontamination of aflatoxin m1 in milk by molecularly imprinted polymer coated on the surface of stainless steel plate. International Journal of Dairy Technology 71 (4):868–78. doi: 10.1111/1471-0307.12551.
  • Cacciola, F., F. Rigano, P. Dugo, and L. Mondello. 2020. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. TrAC Trends in Analytical Chemistry 127:115894. doi: 10.1016/j.trac.2020.115894.
  • Cacciola, F., P. Dugo, and L. Mondello. 2017. Multidimensional liquid chromatography in food analysis. TrAC Trends in Analytical Chemistry 96:116–23. doi: 10.1016/j.trac.2017.06.009.
  • Cai, T., M. Ma, H. Liu, J. Li, J. Hou, and B. Gong. 2019. Preparation of monodisperse magnetic surface molecularly imprinted polymers for selective recognition of lincomycin hydrochloride in milk. Journal of Liquid Chromatography & Related Technologies 42 (13-14):459–67. doi: 10.1080/10826076.2019.1625372.
  • Caldara, M., J. W. Lowdon, J. Royakkers, M. Peeters, T. J. Cleij, H. Diliën, K. Eersels, and B. Van Grinsven. 2022. A molecularly imprinted polymer-based thermal sensor for the selective detection of melamine in milk samples. Foods 11 (18):2906. doi: 10.3390/foods11182906.
  • Cañadas, R., R. G. Martínez, G. P. González, and P. F. Hernando. 2022. Development of a molecularly imprinted polymeric membrane for determination of macrolide antibiotics from cow milk. Polymer 249:124843. doi: 10.1016/j.polymer.2022.124843.
  • Candioti, L. V., M. M. De Zan, M. S. Cámara, and H. C. Goicoechea. 2014. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–38. doi: 10.1016/j.talanta.2014.01.034.
  • Cao, X., Z. Zhang, G. Liu, Z. Zhang, and J. Yin. 2021a. Preparation of magnetic dummy template molecularly imprinted polymers for the determination of aminoglycosides antibiotics in milk. Food Analytical Methods 14 (10):2111–20. doi: 10.1007/s12161-021-02042-z.
  • Cao, Y., T. Feng, J. Xu, and C. Xue. 2019. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosensors & Bioelectronics 141:111447. doi: 10.1016/j.bios.2019.111447.
  • Cao, Y., Z. Huang, L. Luo, J. Li, P. Li, and X. Liu. 2021b. Rapid and selective extraction of norfloxacin from milk using magnetic molecular imprinting polymers nanoparticles. Food Chemistry 353:129464. doi: 10.1016/j.foodchem.2021.129464.
  • Cetinkaya, A., S. Bilge, L. Karadurmus, A. Sınağ, and S. A. Ozkan. 2022. The role and the place of ionic liquids in molecularly imprinted polymer-based electrochemical sensors development for sensitive drug assay. TrAC Trends in Analytical Chemistry 147:116512. doi: 10.1016/j.trac.2021.116512.
  • Chaitidou, S., O. Kotrotsiou, and C. Kiparissides. 2009. On the synthesis and rebinding properties of [co (c2h3o2) 2 (z-histidine)] imprinted polymers prepared by precipitation polymerization. Materials Science and Engineering: C 29 (4):1415–21. doi: 10.1016/j.msec.2008.11.011.
  • Chaowana, R., and O. Bunkoed. 2019. A nanocomposite probe of polydopamine/molecularly imprinted polymer/quantum dots for trace sarafloxacin detection in chicken meat. Analytical and Bioanalytical Chemistry 411 (23):6081–90. doi: 10.1007/s00216-019-01993-x.
  • Chen, L., X. Wang, W. Lu, X. Wu, and J. Li. 2016. Molecular imprinting: Perspectives and applications. Chemical Society Reviews 45 (8):2137–211. doi: 10.1039/c6cs00061d.
  • Chen, M.-J., H.-L. Yang, Y.-M. Si, Q. Tang, C.-F. Chow, and C.-B. Gong. 2020. Photoresponsive surface molecularly imprinted polymers for the detection of profenofos in tomato and mangosteen. Frontiers in Chemistry 8:583036. doi: 10.3389/fchem.2020.583036.
  • Chen, S., J. Fu, Z. Li, Y. Zeng, Y. Li, X. Su, X. Jiang, H. Yang, L. Huang, L. Zou, et al. 2019. Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples. Journal of Chromatography A 1602:124–34. doi: 10.1016/j.chroma.2019.06.032.
  • Chen, S., X. Su, C. Yuan, C. Q. Jia, Y. Qiao, Y. Li, L. He, L. Zou, X. Ao, A. Liu, et al. 2021. A magnetic phosphorescence molecularly imprinted polymers probe based on manganese-doped zns quantum dots for rapid detection of trace norfloxacin residual in food. Spectrochimica Acta A 253:119577. doi: 10.1016/j.saa.2021.119577.
  • Cheng, Y., J. Nie, J. Li, H. Liu, Z. Yan, and L. Kuang. 2019. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chemistry 287:100–6. doi: 10.1016/j.foodchem.2019.02.069.
