578
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Protein transition: focus on protein quality in sustainable alternative sources

, , &

References

  • Ahnen, R. T., S. S. Jonnalagadda, and J. L. Slavin. 2019. Role of plant protein in nutrition, wellness, and health. Nutrition Reviews 77 (11):735–47. doi: 10.1093/nutrit/nuz028.
  • Akhtar, Y., and M. B. Isman. 2018. Insects as an alternative protein source. In Proteins in food processing, 263–88. Cambridge, UK: Woodhead Publishing.
  • Amorim, M. L., J. Soares, J. S. D. R. Coimbra, M. D. O. Leite, L. F. T. Albino, and M. A. Martins. 2021. Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition 61 (12):1976–2002. doi: 10.1080/10408398.2020.1768046.
  • Ariëns, R. M., S. Bastiaan-Net, D. B. Van de Berg-Somhorst, K. El Bachrioui, A. Boudewijn, R. T. van den Dool, G. A. De Jong, H. J. Wichers, and J. J. Mes. 2021. Comparing nutritional and digestibility aspects of sustainable proteins using the INFOGEST digestion protocol. Journal of Functional Foods 87:104748. doi: 10.1016/j.jff.2021.104748.
  • Bailey, H. M., J. K. Mathai, E. P. Berg, and H. H. Stein. 2020. Most meat products have digestible indispensable amino acid scores that are greater than 100, but processing may increase or reduce protein quality. The British Journal of Nutrition 124 (1):14–22. doi: 10.1017/S0007114520000641.
  • Bleakley, S., and M. Hayes. 2017. Algal proteins: Extraction, application, and challenges concerning production. Foods (Basel, Switzerland) 6 (5):33. doi: 10.3390/foods6050033.
  • Bohrer, B. M. 2017. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology 65:103–12. doi: 10.1016/j.tifs.2017.04.016.
  • Bohrer, B. M. 2019. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness 8 (4):320–9. doi: 10.1016/j.fshw.2019.11.006.
  • Burgos-Díaz, C., M. Opazo-Navarrete, T. Wandersleben, M. Soto-Añual, T. Barahona, and M. Bustamante. 2019. Chemical and nutritional evaluation of protein-rich ingredients obtained through a technological process from yellow lupin seeds (Lupinus luteus). Plant Foods for Human Nutrition 74 (4):508–17. doi: 10.1007/s11130-019-00768-0.
  • Capuano, E., T. Oliviero, V. Fogliano, and N. Pellegrini. 2018. The role of food matrix and digestion on the calculation of the real energy content of food. Nutrition Reviews 76 (4):274–89. doi: 10.1093/nutrit/nux072.
  • Chen, Y., E. Capuano, and M. Stieger. 2021. Chew on it: Influence of oral processing behaviour on in vitro protein digestion of chicken and soya-based vegetarian chicken. British Journal of Nutrition 126 (9):1408–19. doi: 10.1017/S0007114520005176.
  • Chronakis, I. S., and M. Madsen. 2011. Algal proteins. In Handbook of food proteins, 353–94. Cambridge, UK: Woodhead Publishing.
  • Churchward-Venne, T. A., P. J. Pinckaers, J. J. van Loon, and L. J. van Loon. 2017. Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews 75 (12):1035–45. doi: 10.1093/nutrit/nux057.
  • Conde, E., E. M. Balboa, M. Parada, and E. Falqué. 2013. Algal proteins, peptides and amino acids. Functional ingredients from algae for foods and nutraceuticals, 135–80. Cambridge, UK: Woodhead Publishing.
  • Cutroneo, S., B. Prandi, A. Faccini, N. Pellegrini, S. Sforza, and T. Tedeschi. 2023. Comparison of protein quality and digestibility between plant-based and meat-based burgers. Food Research International 172:113183. doi: 10.1016/j.foodres.2023.113183.
  • da Rosa Machado, C., and R. C. S. Thys. 2019. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innovative Food Science & Emerging Technologies 56:102180. doi: 10.1016/j.ifset.2019.102180.
  • De Marco, M., S. Martínez, F. Hernandez, J. Madrid, F. Gai, L. Rotolo, M. Belforti, D. Bergero, H. Katz, S. Dabbou, et al. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology 209:211–8. doi: 10.1016/j.anifeedsci.2015.08.006.
