116
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites

, , , , , , & show all

References

  • Abed, D. A., M. Goldstein, H. Albanyan, H. Jin, and L. Hu. 2015. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharmaceutica Sinica. B 5 (4):285–99. doi: 10.1016/j.apsb.2015.05.008.
  • Aldini, G., B. de Courten, L. Regazzoni, E. Gilardoni, G. Ferrario, G. Baron, A. Altomare, A. D’Amato, G. Vistoli, and M. Carini. 2021. Understanding the antioxidant and carbonyl sequestering activity of carnosine: Direct and indirect mechanisms. Free Radical Research 55 (4):321–30. doi: 10.1080/10715762.2020.1856830.
  • Alemao, C. A., K. F. Budden, H. M. Gomez, S. F. Rehman, J. E. Marshall, S. D. Shukla, C. Donovan, S. C. Forster, I. A. Yang, S. Keely, et al. 2021. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 76 (3):714–34. doi: 10.1111/all.14548.
  • Alonso-Piñeiro, J. A., A. Gonzalez-Rovira, I. Sánchez-Gomar, J. A. Moreno, and M. C. Durán-Ruiz. 2021. Nrf2 and heme oxygenase-1 involvement in atherosclerosis related oxidative stress. Antioxidants 10 (9):1463. doi: 10.3390/antiox10091463.
  • Amigo, L., and B. Hernández-Ledesma. 2020. Current evidence on the bioavailability of food bioactive peptides. Molecules 25 (19):4479. doi: 10.3390/molecules25194479.
  • Anjana, and S. K. Tiwari. (2022). Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota.Frontiers in Cellular and Infection Microbiology, 12, 851140. doi: 10.3389/fcimb.2022.851140.
  • Akbarian, M., A. Khani, S. Eghbalpour, and V. N. Uversky. 2022. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences 23 (3):1445. doi: 10.3390/ijms23031445.
  • Anthony, L., and P. U. Freda. 2009. From somatostatin to octreotide LAR: Evolution of a somatostatin analogue. Current Medical Research and Opinion 25 (12):2989–99. doi: 10.1185/03007990903328959.
  • Aparicio-Soto, M., M. Sánchez-Hidalgo, A. Cárdeno, M. Á. Rosillo, S. Sánchez-Fidalgo, J. Utrilla, I. Martín-Lacave, and C. Alarcón-de-la-Lastra. 2016. Dietary extra virgin olive oil attenuates kidney injury in pristane-induced SLE model via activation of HO-1/Nrf-2 antioxidant pathway and suppression of JAK/STAT, NF-κB and MAPK activation. The Journal of Nutritional Biochemistry 27:278–88. doi: 10.1016/j.jnutbio.2015.09.017.
  • Azcarate-Peril, M. A., J. Roach, A. Marsh, W. D. Chey, W. J. Sandborn, A. J. Ritter, D. A. Savaiano, and T. R. Klaenhammer. 2021. A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides. Gut Microbes 13 (1):1957536. doi: 10.1080/19490976.2021.1957536.
  • Bahadori, M. M., V. Rezaeipour, R. Abdullahpour, and M. Irani. 2022. Effects of sesame meal bioactive peptides, individually or in combination with a mixture of essential oils, on growth performance, carcass, jejunal morphology, and microbial composition of broiler chickens. Tropical Animal Health and Production 54 (4):235. doi: 10.1007/s11250-022-03232-5.
  • Baird, L., S. Swift, D. Llères, and A. T. Dinkova-Kostova. 2014. Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnology Advances 32 (6):1133–44. doi: 10.1016/j.biotechadv.2014.03.004.
  • Balogh, M., C. Aguilar, N. T. Nguyen, and A. J. Shepherd. 2021. Angiotensin receptors and neuropathic pain. Pain Reports 6 (1):e869. doi: 10.1097/PR9.0000000000000869.
  • Bao, H., Q. Qu, W. Zhang, X. Wang, J. Fang, J. Xue, Z. Liu, and S. He. 2021. NRF2 exerts anti-inflammatory effects in LPS-Induced gEECs by inhibiting the activation of the NF-κB. Mediators of Inflammation 2021:9960721–14. doi: 10.1155/2021/9960721.
  • Bao, X., and J. Wu. 2021. Impact of food-derived bioactive peptides on gut function and health. Food Research International 147:110485. doi: 10.1016/j.foodres.2021.110485.
  • Baral, P., S. Udit, and I. M. Chiu. 2019. Pain and immunity: Implications for host defence. Nature Reviews Immunology 19 (7):433–47. doi: 10.1038/s41577-019-0147-2.
  • Barati, M. T., and D. J. Caster. 2022. The potential of Nrf2 activation as a therapeutic target in systemic lupus erythematosus. Metabolites 12 (2):151. doi: 10.3390/metabo12020151.
  • Beverly, R. L., R. K. Huston, A. M. Markell, E. A. McCulley, R. L. Martin, and D. C. Dallas. 2021. Differences in human milk peptide release along the gastrointestinal tract between preterm and term infants. Clinical Nutrition 40 (3):1214–23. doi: 10.1016/j.clnu.2020.07.035.