  • Di Masi, S., G. E. De Benedetto, and C. Malitesta. 2023. Optimisation of electrochemical sensors based on molecularly imprinted polymers: From OFAT to machine learning. Analytical and Bioanalytical Chemistry 416 (9):2261–75. doi: 10.1007/s00216-023-05085-9.
  • Dos Santos, P. M., M. Z. Corazza, and C. R. T. Tarley. 2024. Synthesis of ionically imprinted poly (alylthiourea) in the presence of 1-(2-pyridylazo)-2-napthol (pan) for preconcentration in magnetic dispersive solid phase of nickel ions in water and food samples. Food Chemistry 440:138238. doi: 10.1016/j.foodchem.2023.138238.
  • Du, Q., P. Wu, F. Hu, G. Li, J. Shi, and H. He. 2019. Novel molecularly imprinted polymers on metal–organic frameworks as sensors for the highly selective detection of zearalenone in wheat. New Journal of Chemistry 43 (18):7044–50. doi: 10.1039/C9NJ00589G.
  • El Hassani, N. E. A., E. Llobet, L.-M. Popescu, M. Ghita, B. Bouchikhi, and N. El Bari. 2018. Development of a highly sensitive and selective molecularly imprinted electrochemical sensor for sulfaguanidine detection in honey samples. Journal of Electroanalytical Chemistry 823:647–55. doi: 10.1016/j.jelechem.2018.07.011.
  • El Hosry, L., N. Sok, R. Richa, L. Al Mashtoub, P. Cayot, and E. Bou-Maroun. 2023. Sample preparation and analytical techniques in the determination of trace elements in food: A review. Foods 12 (4):895. doi: 10.3390/foods12040895.
  • El-Kosasy, A., A. H. Kamel, L. Hussin, M. F. Ayad, and N. Fares. 2018. Mimicking new receptors based on molecular imprinting and their application to potentiometric assessment of 2, 4-dichlorophenol as a food taint. Food Chemistry 250:188–96. doi: 10.1016/j.foodchem.2018.01.014.
  • Farooq, S., J. Nie, Y. Cheng, S. Bacha, and W. Chang. 2020. Selective extraction of fungicide carbendazim in fruits using β-cyclodextrin based molecularly imprinted polymers. Journal of Separation Science 43 (6):1145–53. doi: 10.1002/jssc.201901029.
  • Farooq, S., J. Nie, Y. Cheng, Z. Yan, S. a S. Bacha, J. Zhang, R. A. Nahiyoon, and Q. Hussain. 2019. Synthesis of core-shell magnetic molecularly imprinted polymer for the selective determination of imidacloprid in apple samples. Journal of Separation Science 42 (14):2455–65. doi: 10.1002/jssc.201900221.
  • Gao, L., D. Qin, Z. Chen, S. Wu, S. Tang, and P. Wang. 2021. Determination of sulfonamide antibiotics in fish and shrimp samples based on magnetic carbon nanotube dummy molecularly imprinted polymer extraction followed by UPLC-MS/MS. Electrophoresis 42 (6):725–34. doi: 10.1002/elps.202000243.
  • Gao, M., Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu, and G. Liu. 2020. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Frontiers in Chemistry 8:616326. doi: 10.3389/fchem.2020.616326.
  • Ge, Y., S. Zhao, B. Yuan, Y. Gao, and R. Liu. 2023. In-situ growth of metal coordination-synergistic imprinted polymer onto shrimp shell-derived magnetic FeNi biochar for specific recognition of monocrotaline in herbal medicine. Materials Today Sustainability 24:100599. doi: 10.1016/j.mtsust.2023.100599.
  • Golker, K., and I. A. Nicholls. 2016. The effect of crosslinking density on molecularly imprinted polymer morphology and recognition. European Polymer Journal 75:423–30. doi: 10.1016/j.eurpolymj.2016.01.008.
  • Golker, K., B. C. Karlsson, J. G. Wiklander, A. M. Rosengren, and I. A. Nicholls. 2015. Hydrogen bond diversity in the pre-polymerization stage contributes to morphology and MIP-template recognition–MAA versus MMA. European Polymer Journal 66:558–68. doi: 10.1016/j.eurpolymj.2015.03.018.
  • Golker, K., B. R. C. Karlsson, G. D. Olsson, A. M. Rosengren, and I. A. Nicholls. 2013. Influence of composition and morphology on template recognition in molecularly imprinted polymers. Macromolecules 46 (4):1408–14. doi: 10.1021/ma3024238.
  • Golker, K., G. D. Olsson, and I. A. Nicholls. 2017. The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition–acrylic acid versus methacrylic acid. European Polymer Journal 92:137–49. doi: 10.1016/j.eurpolymj.2017.04.043.
  • Gültekin, A., G. Karanfil Celep, and R. Say. 2018. Gadolinium chelate monomer based memories onto qcm electrodes for folic acid detection in commercial follow-on baby milk. Journal of Food Measurement and Characterization 12 (4):2892–8. doi: 10.1007/s11694-018-9904-3.
  • Haupt, K., P. X. Medina Rangel, and B. T. S. Bui. 2020. Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy. Chemical Reviews 120 (17):9554–82. doi: 10.1021/acs.chemrev.0c00428.