  • Dekkers, B. L., R. M. Boom, and A. J. van der Goot. 2018. Structuring processes for meat analogues. Trends in Food Science & Technology 81:25–36. doi: 10.1016/j.tifs.2018.08.011.
  • Denny, A., B. Aisbitt, and J. Lunn. 2008. Mycoprotein and health. Nutrition Bulletin 33 (4):298–310. doi: 10.1111/j.1467-3010.2008.00730.x.
  • Derbyshire, E. J., and T. J. Finnigan. 2022. Mycoprotein: A futuristic portrayal. In Future Foods. (pp. 287–303). Academic Press. doi: 10.1016/B978-0-323-91001-9.00037-2.
  • Diaz, C. J., K. J. Douglas, K. Kang, A. L. Kolarik, R. Malinovski, Y. Torres-Tiji, J. V. Molino, A. Badary, and S. P. Mayfield. 2023. Developing algae as a sustainable food source. Frontiers in Nutrition 9:3147. doi: 10.3389/fnut.2022.1029841.
  • Duque-Estrada, P., and I. L. Petersen. 2023. The sustainability paradox of processing plant proteins. Science of Food 7 (1):38.
  • Edwards, D. G., and J. H. Cummings. 2010. The protein quality of mycoprotein. Proceedings of the Nutrition Society 69 (OCE4):E331. doi: 10.1017/S0029665110001400.
  • European Parliament and Council of the European Union. 2015. Regulation (EU) 2015/2283 on novel foods. Official Journal of the European Union L327:1–22.
  • Evenepoel, P., D. Claus, B. Geypens, M. Hiele, K. Geboes, P. Rutgeerts, and Ghoos, Y. 1999. Amount and fate of egg protein escaping assimilation in the small intestine of humans. American Journal of Physiology-Gastrointestinal and Liver Physiology 277 (5):G935–G943. doi: 10.1152/ajpgi.1999.277.5.G935.
  • Fanelli, N. S., H. M. Bailey, T. W. Thompson, R. Delmore, M. N. Nair, and H. H. Stein. 2022. Digestible indispensable amino acid (DIAAS) is greater in animal-based burgers than in plant-based burgers if determined in pigs. European Journal of Nutrition 61 (1):461–75. doi: 10.1007/s00394-021-02658-1.
  • FAO. 2013. Dietary protein quality evaluation in human nutrition: Report of an FAO expert consultation 2013. FAO Food and Nutrition Papers 92:1–66.
  • FAO. 2017. Protein Quality Assessment in Follow-Up Formula for Young Children and Ready to Use Therapeutic Foods. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • FAO/WHO Expert Consultation. 1991. Protein quality evaluation report of the joint FAO/WHO expert consultation held in Bethesda, MD, USA, in 1989. Rome: FAO Food and Nutrition Paper 51.
  • FAO/WHO/UNU. 1985. Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. Technical Report Series No. 724. Geneva: World Health Organization.
  • Joint WHO/FAO/UNU Expert Consultation. 2007. Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series 935:1–265.
  • Fernandez, M. A., R. F. Bertolo, A. M. Duncan, S. M. Phillips, R. Elango, D. W. Ma, S. Desroches, A. Grantham, and J. D. House. 2020. Translating “protein foods” from the new Canada’s Food Guide to consumers: Knowledge gaps and recommendations. Applied Physiology, Nutrition, and Metabolism 45 (12):1311–23. doi: 10.1139/apnm-2020-0192.
  • Finke, M. D. 2013. Complete nutrient content of four species of feeder insects. Zoo Biology 32 (1):27–36. doi: 10.1002/zoo.21012.
  • Finnigan, T., K. Mach, and A. Edlin. 2024. Mycoprotein: a healthy new protein with a low environmental impact. In Sustainable protein sources (pp. 539–566). Academic Press. doi: 10.1016/B978-0-323-91652-3.00011-3.
  • Foyer, C. H., H.-M. Lam, H. T. Nguyen, K. H. M. Siddique, R. K. Varshney, T. D. Colmer, W. Cowling, H. Bramley, T. A. Mori, J. M. Hodgson, et al. 2016. Neglecting legumes has compromised human health and sustainable food production. Nature Plants 2 (8):16112. doi: 10.1038/nplants.2016.112.
  • Frota, K. D. M. G., L. A. R. Lopes, I. C. V. Silva, and J. A. G. Arêas. 2017. Nutritional quality of the protein of Vigna unguiculata L. Walp and its protein isolate. Revista Ciência AGRONÔMICA 48 (5):792–8. doi: 10.5935/1806-6690.20170092.