  • Beverly, R. L., P. Woonnimani, B. P. Scottoline, J. Lueangsakulthai, and D. C. Dallas. 2021. Peptides from the intestinal tract of breast milk-fed infants have antimicrobial and bifidogenic activity. International Journal of Molecular Sciences 22 (5):2377. doi: 10.3390/ijms22052377.
  • Bhattacharyya, A., R. Chattopadhyay, S. Mitra, and S. E. Crowe. 2014. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews 94 (2):329–54. doi: 10.1152/physrev.00040.2012.
  • Cam, A., and E. G. de Mejia. 2012. Role of dietary proteins and peptides in cardiovascular disease. Molecular Nutrition & Food Research 56 (1):53–66. doi: 10.1002/mnfr.201100535.
  • Campos-Bedolla, P., F. R. Walter, S. Veszelka, and M. A. Deli. 2014. Role of the blood-brain barrier in the nutrition of the central nervous system. Archives of Medical Research 45 (8):610–38. doi: 10.1016/j.arcmed.2014.11.018.
  • Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 10 (11):1738. doi: 10.3390/nu10111738.
  • Chang, K., Y. Chen, X. Zhang, W. Zhang, N. Xu, B. Zeng, Y. Wang, T. Feng, B. Dai, F. Xu, et al. 2023. DPP9 stabilizes NRF2 to suppress ferroptosis and induce sorafenib resistance in clear cell renal cell carcinoma. Cancer Research 83 (23):3940–55. doi: 10.1158/0008-5472.can-22-4001.
  • Chen, K., L. Huang, and B. Shen. 2019. Rational cyclization-based minimization of entropy penalty upon the binding of Nrf2-derived linear peptides to Keap1: A new strategy to improve therapeutic peptide activity against sepsis. Biophysical Chemistry 244:22–8. doi: 10.1016/j.bpc.2018.11.002.
  • Chen, L., H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. 2017. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9 (6):7204–18. doi: 10.18632/oncotarget.23208.
  • Chen, X., W. Liu, J. Zhang, H. Li, and X. Liu. 2023. Selenium-enriched peptides identified from selenium-enriched soybean protein hydrolysate: Protective effects against heat damage in Caco-2 cells. Food & Function 14 (17):7882–96. doi: 10.1039/d3fo01103h.
  • Chen, Y. E., S. J. Xu, Y. Y. Lu, S. X. Chen, X. H. Du, S. Z. Hou, H. Y. Huang, and J. Liang. 2021. Asperuloside suppressing oxidative stress and inflammation in DSS-induced chronic colitis and RAW 264.7 macrophages via Nrf2/HO-1 and NF-κB pathways. Chemico-Biological Interactions 344:109512. doi: 10.1016/j.cbi.2021.109512.
  • Chu, Z., S. Han, Y. Luo, Y. Zhou, L. Zhu, and F. Luo. 2023. Targeting gut-brain axis by dietary flavonoids ameliorate aging-related cognition decline: Evidences and mechanisms. Critical Reviews in Food Science and Nutrition 2023:1–22. doi: 10.1080/10408398.2023.2222404.
  • Colarusso, S., D. De Simone, T. Frattarelli, M. Andreini, M. Cerretani, A. Missineo, D. Moretti, S. Tambone, G. Kempf, M. Augustin, et al. 2020. Optimization of linear and cyclic peptide inhibitors of KEAP1-NRF2 protein-protein interaction. Bioorganic & Medicinal Chemistry 28 (21):115738. doi: 10.1016/j.bmc.2020.115738.
  • Conlon, M. A., and A. R. Bird. 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7 (1):17–44. doi: 10.3390/nu7010017.
  • Crisman, E., P. Duarte, E. Dauden, A. Cuadrado, M. I. Rodríguez-Franco, M. G. López, and R. León. 2023. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Medicinal Research Reviews 43 (1):237–87. doi: 10.1002/med.21925.
  • Cruz, V. L., J. Ramos, J. Martinez-Salazar, M. Montalban-Lopez, and M. Maqueda. 2021. The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations. Journal of Chemical Information and Modeling 61 (12):6066–78. doi: 10.1021/acs.jcim.1c00838.
  • Cvetko, F., S. T. Caldwell, M. Higgins, T. Suzuki, M. Yamamoto, H. A. Prag, R. C. Hartley, A. T. Dinkova-Kostova, and M. P. Murphy. 2021. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. The Journal of Biological Chemistry 296:100169. doi: 10.1074/jbc.RA120.016551.
  • Daliri, E. B., B. H. Lee, and D. H. Oh. 2018. Current trends and perspectives of bioactive peptides. Critical Reviews in Food Science and Nutrition 58 (13):2273–84. doi: 10.1080/10408398.2017.1319795.
  • Daroit, D. J., and A. Brandelli. 2021. In vivo bioactivities of food protein-derived peptides-a current review. Current Opinion in Food Science 39:120–9. doi: 10.1016/j.cofs.2021.01.002.
  • Delgobo, M., R. M. Gonçalves, M. A. Delazeri, M. Falchetti, A. Zandoná, R. Nascimento das Neves, K. Almeida, A. C. Fagundes, D. P. Gelain, J. I. Fracasso, et al. 2021. Thioredoxin reductase-1 levels are associated with NRF2 pathway activation and tumor recurrence in non-small cell lung cancer. Free Radical Biology and Medicine 177:58–71. doi: 10.1016/j.freeradbiomed.2021.10.020.