  • He, J., L. Yu, Y. Jiang, L. Lü, Z. Han, X. Zhao, and Z. Xu. 2023. Encoding cspbx3 perovskite quantum dots with different colors in molecularly imprinted polymers as fluorescent probes for the quantitative detection of Sudan I in food matrices. Food Chemistry 402:134499. doi: 10.1016/j.foodchem.2022.134499.
  • He, T., G. N. Wang, J. X. Liu, W. L. Zhao, J. J. Huang, M. X. Xu, J. P. Wang, and J. Liu. 2019. Dummy molecularly imprinted polymer based microplate chemiluminescence sensor for one-step detection of Sudan dyes in egg. Food Chemistry 288:347–53. doi: 10.1016/j.foodchem.2019.03.031.
  • Huang, S., M. Guo, L. Tan, J. Tan, J. Wu, Y. Tang, and Y. Liang. 2018. Click chemistry-based core–shell molecularly imprinted polymers for the determination of pyrimethamine in fish and plasma samples. Analytical Methods 10 (23):2750–5. doi: 10.1039/C8AY00876K.
  • Huang, Y., T. Zhao, and J. He. 2019a. Preparation of magnetic molecularly imprinted polymers for the rapid detection of diethylstilbestrol in milk samples. Journal of the Science of Food and Agriculture 99 (9):4452–9. doi: 10.1002/jsfa.9682.
  • Huang, Z., J. He, Y. Li, C. Wu, L. You, H. Wei, K. Li, and S. Zhang. 2019b. Preparation of dummy molecularly imprinted polymers for extraction of zearalenone in grain samples. Journal of Chromatography A 1602:11–8. doi: 10.1016/j.chroma.2019.05.022.
  • Jafari, S., M. Dehghani, N. Nasirizadeh, and M. H. Baghersad. 2019a. Synthesis and characterisation of a selective adsorbent based on the molecularly imprinted polymer for the removal of cloxacillin antibiotic residue from milk. International Journal of Dairy Technology 72 (4):505–14. doi: 10.1111/1471-0307.12620.
  • Jafari, S., M. Dehghani, N. Nasirizadeh, M. H. Baghersad, and M. Azimzadeh. 2019b. Label-free electrochemical detection of cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite. Measurement 145:22–9. doi: 10.1016/j.measurement.2019.05.068.
  • Jalili, R., A. Khataee, M.-R. Rashidi, and A. Razmjou. 2020. Detection of penicillin g residues in milk based on dual-emission carbon dots and molecularly imprinted polymers. Food Chemistry 314:126172. doi: 10.1016/j.foodchem.2020.126172.
  • Jalili, R., and A. Khataee. 2020. Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food and Chemical Toxicology 146:111806. doi: 10.1016/j.fct.2020.111806.
  • Janczura, M., P. Luliński, and M. Sobiech. 2021. Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials 14 (8):1850. doi: 10.3390/ma14081850.
  • Ji, Y., J. Zhao, and L. Zhao. 2022. Fabrication and characterization of magnetic molecularly imprinted polymer based on deep eutectic solvent for specific recognition and quantification of vanillin in infant complementary food. Food Chemistry 374:131720. doi: 10.1016/j.foodchem.2021.131720.
  • Jinadasa, K. K., E. Peña-Vázquez, P. Bermejo-Barrera, and A. Moreda-Piñeiro. 2020. Ionic imprinted polymer solid-phase extraction for inorganic arsenic selective pre-concentration in fishery products before high-performance liquid chromatography–inductively coupled plasma-mass spectrometry speciation. Journal of Chromatography A 1619:460973. doi: 10.1016/j.chroma.2020.460973.
  • Karamdoust, S., M.-R. Milani-Hosseini, and F. Faridbod. 2023. Simple detection of gluten in wheat-containing food samples of celiac diets with a novel fluorescent nanosensor made of folic acid-based carbon dots through molecularly imprinted technique. Food Chemistry 410:135383. doi: 10.1016/j.foodchem.2022.135383.
  • Kardani, F., R. Mirzajani, and Z. Ramezani. 2018. Direct cholesterol and β-sitosterol analysis in food samples using monolithic molecularly-imprinted solid-phase microextraction fibers coupled with high performance liquid chromatography. Journal of the Iranian Chemical Society 15 (12):2877–88. doi: 10.1007/s13738-018-1474-0.
  • Karim, K., F. Breton, R. Rouillon, E. V. Piletska, A. Guerreiro, I. Chianella, and S. A. Piletsky. 2005. How to find effective functional monomers for effective molecularly imprinted polymers? Advanced Drug Delivery Reviews 57 (12):1795–808. doi: 10.1016/j.addr.2005.07.013.
  • Karlsson, B. C. G., J. O’Mahony, J. G. Karlsson, H. Bengtsson, L. A. Eriksson, and I. A. Nicholls. 2009. Structure and dynamics of monomer − Template complexation: An explanation for molecularly imprinted polymer recognition site heterogeneity. Journal of the American Chemical Society 131 (37):13297–304. doi: 10.1021/ja902087t.
  • Kaya, S. I., A. Cetinkaya, and S. A. Ozkan. 2023. Molecularly imprinted polymers as highly selective sorbents in sample preparation techniques and their applications in environmental water analysis. Trends in Environmental Analytical Chemistry 37: E 00193. doi: 10.1016/j.teac.2022.e00193.