  • Geada, P., C. Moreira, M. Silva, R. Nunes, L. Madureira, C. M. Rocha, R. N. Pereira, A. A. Vicente, and J. A. Teixeira. 2021. Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology 332:125125. doi: 10.1016/j.biortech.2021.125125.
  • Gilani, G. S., K. A. Cockell, and E. Sepehr. 2005. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International 88 (3):967–87. doi: 10.1093/jaoac/88.3.967.
  • Godfray, H. C. J., P. Aveyard, T. Garnett, J. W. Hall, T. J. Key, J. Lorimer, R. T. Pierrehumbert, P. Scarborough, M. Springmann, and S. A. Jebb. 2018. Meat consumption, health, and the environment. Science 361 (6399):5324. doi: 10.1126/science.aam5324.
  • González, N., M. Marquès, M. Nadal, and J. L. Domingo. 2020. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International 137:109341. doi: 10.1016/j.foodres.2020.109341.
  • Gravel, A., and A. Doyen. 2020. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies 59:102272. doi: 10.1016/j.ifset.2019.102272.
  • Guillin, F. M., C. Gaudichon, L. Guérin-Deremaux, C. Lefranc-Millot, G. Airinei, N. Khodorova, R. Benamouzig, P. H. Pomport, J. Martin, and J. Calvez. 2022. Real ileal amino acid digestibility of pea protein compared to casein in healthy humans: A randomized trial. The American Journal of Clinical Nutrition 115 (2):353–63. doi: 10.1093/ajcn/nqab354.
  • Han, F., P. J. Moughan, J. Li, and S. Pang. 2020. Digestible indispensable amino acid (DIAAS) of six cooked Chinese pulses. Nutrients 12 (12):3831. doi: 10.3390/nu12123831.
  • Harvard T.H. Chan School of Public Health. 2023. The nutrition source, legumes and pulses. Visited 14/06/2023. https://www.hsph.harvard.edu/nutritionsource/legumes-pulses/.
  • Hashempour-Baltork, F., K. Khosravi-Darani, H. Hosseini, P. Farshi, and S. F. S. Reihani. 2020. Mycoproteins as safe meat substitutes. Journal of Cleaner Production 253:119958. doi: 10.1016/j.jclepro.2020.119958.
  • He, J., N. M. Evans, H. Liu, and S. Shao. 2020. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety 19 (5):2639–56. doi: 10.1111/1541-4337.12610.
  • Heo, J. M., E. Kiarie, R. K. Kahindi, P. Maiti, T. A. Woyengo, and C. M. Nyachoti. 2012. Standardized ileal amino acid digestibility in egg from hyperimmunized hens fed to weaned pigs. Journal of Animal Science 90 (Suppl_4):239–41. doi: 10.2527/jas.53983.
  • Herreman, L., P. Nommensen, B. Pennings, and M. C. Laus. 2020. Comprehensive overview of the quality of plant-And animal-sourced proteins based on the digestible indispensable amino acid. Food Science & Nutrition 8 (10):5379–91. doi: 10.1002/fsn3.1809.
  • Herrero, M., B. Henderson, P. Havlík, P. K. Thornton, R. T. Conant, P. Smith, S. Wirsenius, A. N. Hristov, P. Gerber, M. Gill, et al. 2016. Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change 6 (5):452–61. doi: 10.1038/nclimate2925.
  • Hidayat, K., J. S. Chen, H. P. Wang, T. C. Wang, Y. J. Liu, X. Y. Zhang, C. P. Rao, J. W. Zhang, and L. Q. Qin. 2022. Is replacing red meat with other protein sources associated with lower risks of coronary heart disease and all-cause mortality? A meta-analysis of prospective studies. Nutrition Reviews 80 (9):1959–73. doi: 10.1093/nutrit/nuac017.
  • Hlongwane, Z. T., R. Slotow, and T. C. Munyai. 2020. Nutritional composition of edible insects consumed in Africa: A systematic review. Nutrients 12 (9):2786. doi: 10.3390/nu12092786.
  • Hobbi, P., A. E. D. A. Bekhit, F. Debaste, N. Lei, and A. Shavandi. 2022. Insect-Derived Protein as Food and Feed. In Alternative Proteins (pp. 85–132). Boca Raton, US: CRC Press.