  • Deng, Z., C. Cui, Y. Wang, J. Ni, L. Zheng, H. K. Wei, and J. Peng. 2020. FSGHF3 and peptides, prepared from fish skin gelatin, exert a protective effect on DSS-induced colitis via the Nrf2 pathway. Food & Function 11 (1):414–23. doi: 10.1039/c9fo02165e.
  • Deshmukh, P., S. Unni, G. Krishnappa, and B. Padmanabhan. 2017. The Keap1-Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophysical Reviews 9 (1):41–56. doi: 10.1007/s12551-016-0244-4.
  • Dewanjee, S., J. Vallamkondu, R. S. Kalra, P. Chakraborty, M. Gangopadhyay, R. Sahu, V. Medala, A. John, P. H. Reddy, V. De Feo, et al. 2021. The emerging role of HDACs: Pathology and therapeutic targets in diabetes mellitus. Cells 10 (6):1340. doi: 10.3390/cells10061340.
  • Ding, X., Q. Tang, Z. Xu, Y. Xu, H. Zhang, D. Zheng, S. Wang, Q. Tan, J. Maitz, P. K. Maitz, et al. 2022. Challenges and innovations in treating chronic and acute wound infections: From basic science to clinical practice. Burns & Trauma 10: Tkac014. doi: 10.1093/burnst/tkac014.
  • Dodson, M., and D. D. Zhang. 2017. Non-canonical activation of NRF2: New insights and its relevance to disease. Current Pathobiology Reports 5 (2):171–6. doi: 10.1007/s40139-017-0131-0.
  • Dong, C. 2021. Cytokine regulation and function in T cells. Annual Review of Immunology 39 (1):51–76. doi: 10.1146/annurev-immunol-061020-053702.
  • Donia, M. S., and M. A. Fischbach. 2015. Human Microbiota. Small molecules from the human microbiota. Science 349 (6246):1254766. doi: 10.1126/science.1254766.
  • Dokumacioglu, E., H. Iskender, M. S. Aktas, B. Hanedan, A. Dokumacioglu, T. M. Sen, and A. Musmul. 2017. The effect of sulforaphane on oxidative stress and inflammation in rats with toxic hepatitis induced by acetaminophene. Bratislavske Lekarske Listy 118 (8):453–9. doi: 10.4149/BLL_2017_088.
  • Duan, L., S. Cheng, L. Li, Y. Liu, D. Wang, and G. Liu. 2021. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Frontiers in Pharmacology 12:684486. doi: 10.3389/fphar.2021.684486.
  • Duraisamy, S., S. Balakrishnan, S. Ranjith, F. Husain, A. Sathyan, A. S. Peter, C. Prahalathan, and A. Kumarasamy. 2020. Bacteriocin-a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environmental Science and Pollution Research International 27 (36):44922–36. doi: 10.1007/s11356-020-10989-5.
  • Dziuba, B., and M. Dziuba. 2014. Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Scientiarum Polonorum. Technologia Alimentaria 13 (1):5–25. doi: 10.17306/j.afs.2014.1.1.
  • Eming, S. A., M. Hammerschmidt, T. Krieg, and A. Roers. 2009. Interrelation of immunity and tissue repair or regeneration. Seminars in Cell & Developmental Biology 20 (5):517–27. doi: 10.1016/j.semcdb.2009.04.009.
  • Farré, R., M. Fiorani, S. Abdu Rahiman, and G. Matteoli. 2020. Intestinal permeability, inflammation and the role of nutrients. Nutrients 12 (4):1185. doi: 10.3390/nu12041185.
  • Ferrucci, L., and E. Fabbri. 2018. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology 15 (9):505–22. doi: 10.1038/s41569-018-0064-2.
  • Fioranelli, M., M. G. Roccia, D. Flavin, and L. Cota. 2021. Regulation of Inflammatory Reaction in Health and Disease. International Journal of Molecular Sciences 22 (10):5277. doi: 10.3390/ijms22105277.
  • Fukudome, H., T. Yamaguchi, J. Higuchi, A. Ogawa, Y. Taguchi, J. Li, T. Kabuki, K. Ito, and F. Sakai. 2021. Large-scale preparation and glycan characterization of sialylglycopeptide from bovine milk glycomacropeptide and its bifidogenic properties. Journal of Dairy Science 104 (2):1433–44. doi: 10.3168/jds.2019-17865.
  • Gambhir, L. 2016. 1,4-Naphthoquinone, a pro-oxidant, ameliorated radiation induced gastro-intestinal injury through perturbation of cellular redox and activation of Nrf2 pathway. Drug Discoveries & Therapeutics 10 (2):93–102. doi: 10.5582/ddt.2016.01028.
  • García, L. F. 2020. Immune response, inflammation, and the clinical spectrum of COVID-19. Frontiers in Immunology 11:1441. doi: 10.3389/fimmu.2020.01441.
  • Gao, X., J. Ding, C. Liao, J. Xu, X. Liu, and W. Lu. 2021. Defensins: The natural peptide antibiotic. Advanced Drug Delivery Reviews 179:114008. doi: 10.1016/j.addr.2021.114008.