  • Kechagia, M., V. Samanidou, A. Kabir, and K. G. Furton. 2018. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection. Journal of Separation Science 41 (3):723–31. doi: 10.1002/jssc.201701205.
  • Khan, S., A. Wong, M. Rychlik, and M. D. P. T. Sotomayor. 2022. A novel synthesis of a magnetic porous imprinted polymer by polyol method coupled with electrochemical biomimetic sensor for the detection of folate in food samples. Chemosensors 10 (11):473. doi: 10.3390/chemosensors10110473.
  • Kubiak, A., A. Ciric, and M. Biesaga. 2020. Dummy molecularly imprinted polymer (dmip) as a sorbent for bisphenols and bisphenol f extraction from food samples. Microchemical Journal 156:104836. doi: 10.1016/j.microc.2020.104836.
  • Kumar, N., N. Narayanan, and S. Gupta. 2018. Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant and honey. Food Chemistry 255:81–8. doi: 10.1016/j.foodchem.2018.02.061.
  • Li, D., X. Qiao, J. Lu, and Z. Xu. 2018a. Synthesis and evaluation of a magnetic molecularly imprinted polymer sorbent for determination of trace trichlorfon residue in vegetables by capillary electrophoresis. Advances in Polymer Technology 37 (4):968–76. doi: 10.1002/adv.21745.
  • Li, H., L. Zhao, Y. Xu, T. Zhou, H. Liu, N. Huang, J. Ding, Y. Li, and L. Ding. 2018c. Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta 185:542–9. doi: 10.1016/j.talanta.2018.04.024.
  • Li, H., X. Wang, Z. Wang, Y. Wang, J. Dai, L. Gao, M. Wei, Y. Yan, and C. Li. 2018b. A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO2@ rGO@ Ag for the detection of λ-cyhalothrin via SERS. Microchimica Acta 185 (3):1–10. doi: 10.1007/s00604-017-2604-6.
  • Li, L., Z. Lin, Z. Huang, and A. Peng. 2019a. Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer. Food Chemistry 281:57–62. doi: 10.1016/j.foodchem.2018.12.073.
  • Li, Q., B. Ling, L. Jiang, and L. Ye. 2018d. A paradigm shift design of functional monomers for developing molecularly imprinted polymers. Chemical Engineering Journal 350:217–24. doi: 10.1016/j.cej.2018.05.187.
  • Li, Y., Q. Wu, Z. Wu, Y. Zhuang, L. Sun, X. Fan, T. Zhao, L. Yi, and Y. Gu. 2023. Biomimetic functional material-based sensors for food safety analysis: A review. Food Chemistry 405 (Pt B):134974. doi: 10.1016/j.foodchem.2022.134974.
  • Li, Y., W. He, Q. Peng, L. Hou, J. He, and K. Li. 2019b. Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of rhodamine 6g in food samples. Food Chemistry 287:55–60. doi: 10.1016/j.foodchem.2019.02.081.
  • Li, Z. B., J. Liu, J. X. Liu, Z. H. Wang, and J. P. Wang. 2019c. Determination of sulfonamides in meat with dummy-template molecularly imprinted polymer-based chemiluminescence sensor. Analytical and Bioanalytical Chemistry 411 (14):3179–89. doi: 10.1007/s00216-019-01792-4.
  • Li, Z., X. Chen, X. Zhang, Y. Wang, D. Li, H. Gao, and X. Duan. 2021. Selective solid-phase extraction of four phenylarsonic compounds from feeds, edible chicken and pork with tailoring imprinted polymer. Food Chemistry 347:129054. doi: 10.1016/j.foodchem.2021.129054.
  • Liu, G., Y. She, S. Hong, J. Wang, and D. Xu. 2018a. Development of ELISA-like fluorescence assay for melamine detection based on magnetic dummy molecularly imprinted polymers. Applied Sciences 8 (4):560. doi: 10.3390/app8040560.
  • Liu, H., Y. Zhou, Y. Qi, Z. Sun, and B. Gong. 2018b. Preparation of thiamphenicol magnetic surface molecularly imprinted polymers for its selective recognition of thiamphenicol in milk samples. Journal of Liquid Chromatography & Related Technologies 41 (13-14):868–79. doi: 10.1080/10826076.2018.1531294.
  • Liu, S., J. Pan, H. Zhu, G. Pan, F. Qiu, M. Meng, J. Yao, and D. Yuan. 2016. Graphene oxide based molecularly imprinted polymers with double recognition abilities: The combination of covalent boronic acid and traditional non-covalent monomers. Chemical Engineering Journal 290:220–31. doi: 10.1016/j.cej.2016.01.061.
  • Liu, Y., L. Wang, H. Li, L. Zhao, Y. Ma, Y. Zhang, J. Liu, and Y. Wei. 2024. Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities. Progress in Polymer Science 150:101790. doi: 10.1016/j.progpolymsci.2024.101790.
  • Liu, Y., Y. Huang, D. Wang, M. Fan, and Z. Gong. 2020a. Molecularly imprinted polymers hydrogel for the rapid risk-category-specific screening of food using SPE followed by fluorescence spectrometric detection. Microchemical Journal 159:105408. doi: 10.1016/j.microc.2020.105408.