  • Hodgkinson, S. M., C. A. Montoya, P. T. Scholten, S. M. Rutherfurd, and P. J. Moughan. 2018. Cooking conditions affect the true ileal digestible amino acid content and digestible indispensable amino acid score (DIAAS) of bovine meat as determined in pigs. The Journal of Nutrition 148 (10):1564–9. doi: 10.1093/jn/nxy153.
  • Humpenöder, F., B. L. Bodirsky, I. Weindl, H. Lotze-Campen, T. Linder, and A. Popp. 2022. Projected environmental benefits of replacing beef with microbial protein. Nature 605 (7908):90–6. doi: 10.1038/s41586-022-04629-w.
  • Institute of Medicine. 2005. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: National Academies Press.
  • Johnson, I. T. 2017. The cancer risk related to meat and meat products. British Medical Bulletin 121 (1):73–81. doi: 10.1093/bmb/ldw051.
  • Kouřimská, L., and A. Adámková. 2016. Nutritional and sensory quality of edible insects. Nutrition and Food Science 4:22–6.
  • Kumar, S., and G. Pandey. 2020. Biofortification of pulses and legumes to enhance nutrition. Heliyon 6 (3):e03682. doi: 10.1016/j.heliyon.2020.e03682.
  • Kurek, M. A., A. Onopiuk, E. Pogorzelska-Nowicka, A. Szpicer, M. Zalewska, and A. Półtorak. 2022. Novel protein sources for applications in meat-alternative products—Insight and challenges. Foods (Basel, Switzerland) 11 (7):957. doi: 10.3390/foods11070957.
  • Lescinsky, H., A. Afshin, C. Ashbaugh, C. Bisignano, M. Brauer, G. Ferrara, S. I. Hay, J. He, V. Iannucci, L. B. Marczak, et al. 2022. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nature Medicine 28 (10):2075–82. doi: 10.1038/s41591-022-01968-z.
  • Li, Y., C. Lammi, G. Boschin, A. Arnoldi, and G. Aiello. 2019. Recent advances in microalgae peptides: Cardiovascular health benefits and analysis. Journal of Agricultural and Food Chemistry 67 (43):11825–38. doi: 10.1021/acs.jafc.9b03566.
  • Liceaga, A. M., J. E. Aguilar-Toalá, B. Vallejo-Cordoba, A. F. González-Córdova, and A. Hernández-Mendoza. 2022. Insects as an alternative protein source. Annual Review of Food Science and Technology 13 (1):19–34. doi: 10.1146/annurev-food-052720-112443.
  • Loveday, S. M. 2019. Food proteins: Technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annual Review of Food Science and Technology 10 (1):311–39. doi: 10.1146/annurev-food-032818-121128.
  • Lucakova, S., I. Branyikova, and M. Hayes. 2022. Microalgal proteins and bioactives for food, feed, and other applications. Applied Sciences 12 (9):4402. doi: 10.3390/app12094402.
  • Machovina, B., K. J. Feeley, and W. J. Ripple. 2015. Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment 536:419–31. doi: 10.1016/j.scitotenv.2015.07.022.
  • Malla, N., J. V. Nørgaard, H. N. Lærke, L. H. L. Heckmann, and N. Roos. 2022. Some insect species are good-quality protein sources for children and adults: Digestible indispensable amino acid (DIAAS) determined in growing pigs. The Journal of Nutrition 152 (4):1042–51. doi: 10.1093/jn/nxac019.
  • Mathai, J. K., Y. Liu, and H. H. Stein. 2017. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). British Journal of Nutrition 117 (4):490–9. doi: 10.1017/S0007114517000125.
  • Mathai, J. K. 2018. Digestible indispensable amino acid for food proteins. PhD dissertation. University of Illinois.
  • Mazac, R., N. Järviö, and H. L. Tuomisto. 2023. Environmental and nutritional Life Cycle Assessment of novel foods in meals as transformative food for the future. Science of the Total Environment 876:162796. doi: 10.1016/j.scitotenv.2023.162796.
  • Melville, H., M. Shahid, A. Gaines, B. L. McKenzie, R. Alessandrini, K. Trieu, J. H. Wu, E. Rosewarne, and D. H. Coyle. 2023. The nutritional profile of plant-based meat analogues available for sale in Australia. Nutrition & Dietetics 80 (2):211–22. doi: 10.1111/1747-0080.12793.
  • Moughan, P. J. 2021. Population protein intakes and food sustainability indices: The metrics matter. Global Food Security 29:100548. doi: 10.1016/j.gfs.2021.100548.