  • Gomes-Porras, M., J. Cárdenas-Salas, and C. Álvarez-Escolá. 2020. Somatostatin analogs in clinical practice: A review. International Journal of Molecular Sciences 21 (5):1682. doi: 10.3390/ijms21051682.
  • Gong, J., T. Bai, L. Zhang, W. Qian, J. Song, and X. Hou. 2017. Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro. PLoS One 12 (12):e0189257. doi: 10.1371/journal.pone.0189257.
  • González-Bosch, C., E. Boorman, P. A. Zunszain, and G. E. Mann. 2021. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biology 47:102165. doi: 10.1016/j.redox.2021.102165.
  • González-Muñiz, R., M. Á. Bonache, and M. J. Pérez de Vega. 2021. Modulating protein-protein interactions by cyclic and macrocyclic peptides. Prominent strategies and examples. Molecules (Basel, Switzerland) 26 (2):445. doi: 10.3390/molecules26020445.
  • Guo, Z., D. Yi, B. Hu, Y. Shi, Y. Xin, Z. Gu, H. Liu, and L. Zhang. 2021. The alteration of gut microbiota by bioactive peptides: A review. Systems Microbiology and Biomanufacturing 1 (4):363–77. doi: 10.1007/s43393-021-00035-x.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A. D. Moltke Sørensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Han, S., H. Gao, S. Chen, Q. Wang, X. Li, L. J. Du, J. Li, Y. Y. Luo, J. X. Li, L. C. Zhao, et al. 2019. Procyanidin A1 alleviates inflammatory response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 pathways in RAW264.7 cells. Scientific Reports 9 (1):15087. doi: 10.1038/s41598-019-51614-x.
  • Hancock, R., H. C. Bertrand, T. Tsujita, S. Naz, A. El-Bakry, J. Laoruchupong, J. D. Hayes, and G. Wells. 2012. Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction. Free Radical Biology & Medicine 52 (2):444–51. doi: 10.1016/j.freeradbiomed.2011.10.486.
  • Han, J., Z. Huang, S. Tang, C. Lu, H. Wan, J. Zhou, Y. Li, T. Ming, Z. Jim Wang, and X. Su. 2020. The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation. Food Chemistry 327:127094. doi: 10.1016/j.foodchem.2020.127094.
  • Han, J., X. Wang, S. Tang, C. Lu, H. Wan, J. Zhou, Y. Li, T. Ming, Z. J. Wang, and X. Su. 2020. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB Journal 34 (4):5061–76. doi: 10.1096/fj.201902597RR.
  • Hanekamp, J. C., A. Bast, and E. J. Calabrese. 2015. Nutrition and health-transforming research traditions. Critical Reviews in Food Science and Nutrition 55 (8):1074–80. doi: 10.1080/10408398.2012.680525.
  • He, F., X. Ru, and T. Wen. 2020. NRF2, a transcription factor for stress response and beyond. International Journal of Molecular Sciences 21 (13):4777. doi: 10.3390/ijms21134777.
  • Hernández-Ledesma, B., and C. C. Hsieh. 2017. Chemopreventive role of food-derived proteins and peptides: A review. Critical Reviews in Food Science and Nutrition 57 (11):2358–76. doi: 10.1080/10408398.2015.1057632.
  • Heurtaux, T., D. S. Bouvier, A. Benani, S. Helgueta Romero, K. B. M. Frauenknecht, M. Mittelbronn, and L. Sinkkonen. 2022. Normal and pathological Nrf2 signalling in the central nervous system. Antioxidants 11 (8):1426. doi: 10.3390/antiox11081426.
  • Hohenwarter, L., R. Böttger, and S. D. Li. 2023. Modification and delivery of enkephalins for pain modulation. International Journal of Pharmaceutics 646:123425. doi: 10.1016/j.ijpharm.2023.123425.
  • Horowitz, A., S. D. Chanez-Paredes, X. Haest, and J. R. Turner. 2023. Paracellular permeability and tight junction regulation in gut health and disease. Nature Reviews Gastroenterology & Hepatology 20 (7):417–32. doi: 10.1038/s41575-023-00766-3.
  • Hu, M., and B. Tomlinson. 2010. Pharmacokinetic evaluation of lanreotide. Expert Opinion on Drug Metabolism & Toxicology 6 (10):1301–12. doi: 10.1517/17425255.2010.513700.
  • Jaiswal, A. K. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radical Biology & Medicine 36 (10):1199–207. doi: 10.1016/j.freeradbiomed.2004.02.074.
  • Ji, Z. H., W. Y. Xie, P. S. Zhao, H. Y. Wu, W. Z. Ren, J. P. Hu, W. Gao, and B. Yuan. 2023. Oat peptides alleviate dextran sulfate sodium salt-induced colitis by maintaining the intestinal barrier and modulating the Keap1-Nrf2 axis. Nutrients 15 (24):5055. doi: 10.3390/nu15245055.
  • Jiang, X., and J. Wu. 2022. Structure and activity study of tripeptide IRW in TNF-α induced insulin resistant skeletal muscle cells. Food & Function 13 (7):4061–8. doi: 10.1039/d1fo02893f.