  • Liu, Z., Y. Wang, F. Xu, X. Wei, J. Chen, H. Li, X. He, and Y. Zhou. 2020b. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Analytica Chimica Acta 1129:49–59. doi: 10.1016/j.aca.2020.06.052.
  • Lu, C., Z. Tang, X. Gao, X. Ma, and C. Liu. 2018. Computer-aided design of magnetic dummy molecularly imprinted polymers for solid-phase extraction of ten phthalates from food prior to their determination by GC-MS/MS. Microchimica Acta 185 (8):1–11. doi: 10.1007/s00604-018-2892-5.
  • Luliński, P., and D. Maciejewska. 2011. Impact of functional monomers, cross-linkers and porogens on morphology and recognition properties of 2-(3, 4-dimethoxyphenyl) ethylamine imprinted polymers. Materials Science and Engineering 31 (2):281–9. doi: 10.1016/j.msec.2010.09.010.
  • Ma, W., Y. Dai, and K. H. Row. 2018. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis 39 (15):2039–46. doi: 10.1002/elps.201800034.
  • Madikizela, L. M., S. Ncube, P. N. Nomngongo, and V. E. Pakade. 2022. Molecular imprinting with deep eutectic solvents: Synthesis, applications, their significance, and benefits. Journal of Molecular Liquids 362:119696. doi: 10.1016/j.molliq.2022.119696.
  • Maragou, N. C., N. S. Thomaidis, G. A. Theodoridis, E. N. Lampi, and M. A. Koupparis. 2020. Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography B 1137:121938. doi: 10.1016/j.jchromb.2019.121938.
  • Mattsson, L., J. Xu, C. Preininger, B. T. S. Bui, and K. Haupt. 2018. Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix. Talanta 181:190–6. doi: 10.1016/j.talanta.2018.01.010.
  • Megias-Pérez, E., J. Giménez-López, A. Lascorz, B. Benedetti, C. Minguillón, and D. Barrón. 2023. Development of molecularly imprinted polymers and its magnetic version for the extraction of fluoroquinolones from milk. Microchemical Journal 195:109422. doi: 10.1016/j.microc.2023.109422.
  • Meseguer-Lloret, S., S. Torres-Cartas, C. Gómez-Benito, and J. M. Herrero-Martínez. 2022. Magnetic molecularly imprinted polymer for the simultaneous selective extraction of phenoxy acid herbicides from environmental water samples. Talanta 239:123082. doi: 10.1016/j.talanta.2021.123082.
  • Metwally, M. G., O. R. Shehab, H. Ibrahim, and R. M. El Nashar. 2022. Electrochemical detection of bisphenol A in plastic bottled drinking waters and soft drinks based on molecularly imprinted polymer. Journal of Environmental Chemical Engineering 10 (3):107699. doi: 10.1016/j.jece.2022.107699.
  • Mohammadinejad, A., S. Z. Kamrani Rad, G. Karimi, V. S. Motamedshariaty, and S. A. Mohajeri. 2021. Preparation, evaluation, and application of dummy molecularly imprinted polymer for analysis of hesperidin in lime juice. Journal of Separation Science 44 (7):1490–500. doi: 10.1002/jssc.202001094.
  • Mohiuddin, I., A. L. Berhanu, A. K. Malik, J. S. Aulakh, J. Lee, and K.-H. Kim. 2019. Preparation and evaluation of a porous molecularly imprinted polymer for selective recognition of the antiepileptic drug carbamazepine. Environmental Research 176:108580. doi: 10.1016/j.envres.2019.108580.
  • Mohiuddin, I., R. Singh, and V. Kaur. 2023a. Fabrication of mesoporous nanoprobe with molecularly imprinted fluorescent carbon dots embedded within silica network for the selective and sensitive detection of aspirin in ground water samples. Journal of Environmental Chemical Engineering 11 (1):109067. doi: 10.1016/j.jece.2022.109067.
  • Mohiuddin, I., R. Singh, and V. Kaur. 2023b. A review of sensing applications of molecularly imprinted fluorescent carbon dots for food and biological sample analysis. Critical Reviews in Analytical Chemistry:1–22. doi: 10.1080/10408347.2023.2236215.
  • Mohiuddin, I., R. Singh, and V. Kaur. 2024. Blending polydopamine-derived imprinted polymers with rice straw-based fluorescent carbon dots for selective detection and adsorptive removal of ibuprofen. International Journal of Biological Macromolecules 269 (Pt 1):131765. doi: 10.1016/j.ijbiomac.2024.131765.
  • Mohiuddin, I., S. Bhogal, A. Grover, A. K. Malik, and J. S. Aulakh. 2021. Simultaneous determination of amitriptyline, nortriptyline, and clomipramine in aqueous samples using selective multi-template molecularly imprinted polymers. Environmental Nanotechnology, Monitoring & Management 16:100527. doi: 10.1016/j.enmm.2021.100527.
  • Mohsenzadeh, E., V. Ratautaite, E. Brazys, S. Ramanavicius, S. Zukauskas, D. Plausinaitis, and A. Ramanavicius. 2023. Application of computational methods in the design of molecularly imprinted polymers. TrAC Trends in Analytical Chemistry 171:117480. doi: 10.1016/j.trac.2023.117480.