  • Moura, M. A. F. E., B. D. A. Martins, G. P. D. Oliveira, and J. A. Takahashi. 2023. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition 63 (31):10691–708. doi: 10.1080/10408398.2022.2085657.
  • Mune, M. A. M., S. R. Minka, I. L. Mbome, and F. X. Etoa. 2011. Nutritional potential of Bambara bean protein concentrate. Pakistan Journal of Nutrition 10 (2): 112–19.
  • Nezlek, J. B., and C. A. Forestell. 2022. Meat substitutes: Current status, potential benefits, and remaining challenges. Current Opinion in Food Science 47:100890. doi: 10.1016/j.cofs.2022.100890.
  • Nissen, L., S. P. Samaei, E. Babini, and A. Gianotti. 2020. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and volatilome characterization. Food Chemistry 333:127410. doi: 10.1016/j.foodchem.2020.127410.
  • Nosworthy, M. G., A. J. Franczyk, G. Medina, J. Neufeld, P. Appah, A. Utioh, P. Frohlich, and J. D. House. 2017a. Effect of processing on the in vitro and in vivo protein quality of yellow and green split peas (Pisum sativum). Journal of Agricultural and Food Chemistry 65 (35):7790–6. doi: 10.1021/acs.jafc.7b03597.
  • Nosworthy, M. G., A. Franczyk, A. Zimoch-Korzycka, P. Appah, A. Utioh, J. Neufeld, and J. D. House. 2017b. Impact of processing on the protein quality of pinto bean (Phaseolus vulgaris) and buckwheat (Fagopyrum esculentum Moench) flours and blends, as determined by in vitro and in vivo methodologies. Journal of Agricultural and Food Chemistry 65 (19):3919–25. doi: 10.1021/acs.jafc.7b00697.
  • Nosworthy, M. G., G. Medina, A. J. Franczyk, J. Neufeld, P. Appah, A. Utioh, P. Frohlich, and J. D. House. 2018. Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia Faba). Nutrients 10 (6):671. doi: 10.3390/nu10060671.
  • Nosworthy, M. G., J. Neufeld, P. Frohlich, G. Young, L. Malcolmson, and J. D. House. 2017c. Determination of the protein quality of cooked Canadian pulses. Food Science & Nutrition 5 (4):896–903. doi: 10.1002/fsn3.473.
  • Nosworthy, M. G., M. C. Tulbek, and J. D. House. 2017d. Does the concentration, isolation, or deflavoring of pea, lentil, and faba bean protein alter protein quality? Cereal Foods World 62 (4):139–42. doi: 10.1094/CFW-62-4-0139.
  • Nyyssölä, A., L. S. Ojala, M. Wuokko, G. Peddinti, A. Tamminen, I. Tsitko, E. Nordlund, and M. Lienemann. 2021. Production of endotoxin-free microbial biomass for food applications by gas fermentation of gram-positive H2-oxidizing bacteria. ACS Food Science & Technology 1 (3):470–9. doi: 10.1021/acsfoodscitech.0c00129.
  • Nyyssölä, A., A. Suhonen, A. Ritala, and K. M. Oksman-Caldentey. 2022. The role of single cell protein in cellular agriculture. Current Opinion in Biotechnology 75:102686. doi: 10.1016/j.copbio.2022.102686.
  • Oibiokpa, F. I., H. O. Akanya, A. A. Jigam, A. N. Saidu, and Egwim, E. C. 2018. Protein quality of four indigenous edible insect species in Nigeria. Food Science and Human Wellness 7 (2):175–83. doi: 10.1016/j.fshw.2018.05.003.
  • Pacheco, M. T., G. M. Caballero-Córdoba, and V. C. Sgarbieri. 1997. Composition and nutritive value of yeast biomass and yeast protein concentrates. Journal of Nutritional Science and Vitaminology 43 (6):601–12. doi: 10.3177/jnsv.43.601.
  • Parlasca, M. C., and M. Qaim. 2022. Meat consumption and sustainability. Annual Review of Resource Economics 14 (1):17–41. doi: 10.1146/annurev-resource-111820-032340.
  • Poore, J., and T. Nemecek. 2018. Reducing food’s environmental impacts through producers and consumers. Science (New York, N.Y.) 360 (6392):987–92. doi: 10.1126/science.aaq0216.