  • Jiang, Z. Y., M. C. Lu, and Q. D. You. 2019. Nuclear factor erythroid 2-related factor 2 (nrf2) inhibition: An emerging strategy in cancer therapy. Journal of Medicinal Chemistry 62 (8):3840–56. doi: 10.1021/acs.jmedchem.8b01121.
  • Jones, R. M., and A. S. Neish. 2017. Redox signaling mediated by the gut microbiota. Free Radical Biology & Medicine 105:41–7. doi: 10.1016/j.freeradbiomed.2016.10.495.
  • Juan, C. A., J. M. Pérez de la Lastra, F. J. Plou, and E. Pérez-Lebeña. 2021. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 22 (9):4642. doi: 10.3390/ijms22094642.
  • Jung, C. L., H. J. Kim, J. H. Park, A. N. Kong, C. H. Lee, and J. S. Kim. 2013. Synergistic activation of the Nrf2-signaling pathway by glyceollins under oxidative stress induced by glutathione depletion. Journal of Agricultural and Food Chemistry 61 (17):4072–8. doi: 10.1021/jf303948c.
  • Jung, K. A., and M. K. Kwak. 2010. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15 (10):7266–91. doi: 10.3390/molecules15107266.
  • Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology 98 (4):881–8. doi: 10.1111/j.1365-2672.2004.02513.x.
  • Kapoor, D., S. Singh, V. Kumar, R. Romero, R. Prasad, and J. Singh. 2019. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182. doi: 10.1016/j.plgene.2019.100182.
  • Kaspar, J. W., S. K. Niture, and A. K. Jaiswal. 2009. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology & Medicine 47 (9):1304–9. doi: 10.1016/j.freeradbiomed.2009.07.035.
  • Kassaify, Z. G., E. W. Li, and Y. Mine. 2005. Identification of antiadhesive fraction(s) in nonimmunized egg yolk powder: In vitro study. Journal of Agricultural and Food Chemistry 53 (11):4607–14. doi: 10.1021/jf0500031.
  • Kim, I. S., W. S. Yang, and C. H. Kim. 2021. Beneficial effects of soybean-derived bioactive peptides. International Journal of Molecular Sciences 22 (16):8570. doi: 10.3390/ijms22168570.
  • Koirala, P., M. Dahal, S. Rai, M. Dhakal, N. P. Nirmal, S. Maqsood, F. Al-Asmari, and A. Buranasompob. 2023. Dairy milk protein-derived bioactive peptides: Avengers against metabolic syndrome. Current Nutrition Reports 12 (2):308–26. doi: 10.1007/s13668-023-00472-1.
  • Kuai, R., D. Li, Y. E. Chen, J. J. Moon, and A. Schwendeman. 2016. High-density lipoproteins: Nature’s multifunctional nanoparticles. ACS Nano 10 (3):3015–41. doi: 10.1021/acsnano.5b07522.
  • Kumar, N., S. Devi, S. B. Mada, S. Reddi, R. Kapila, and S. Kapila. 2020. Anti-apoptotic effect of buffalo milk casein derived bioactive peptide by directing Nrf2 regulation in starving fibroblasts. Food Bioscience 35:100566. doi: 10.1016/j.fbio.2020.100566.
  • Lalatsa, A., A. G. Schatzlein, and I. F. Uchegbu. 2014. Strategies to deliver peptide drugs to the brain. Molecular Pharmaceutics 11 (4):1081–93. doi: 10.1021/mp400680d.
  • Lee, J. Y., R. M. Tsolis, and A. J. Bäumler. 2022. The microbiome and gut homeostasis. Science 377 (6601):eabp9960. doi: 10.1126/science.abp9960.
  • Lei, X. Y., D. M. Zhang, Q. J. Wang, G. Q. Wang, Y. H. Li, Y. R. Zhang, M. N. Yu, Q. Yao, Y. K. Chen, and Z. X. Guo. 2022. Dietary supplementation of two indigenous Bacillus spp on the intestinal morphology, intestinal immune barrier and intestinal microbial diversity of Rhynchocypris lagowskii. Fish Physiology and Biochemistry 48 (5):1315–32. doi: 10.1007/s10695-022-01121-0.
  • Lenz, A., G. A. Franklin, and W. G. Cheadle. 2007. Systemic inflammation after trauma. Injury 38 (12):1336–45. doi: 10.1016/j.injury.2007.10.003.
  • Leoni, G., J. Gripentrog, C. Lord, M. Riesselman, R. Sumagin, C. A. Parkos, A. Nusrat, and A. J. Jesaitis. 2015. Human neutrophil formyl peptide receptor phosphorylation and the mucosal inflammatory response. Journal of Leukocyte Biology 97 (1):87–101. doi: 10.1189/jlb.4A0314-153R.
  • Li, D., F. Luo, T. Guo, S. Han, H. Wang, and Q. Lin. 2023. Targeting NF-κB pathway by dietary lignans in inflammation: Expanding roles of gut microbiota and metabolites. Critical Reviews in Food Science and Nutrition 63 (22):5967–83. doi: 10.1080/10408398.2022.2026871.