  • Mueller, A. 2021. A note about crosslinking density in imprinting polymerization. Molecules 26 (17):5139. doi: 10.3390/molecules26175139.
  • Muhammad, T., Z. Nur, E. V. Piletska, O. Yimit, and S. A. Piletsky. 2012. Rational design of molecularly imprinted polymer: The choice of cross-linker. The Analyst 137 (11):2623–8. doi: 10.1039/c2an35228a.
  • Niu, M., C. Pham-Huy, and H. He. 2016. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchimica Acta 183 (10):2677–95. doi: 10.1007/s00604-016-1930-4.
  • Pan, M., Y. Wang, J. Yang, H. Li, X. Han, and S. Wang. 2024. Carbon dots-based fluorescent molecularly imprinted photonic crystal hydrogel strip: Portable and efficient strategy for selective detection of tetracycline in foods of animal origin. Food Chemistry 433:137407. doi: 10.1016/j.foodchem.2023.137407.
  • Pereira, I., M. F. Rodrigues, A. R. Chaves, and B. G. Vaz. 2018. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta 178:507–14. doi: 10.1016/j.talanta.2017.09.080.
  • Piletsky, S. S., A. Garcia Cruz, E. Piletska, S. A. Piletsky, E. O. Aboagye, and A. C. Spivey. 2022. Iodo silanes as superior substrates for the solid phase synthesis of molecularly imprinted polymer nanoparticles. Polymers 14 (8):1595. doi: 10.3390/polym14081595.
  • Qiu, X., X.-Y. Xu, Y. Liang, and H. Guo. 2018. The molecularly imprinted polymer supported by anodic alumina oxide nanotubes membrane for efficient recognition of chloropropanols in vegetable oils. Food Chemistry 258:295–300. doi: 10.1016/j.foodchem.2018.03.071.
  • Ran, H., Z.-Z. Lin, Q.-H. Yao, C.-Y. Hong, and Z.-Y. Huang. 2019. Ratiometric fluorescence probe of MIPs@ CdTe QDs for trace malachite green detection in fish. Analytical and Bioanalytical Chemistry 411 (2):537–44. doi: 10.1007/s00216-018-1479-7.
  • Rao, T. P., R. Kala, and S. Daniel. 2006. Metal ion-imprinted polymers—novel materials for selective recognition of inorganics. Analytica Chimica Acta 578 (2):105–16. doi: 10.1016/j.aca.2006.06.065.
  • Ren, J., Y. Lu, Y. Han, F. Qiao, and H. Yan. 2023. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk. Food Chemistry 400:134062. doi: 10.1016/j.foodchem.2022.134062.
  • Ren, Y., and Z. Fan. 2023. Synthesis of fluorescent probe based on molecularly imprinted polymers on nitrogen-doped carbon dots for determination of tobramycin in milk. Food Chemistry 416:135792. doi: 10.1016/j.foodchem.2023.135792.
  • Reville, E. K., E. H. Sylvester, S. J. Benware, S. S. Negi, and E. B. Berda. 2022. Customizable molecular recognition: Advancements in design, synthesis, and application of molecularly imprinted polymers. Polymer Chemistry 13 (23):3387–411. doi: 10.1039/D1PY01472B.
  • Rico-Yuste, A., R. Abouhany, J. L. Urraca, A. B. Descalzo, G. Orellana, and M. C. Moreno-Bondi. 2021. Eu (III)-templated molecularly imprinted polymer used as a luminescent sensor for the determination of tenuazonic acid mycotoxin in food samples. Sensors and Actuators B: Chemical 329:129256. doi: 10.1016/j.snb.2020.129256.
  • Rutkowska, M., J. Płotka-Wasylka, C. Morrison, P. P. Wieczorek, J. Namieśnik, and M. Marć. 2018. Application of molecularly imprinted polymers in analytical chiral separations and analysis. TrAC Trends in Analytical Chemistry 102:91–102. doi: 10.1016/j.trac.2018.01.011.
  • Scheller, F. W., X. Zhang, A. Yarman, U. Wollenberger, and R. E. Gyurcsányi. 2019. Molecularly imprinted polymer-based electrochemical sensors for biopolymers. Current Opinion in Electrochemistry 14:53–9. doi: 10.1016/j.coelec.2018.12.005.
  • Sengar, M.S., Kumari, P., Sengar, N., and Singh, S.K. 2024. Molecularly Imprinted Polymer Technology for the Advancement of Its Health Surveillances and Environmental Monitoring. ACS Applied Polymer Materials. 6 (2):1086–105.
  • Shoravi, S., G. D. Olsson, B. C. Karlsson, and I. A. Nicholls. 2014. On the influence of crosslinker on template complexation in molecularly imprinted polymers: A computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies. International Journal of Molecular Sciences 15 (6):10622–34. doi: 10.3390/ijms150610622.
  • Song, X., S. Xu, L. Chen, Y. Wei, and H. Xiong. 2014. Recent advances in molecularly imprinted polymers in food analysis. Journal of Applied Polymer Science 131 (16):40766. doi: 10.1002/app.40766.