  • Richi, E. B., B. Baumer, B. Conrad, R. Darioli, A. Schmid, and U. Keller. 2015. Health risks associated with meat consumption: A review of epidemiological studies. International Journal for Vitamin and Nutrition Research 85 (1-2):70–8. doi: 10.1024/0300-9831/a000224.
  • Rutherfurd, S. M., A. C. Fanning, B. J. Miller, and P. J. Moughan. 2015. Protein digestibility-corrected amino acid and digestible indispensable amino acid differentially describe protein quality in growing male rats. The Journal of Nutrition 145 (2):372–9. doi: 10.3945/jn.114.195438.
  • Sá, A. G. A., Y. M. F. Moreno, and B. A. M. Carciofi. 2020. Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology 97:170–84. doi: 10.1016/j.tifs.2020.01.011.
  • Sanchez-Sabate, R., Y. Badilla-Briones, and J. Sabaté. 2019. Understanding attitudes towards reducing meat consumption for environmental reasons. A qualitative synthesis review. Sustainability 11(22):6295. doi: 10.3390/su11226295.
  • Sandström, V., H. Valin, T. Krisztin, P. Havlík, M. Herrero, and T. Kastner. 2018. The role of trade in the greenhouse gas footprints of EU diets. Global Food Security 19:48–55. doi: 10.1016/j.gfs.2018.08.007.
  • Santo, R. E., B. F. Kim, S. E. Goldman, J. Dutkiewicz, E. M. B. Biehl, M. W. Bloem, R. A. Neff, and K. E. Nachman. 2020. Considering plant-based meat substitutes and cell-based meats: A public health and food systems perspective. Frontiers in Sustainable Food Systems 4:134. doi: 10.3389/fsufs.2020.00134.
  • Semba, R. D., R. Ramsing, N. Rahman, K. Kraemer, and M. W. Bloem. 2021. Legumes as a sustainable source of protein in human diets. Global Food Security 28:100520. doi: 10.1016/j.gfs.2021.100520.
  • Shaheen, N., S. Islam, S. Munmun, M. Mohiduzzaman, and T. Longvah. 2016. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh. Food Chemistry 213:83–9. doi: 10.1016/j.foodchem.2016.06.057.
  • Smetana, S., A. Mathys, A. Knoch, and V. Heinz. 2015. Meat alternatives: Life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment 20 (9):1254–67. doi: 10.1007/s11367-015-0931-6.
  • Smetana, S., D. Ristic, D. Pleissner, H. L. Tuomisto, O. Parniakov, and V. Heinz. 2023. Meat substitutes: Resource demands and environmental footprints. Resources, Conservation and Recycling 190:106831. doi: 10.1016/j.resconrec.2022.106831.
  • Smetana, S., M. Sandmann, S. Rohn, D. Pleissner, and V. Heinz. 2017. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresource Technology 245 (Pt A):162–70. doi: 10.1016/j.biortech.2017.08.113.
  • Souza Filho, P. F., D. Andersson, J. A. Ferreira, and M. J. Taherzadeh. 2019. Mycoprotein: Environmental impact and health aspects. World Journal of Microbiology & Biotechnology 35 (10):147. doi: 10.1007/s11274-019-2723-9.
  • Springmann, M., H. C. J. Godfray, M. Rayner, and P. Scarborough. 2016. Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences 113 (15):4146–51. doi: 10.1073/pnas.1523119113.
  • Stagnari, F., A. Maggio, A. Galieni, and M. Pisante. 2017. Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture 4 (1):1–13. doi: 10.1186/s40538-016-0085-1.
  • Tessier, R., J. Calvez, N. Khodorova, and C. Gaudichon. 2021. Protein and amino acid digestibility of 15N Spirulina in rats. European Journal of Nutrition 60 (4):2263–9. doi: 10.1007/s00394-020-02368-0.
  • Traksele, L., V. Speiciene, R. Smicius, G. Alencikiene, A. Salaseviciene, G. Garmiene, V. Zigmantaite, R. Grigaleviciute, and A. Kucinskas. 2021. Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. Journal of Functional Foods 79:104402. doi: 10.1016/j.jff.2021.104402.
  • United Nations. 2019. World population prospects 2019: Highlights. Department of Economic and Social Affairs. PopulationDivision. Retrieved at: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
  • USDA National Nutrients Database. 2024. https://fdc.nal.usda.gov/
  • Use Therapeutic Foods: Report of the FAO Expert Working Group. 2017. Rome, Italy: Food and Agriculture Organization (FAO).