  • Li, Q., X. Jia, Q. Zhong, Z. Zhong, Y. Wang, C. Tang, B. Zhao, H. Feng, J. Hao, Z. Zhao, et al. 2023. Combination of Walnut Peptide and Casein Peptide alleviates anxiety and improves memory in anxiety mices. Frontiers in Nutrition 10:1273531. doi: 10.3389/fnut.2023.1273531.
  • Li, X., C. Wang, J. Zhu, Q. Lin, M. Yu, J. Wen, J. Feng, and C. Hu. 2022. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway. Oxidative Medicine and Cellular Longevity 2022:3745135. doi: 10.1155/2022/3745135.
  • Li, Z., Q. Dang, P. Wang, F. Zhao, J. Huang, C. Wang, X. Liu, and W. Min. 2023. Food-derived peptides: Beneficial cns effects and cross-bbb transmission strategies. Journal of Agricultural and Food Chemistry 71 (51):20453–78. doi: 10.1021/acs.jafc.3c06518.
  • Liu, G., Y. Ma, Q. Yang, and S. Deng. 2020. Modulation of inflammatory response and gut microbiota in ankylosing spondylitis mouse model by bioactive peptide IQW. Journal of Applied Microbiology 128 (6):1669–77. doi: 10.1111/jam.14588.
  • Liu, J., Q. Wu, T. Yang, F. Yang, T. Guo, Y. Zhou, S. Han, Y. Luo, T. Guo, F. Luo, et al. 2021. Bioactive peptide F2d isolated from rice residue exerts antioxidant effects via Nrf2 signaling pathway. Oxidative Medicine and Cellular Longevity 2021:2637577–15. doi: 10.1155/2021/2637577.
  • Liu, W. Y., J. T. Zhang, T. Miyakawa, G. M. Li, R. Z. Gu, and M. Tanokura. 2021. Antioxidant properties and inhibition of angiotensin-converting enzyme by highly active peptides from wheat gluten. Scientific Reports 11 (1):5206. doi: 10.1038/s41598-021-84820-7.
  • Liu, Y., and M. Pischetsrieder. 2017. Identification and relative quantification of bioactive peptides sequentially released during simulated gastrointestinal digestion of Commercial Kefir. Journal of Agricultural and Food Chemistry 65 (9):1865–73. doi: 10.1021/acs.jafc.6b05385.
  • Liu, Y. F., I. Oey, P. Bremer, A. Carne, and P. Silcock. 2018. Bioactive peptides derived from egg proteins: A review. Critical Reviews in Food Science and Nutrition 58 (15):2508–30. doi: 10.1080/10408398.2017.1329704.
  • Long, L., X. Meng, J. Sun, L. Jing, D. Chen, and R. Yu. 2022. Ameliorated effect of lactobacillus plantarum SCS2 on the oxidative stress in HepG2 cells induced by AFB1. Food Science and Technology 42:522. doi: 10.1590/fst.16522.
  • Lu, M. C., Q. Jiao, T. Liu, S. J. Tan, H. S. Zhou, Q. D. You, and Z. Y. Jiang. 2018. Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction inhibitor with high cell potency. European Journal of Medicinal Chemistry 143:1578–89. doi: 10.1016/j.ejmech.2017.10.052.
  • Luo, J. F., X. Y. Shen, C. K. Lio, Y. Dai, C. S. Cheng, J. X. Liu, Y. D. Yao, Y. Yu, Y. Xie, P. Luo, et al. 2018. Activation of Nrf2/HO-1 pathway by nardochinoid c inhibits inflammation and oxidative stress in lipopolysaccharide-stimulated macrophages. Frontiers in Pharmacology 9:911. doi: 10.3389/fphar.2018.00911.
  • Lundvig, D. M., S. Immenschuh, and F. A. Wagener. 2012. Heme oxygenase, inflammation, and fibrosis: The good, the bad, and the ugly? Frontiers in Pharmacology 3:81. doi: 10.3389/fphar.2012.00081.
  • Lv, R., Y. Dong, Z. Bao, S. Zhang, S. Lin, and N. Sun. 2022. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends in Food Science & Technology 122:171–86. doi: 10.1016/j.tifs.2022.02.026.
  • Ma, Q. 2013. Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 53 (1):401–26. doi: 10.1146/annurev-pharmtox-011112-140320.
  • Mahgoub, S. A., M. Alagawany, M. M. Nader, S. M. Omar, M. E. Abd El-Hack, A. A. Swelum, S. S. Elnesr, A. F. Khafaga, A. E. Taha, M. R. Farag, et al. 2021. Recent development in bioactive peptides from plant and animal products and their impact on the human health. Food Reviews International 39 (1):511–36. doi: 10.1080/87559129.2021.1923027.
  • Maltese, G., P. M. Psefteli, B. Rizzo, S. Srivastava, L. Gnudi, G. E. Mann, and R. C. Siow. 2017. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. Journal of Cellular and Molecular Medicine 21 (3):621–7. doi: 10.1111/jcmm.12996.
  • Mao, R., L. Wu, N. Zhu, X. Liu, R. Liu, and Y. Li. 2019. Naked oat (Avena nuda L.) oligopeptides: Immunomodulatory effects on innate and adaptiveimmunity in mice via cytokine secretion, antibodyproduction, and Th cells stimulation. Nutrients 11 (4):927. doi: 10.3390/nu11040927.