  • Spivak, D. A., and M. Sibrian-Vazquez. 2002. Development of improved crosslinking monomers for molecularly imprinted materials. MRS Online Proceedings Library 723:M1–2.
  • Sun, Y., Y. Zhang, Y. Hou, H. Gong, Y. Pang, X. Ge, and M. Li. 2023. Molecularly imprinted polymers based on calcined rape pollen and deep eutectic solvents for efficient sinapic acid extraction from rapeseed meal extract. Food Chemistry 416:135811. doi: 10.1016/j.foodchem.2023.135811.
  • Tabaraki, R., and N. Sadeghinejad. 2020. Preparation and application of magnetic molecularly imprinted polymers for rutin determination in green tea. Chemical Papers 74 (6):1937–44. doi: 10.1007/s11696-019-01039-7.
  • Tarannum, N., S. Khatoon, and B. B. Dzantiev. 2020. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 118:107381. doi: 10.1016/j.foodcont.2020.107381.
  • Thakur, S., I. Mohiuddin, R. Singh, and V. Kaur. 2023. Selective quantification of diclofenac from groundwater and pharmaceutical samples by magnetic molecularly imprinted polymer-based sorbent coupled with the HPLC-PDA detection. Environmental Science and Pollution Research 30 (27):70871–83. doi: 10.1007/s11356-023-27431-1.
  • Tian, R., Y. Li, J. Xu, C. Hou, Q. Luo, and J. Liu. 2022. Recent development in the design of artificial enzymes through molecular imprinting technology. Journal of Materials Chemistry B 10 (35):6590–606. doi: 10.1039/D2TB00276K.
  • Tsoi, Y.-K., Y.-M. Ho, and K. S.-Y. Leung. 2012. Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS quantification. Talanta 89:162–8. doi: 10.1016/j.talanta.2011.12.007.
  • Turiel, E., and A. M. Esteban. 2020. Molecularly imprinted polymers. In Solid-phase extraction, 215–33. Singapore: Elsevier.
  • Wang, D., Y. Yang, Z. Xu, Y. Liu, Z. Liu, T. Lin, X. Chen, and H. Liu. 2021. Molecular simulation-aided preparation of molecularly imprinted polymeric solid-phase microextraction coatings for Kojic acid detection in wheat starch and flour samples. Food Analytical Methods 14 (10):2076–87. doi: 10.1007/s12161-021-02039-8.
  • Wang, H., S. Jiang, Z. Xu, S. Zhou, and L. Xu. 2022. A novel fluorescent sensor based on a magnetic covalent organic framework-supported, carbon dot-embedded molecularly imprinted composite for the specific optosensing of bisphenol A in foods. Sensors and Actuators B: Chemical 361:131729. doi: 10.1016/j.snb.2022.131729.
  • Wang, S., J. Zhang, C. Li, and L. Chen. 2018a. Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal–organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry. Journal of Separation Science 41 (12):2604–12. doi: 10.1002/jssc.201701514.
  • Wang, S., P. Zhao, N. Li, X. Qiao, and Z. Xu. 2018b. Development of a chemiluminescence sensor based on molecular imprinting technology for the determination of trace monocrotophos in vegetables. Advances in Polymer Technology 37 (5):1401–9. doi: 10.1002/adv.21799.
  • Wang, S., Y. Geng, X. Sun, R. Wang, Z. Zheng, S. Hou, X. Wang, and W. Ji. 2020a. Molecularly imprinted polymers prepared from a single cross-linking functional monomer for solid-phase microextraction of estrogens from milk. Journal of Chromatography A 1627:461400. doi: 10.1016/j.chroma.2020.461400.
  • Wang, X., H. Liu, Z. Sun, S. Zhao, Y. Zhou, J. Li, T. Cai, and B. Gong. 2020b. Monodisperse restricted access material with molecularly imprinted surface for selective solid-phase extraction of 17β-estradiol from milk. Journal of Separation Science 43 (17):3520–33. doi: 10.1002/jssc.202000449.
  • Wang, X., Y. Feng, H. Chen, Y. Qi, J. Yang, S. Cong, Y. She, and X. Cao. 2023a. Synthesis of dummy-template molecularly imprinted polymers as solid-phase extraction adsorbents for n-nitrosamines in meat products. Microchemical Journal 185:108271. doi: 10.1016/j.microc.2022.108271.
  • Wang, Y., M. Li, L. Zhu, and Y. Wang. 2023b. On-line preconcentration and determination of sulfadiazine in food samples using surface molecularly imprinted polymer coating by capillary electrophoresis. Journal of Chromatography. A 1696:463965. doi: 10.1016/j.chroma.2023.463965.
  • Włoch, M., and J. Datta. 2019. Synthesis and polymerisation techniques of molecularly imprinted polymers. In Comprehensive analytical chemistry, ed. M. Marć, 17–40, Amsterdam: Elsevier.
  • Woźnica, M., M. Sobiech, and P. Luliński. 2023. A fusion of molecular imprinting technology and siloxane chemistry: A way to advanced hybrid nanomaterials. Nanomaterials 13 (2):248. doi: 10.3390/nano13020248.