  • van den Berg, L. A., J. J. Mes, M. Mensink, and A. J. Wanders. 2022. Protein quality of soy and the effect of processing: A quantitative review. Frontiers in Nutrition 9:2148. doi: 10.3389/fnut.2022.1004754.
  • Van Mierlo, K., S. Rohmer, and J. C. Gerdessen. 2017. A model for composing meat replacers: Reducing the environmental impact of our food consumption pattern while retaining its nutritional value. Journal of Cleaner Production 165:930–50. doi: 10.1016/j.jclepro.2017.07.098.
  • Vaz Patto, M. C., R. Amarowicz, A. N. A. Aryee, J. I. Boye, H.-J. Chung, M. A. Martín-Cabrejas, and C. Domoney. 2015. Achievements and challenges in improving the nutritional quality of food legumes. Critical Reviews in Plant Sciences 34 (1-3):105–43. doi: 10.1080/07352689.2014.897907.
  • Wang, Y., S. M. Tibbetts, F. Berrue, P. J. McGinn, S. P. MacQuarrie, A. Puttaswamy, S. Patelakis, D. Schmidt, R. Melanson, and S. E. MacKenzie. 2020. A rat study to evaluate the protein quality of three green microalgal species and the impact of mechanical cell wall disruption. Foods (Basel, Switzerland) 9 (11):1531. doi: 10.3390/foods9111531.
  • Wang, Y., S. M. Tibbetts, and P. J. McGinn. 2021. Microalgae as sources of high-quality protein for human food and protein supplements. Foods (Basel, Switzerland) 10 (12):3002. doi: 10.3390/foods10123002.
  • WHO (World Health Organization). 2015. Protein and amino acid requirements in human nutrition.
  • Wiebe, M. G. 2004. QuornTM Myco-protein-Overview of a successful fungal product. Mycologist 18 (1):17–20. doi: 10.1017/S0269915X04001089.
  • Willett, W., J. Rockström, B. Loken, M. Springmann, T. Lang, S. Vermeulen, T. Garnett, D. Tilman, F. DeClerck, A.Wood, et al. 2019. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet (London, England) 393 (10170):447–92. doi: 10.1016/S0140-6736(18)31788-4.
  • Wolk, A. 2017. Potential health hazards of eating red meat. Journal of Internal Medicine 281 (2):106–22. doi: 10.1111/joim.12543.
  • Xiaoming, C., F. Ying, Z. Hong, and C. Zhiyong. 2010. Review of the nutritive value of edible insects. In Forest insects as food: Humans bite back, Proceedings of a workshop on Asia-Pacific resources and their potential for development , Chiang Mai, Thailand, 19–21 February, 2008, 85.
  • Xie, Y., L. Cai, Z. Huang, K. Shan, X. Xu, G. Zhou, and C. Li. 2022b. Plant-based meat analogues weaken gastrointestinal digestive function and show less digestibility than real meat in mice. Journal of Agricultural and Food Chemistry 70 (39):12442–55. doi: 10.1021/acs.jafc.2c04246.
  • Xie, Y., L. Cai, D. Zhao, H. Liu, X. Xu, G. Zhou, and C. Li. 2022a. Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chemistry 387:132917. doi: 10.1016/j.foodchem.2022.132917.
  • Zhang, L., H. Tian, H. Shi, S. Pan, J. Chang, S. R. Dangal, X. Qin, S. Wang, F. N. Tubiello, J. G. Canadell, et al. 2022. A 130-year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Global Change Biology 28 (17):5142–58. doi: 10.1111/gcb.16280.
  • Zhou, H., Y. Hu, Y. Tan, Z. Zhang, and D. J. McClements. 2021. Digestibility and gastrointestinal fate of meat versus plant-based meat analogs: An in vitro comparison. Food Chemistry 364:130439. doi: 10.1016/j.foodchem.2021.130439.
  • Zhou, Y., D. Wang, S. Zhou, H. Duan, J. Guo, and W. Yan. 2022. Nutritional composition, health benefits, and application value of edible insects: A review. Foods (Basel, Switzerland) 11 (24):3961. doi: 10.3390/foods11243961.
  • Zielińska, E., B. Baraniak, M. Karaś, K. Rybczyńska, and A. Jakubczyk. 2015. Selected species of edible insects as a source of nutrient composition. Food Research International 77:460–6. doi: 10.1016/j.foodres.2015.09.008.