  • Mariotti, F. 2019. Animal and Plant Protein Sources and Cardiometabolic Health. Advances in Nutrition 10 (Suppl_4):S351–S366. doi: 10.1093/advances/nmy110.
  • Martínez-Augustin, O., B. Rivero-Gutiérrez, C. Mascaraque, and F. Sánchez de Medina. 2014. Food derived bioactive peptides and intestinal barrier function. International Journal of Molecular Sciences 15 (12):22857–73. doi: 10.3390/ijms151222857.
  • Masi, S., S. Ambrosini, S. A. Mohammed, S. Sciarretta, T. F. Lüscher, F. Paneni, and S. Costantino. 2021. Epigenetic remodeling in obesity-related vascular disease. Antioxidants & Redox Signaling 34 (15):1165–99. doi: 10.1089/ars.2020.8040.
  • Masriadi, I., and H. H. Sukmawati. 2020. Biological effects of tumor necrosis factor alpha (TNF-α) in systemic inflammation. Running title: TNF-α for systemic inflammation. Indian Journal of Forensic Medicine & Toxicology 2020:325. doi: 10.37506/ijfmt.v14i4.12325.
  • Matsui, T., M. Imamura, H. Oka, K. Osajima, K. Kimoto, T. Kawasaki, and K. Matsumoto. 2004. Tissue distribution of antihypertensive dipeptide, Val-Tyr, after its single oral administration to spontaneously hypertensive rats. Journal of Peptide Science 10 (9):535–45. doi: 10.1002/psc.568.
  • Mauro, D., R. Thomas, G. Guggino, R. Lories, M. A. Brown, and F. Ciccia. 2021. Ankylosing spondylitis: An autoimmune or autoinflammatory disease? Nature Reviews. Rheumatology 17 (7):387–404. doi: 10.1038/s41584-021-00625-y.
  • Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203):428–35. doi: 10.1038/nature07201.
  • Meade, E., M. A. Slattery, and M. Garvey. 2020. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics 9 (1):32. doi: 10.3390/antibiotics9010032.
  • Michaličková, D., T. Hrnčíř, N. K. Canová, and O. Slanař. 2020. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. European Journal of Pharmacology 873:172973. doi: 10.1016/j.ejphar.2020.172973.
  • Mills, S., C. Stanton, J. A. Lane, G. J. Smith, and R. P. Ross. 2019. Precision nutrition and the microbiome, Part I: Current State of the Science. Nutrients 11 (4):923. doi: 10.3390/nu11040923.
  • Möller, N. P., K. E. Scholz-Ahrens, N. Roos, and J. Schrezenmeir. 2008. Bioactive peptides and proteins from foods: Indication for health effects. European Journal of Nutrition 47 (4):171–82. doi: 10.1007/s00394-008-0710-2.
  • Moldogazieva, N. T., S. P. Zavadskiy, D. V. Astakhov, and A. A. Terentiev. 2023. Lipid peroxidation: Reactive carbonyl species, protein/DNA adducts, and signaling switches in oxidative stress and cancer. Biochemical and Biophysical Research Communications 687:149167. doi: 10.1016/j.bbrc.2023.149167.
  • Mora, L., and F. Toldrá. 2022. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science 49:100973. doi: 10.1016/j.cofs.2022.100973.
  • Motterlini, R., B. E. Mann, and R. Foresti. 2005. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opinion on Investigational Drugs 14 (11):1305–18. doi: 10.1517/13543784.14.11.1305.
  • Mou, Y., S. Wen, Y. X. Li, X. X. Gao, X. Zhang, and Z. Y. Jiang. 2020. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. European Journal of Medicinal Chemistry 202:112532. doi: 10.1016/j.ejmech.2020.112532.
  • Neish, A. S. 2009. Microbes in gastrointestinal health and disease. Gastroenterology 136 (1):65–80. doi: 10.1053/j.gastro.2008.10.080.
  • Nie, W., Y. Y. Du, F. R. Xu, K. Zhou, Z. M. Wang, S. Al-Dalali, Y. Wang, X. M. Li, Y. H. Ma, Y. Xie, et al. 2021. Oligopeptides from Jinhua ham prevent alcohol-induced liver damage by regulating intestinal homeostasis and oxidative stress in mice. Food & Function 12 (20):10053–70. doi: 10.1039/d1fo01693h.
  • Nie, W., F. R. Xu, K. Zhou, J. Y. Deng, Y. Wang, and B. C. Xu. 2024. Stability and transepithelial transport of oligopeptide (KRQKYD) with hepatocyte-protective activity from Jinhua ham in human intestinal Caco-2 monolayer cells. Food Science and Human Wellness 13 (3):1503–12. doi: 10.26599/FSHW.2022.9250127.
  • O’Riordan, N., J. O’Callaghan, L. F. Buttò, M. Kilcoyne, L. Joshi, and R. M. Hickey. 2018. Bovine glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and modulates its gene expression. Journal of Dairy Science 101 (8):6730–41. doi: 10.3168/jds.2018-14499.
  • Okagu, I. U., J. C. Ndefo, E. C. Aham, J. I. Obeme-Nmom, P. E. Agboinghale, R. N. Aguchem, R. N. Nechi, and C. Lammi. 2021. Lupin-derived bioactive peptides: Intestinal transport, bioavailability and health benefits. Nutrients 13 (9):3266. doi: 10.3390/nu13093266.