  • Xu, L., Y.-A. Huang, Q.-J. Zhu, and C. Ye. 2015. Chitosan in molecularly-imprinted polymers: Current and future prospects. International Journal of Molecular Sciences 16 (8):18328–47. doi: 10.3390/ijms160818328.
  • Xue, C., R. Jamal, T. Abdiryim, X. Liu, F. Liu, F. Xu, Q. Cheng, X. Tang, and N. Fan. 2024. An ionic liquid-modified PEDOT/Ti3C2TX based molecularly imprinted electrochemical sensor for pico-molar sensitive detection of l-tryptophan in milk. Food Chemistry 449:139114. doi: 10.1016/j.foodchem.2024.139114.
  • Yang, J., Z.-Z. Lin, A.-Z. Nur, Y. Lu, M.-H. Wu, J. Zeng, X.-M. Chen, and Z.-Y. Huang. 2018. Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica. Spectrochimica Acta A 190:450–6. doi: 10.1016/j.saa.2017.09.066.
  • Yang, X., T. Zhang, D. Yang, and J. Xie. 2023. Application of gas chromatography-ion mobility spectrometry in the analysis of food volatile components. Acta Chromatographica 35 (1):35–45. doi: 10.1556/1326.2022.01005.
  • Yin, F., F. Xu, K. Zhang, M. Yuan, H. Cao, T. Ye, X. Wu, and F. Xu. 2021. Synthesis and evaluation of mesoporous silica/mesoporous molecularly imprinted nanoparticles as adsorbents for detection and selective removal of imidacloprid in food samples. Food Chemistry 364:130216. doi: 10.1016/j.foodchem.2021.130216.
  • Zaidi, S. A. 2019. An account on the versatility of dopamine as a functional monomer in molecular imprinting. ChemistrySelect 4 (17):5081–90. doi: 10.1002/slct.201901029.
  • Zeng, H., X. Yu, J. Wan, and X. Cao. 2021. Synthesis of molecularly imprinted polymers based on boronate affinity for diol-containing macrolide antibiotics with hydrophobicity-balanced and ph-responsive cavities. Journal of Chromatography. A 1642:461969. doi: 10.1016/j.chroma.2021.461969.
  • Zeng, H., Y. Wang, X. Liu, J. Kong, and C. Nie. 2012. Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta 93:172–81. doi: 10.1016/j.talanta.2012.02.008.
  • Zhai, H., G. Liang, X. Guo, Z. Chen, J. Yu, H. Lin, and Q. Zhou. 2019. Novel coordination imprinted polymer monolithic column applied to the solid-phase extraction of flumequine from fish samples. Journal of Chromatography B 1118-1119:55–62. doi: 10.1016/j.jchromb.2019.04.023.
  • Zhang, C., X. Shi, F. Yu, and Y. Quan. 2020. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles fe3o4 for the selective detection of acrylamide in potato chips. Food Chemistry 317:126431. doi: 10.1016/j.foodchem.2020.126431.
  • Zhang, G., M. M. Ali, X. Feng, J. Zhou, and L. Hu. 2021a. Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. TrAC Trends in Analytical Chemistry 144:116426. doi: 10.1016/j.trac.2021.116426.
  • Zhang, J.-W., L. Tan, Y.-Z. Zhang, G.-C. Zheng, Z.-N. Xia, C.-Z. Wang, L.-D. Zhou, Q.-H. Zhang, and C.-S. Yuan. 2019. Debittering of lemon juice using surface molecularly imprinted polymers and the utilization of limonin. Journal of Chromatography B 1104:205–11. doi: 10.1016/j.jchromb.2018.11.025.
  • Zhang, Y., Y. Huang, Y. Kang, J. Miao, and K. Lai. 2021b. Selective recognition and determination of malachite green in fish muscles via surface-enhanced Raman scattering coupled with molecularly imprinted polymers. Food Control. 130:108367. doi: 10.1016/j.foodcont.2021.108367.
  • Zhang, Y., Y. Xie, H. Shi, Z. Wu, C. Zhang, and S. Feng. 2021c. Facile way to prepare a porous molecular imprinting lock for specifically recognizing oxytetracyclin based on coordination. Analytical Chemistry 93 (10):4536–41. doi: 10.1021/acs.analchem.0c04959.
  • Zhang, Z., J. Li, L. Fu, D. Liu, and L. Chen. 2015. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. Journal of Materials Chemistry A 3 (14):7437–44. doi: 10.1039/C5TA00143A.
  • Zhao, X., L. Chen, and B. Li. 2018a. Magnetic molecular imprinting polymers based on three-dimensional (3d) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chemistry 255:226–34. doi: 10.1016/j.foodchem.2018.02.078.
  • Zhao, X., Y. He, Y. Wang, S. Wang, and J. Wang. 2020. Hollow molecularly imprinted polymer based quartz crystal microbalance sensor for rapid detection of methimazole in food samples. Food Chemistry 309:125787. doi: 10.1016/j.foodchem.2019.125787.
  • Zhao, Y., Y. Tang, J. He, Y. Xu, R. Gao, J. Zhang, T. Chong, L. Wang, and X. Tang. 2018b. Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in honeysuckle tea. Talanta 181:271–7. doi: 10.1016/j.talanta.2018.01.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.