  • Okin, D., and R. Medzhitov. 2012. Evolution of inflammatory diseases. Current Biology 22 (17):R733–R740. doi: 10.1016/j.cub.2012.07.029.
  • Oladokun, S., A. Koehler, J. MacIsaac, E. M. Ibeagha-Awemu, and D. I. Adewole. 2021. Bacillus subtilis delivery route: Effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poultry Science 100 (3):100809. doi: 10.1016/j.psj.2020.10.063.
  • Olvera-Rosales, L. B., A. E. Cruz-Guerrero, J. M. García-Garibay, L. C. Gómez-Ruíz, E. Contreras-López, F. Guzmán-Rodríguez, and L. G. González-Olivares. 2023. Bioactive peptides of whey: Obtaining, activity, mechanism of action, and further applications. Critical Reviews in Food Science and Nutrition 63 (30):10351–81. doi: 10.1080/10408398.2022.2079113.
  • Palmer, J. D., and K. R. Foster. 2022. The evolution of spectrum in antibiotics and bacteriocins. Proceedings of the National Academy of Sciences of the United States of America 119 (38):e2205407119. doi: 10.1073/pnas.2205407119.
  • Parascandolo, A., and M. O. Laukkanen. 2019. Carcinogenesis and reactive oxygen species signaling: Interaction of the NADPH oxidase NOX1-5 and superoxide dismutase 1-3 signal transduction pathways. Antioxidants & Redox Signaling 30 (3):443–86. doi: 10.1089/ars.2017.7268.
  • Pijl, P. V., A. K. Kies, G. A. Have, G. Duchateau, and N. E. Deutz. 2008. Pharmacokinetics of proline-rich tripeptides in the pig. Peptides 29 (12):2196–202. doi: 10.1016/j.peptides.2008.08.011.
  • Profumo, E., E. Maggi, M. Arese, C. Di Cristofano, B. Salvati, L. Saso, R. Businaro, and B. Buttari. 2022. Neuropeptide Y promotes human M2 macrophage polarization and enhances p62/SQSTM1-dependent autophagy and NRF2 activation. International Journal of Molecular Sciences 23 (21):13009. doi: 10.3390/ijms232113009.
  • Pamplona, A., A. Ferreira, J. Balla, V. Jeney, G. Balla, S. Epiphanio, A. Chora, C. D. Rodrigues, I. P. Gregoire, M. Cunha-Rodrigues, et al. 2007. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nature Medicine 13 (6):703–10. doi: 10.1038/nm1586.
  • Park, C., H. J. Cha, H. Lee, G. Y. Kim, and Y. H. Choi. 2021. The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Archives of Biochemistry and Biophysics 706:108926. doi: 10.1016/j.abb.2021.108926.
  • Park, C., H. Lee, C. Y. Kwon, G. Y. Kim, J. W. Jeong, S. O. Kim, S. H. Choi, S. J. Jeong, J. S. Noh, and Y. H. Choi. 2021. Loganin inhibits lipopolysaccharide-induced inflammation and oxidative response through the activation of the nrf2/ho-1 signaling pathway in raw264.7 macrophages. Biological & Pharmaceutical Bulletin 44 (6):875–83. doi: 10.1248/bpb.b21-00176.
  • Peng, S., H. Song, Y. Chen, S. Li, and X. Guan. 2022. Oral delivery of food-derived bioactive peptides: Challenges and strategies. Food Reviews International 39 (8):5297–325. doi: 10.1080/87559129.2022.2062772.
  • Perez Espitia, P. J., N. de Fátima Ferreira Soares, J. S. Dos Reis Coimbra, N. J. de Andrade, R. Souza Cruz, and E. A. Alves Medeiros. 2012. Bioactive peptides: Synthesis, properties, and applications in the packaging and preservation of food. Comprehensive Reviews in Food Science and Food Safety 11 (2):187–204. doi: 10.1111/j.1541-4337.2011.00179.x.
  • Piotrowska, M., M. Swierczynski, J. Fichna, and A. Piechota-Polanczyk. 2021. The Nrf2 in the pathophysiology of the intestine: Molecular mechanisms and therapeutic implications for inflammatory bowel diseases. Pharmacological Research 163:105243. doi: 10.1016/j.phrs.2020.105243.
  • Pisoschi, A. M., F. Iordache, L. Stanca, C. Cimpeanu, F. Furnaris, O. I. Geicu, L. Bilteanu, and A. I. Serban. 2023. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. European Journal of Medicinal Chemistry 265:116075. doi: 10.1016/j.ejmech.2023.116075.
  • Postler, T. S., and S. Ghosh. 2017. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism 26 (1):110–30. doi: 10.1016/j.cmet.2017.05.008.
  • Pourabedin, M., Z. Xu, B. Baurhoo, E. Chevaux, and X. Zhao. 2014. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Canadian Journal of Microbiology 60 (5):255–66. doi: 10.1139/cjm-2013-0899.
  • Prasad, S., B. Sung, and B. B. Aggarwal. 2012. Age-associated chronic diseases require age-old medicine: Role of chronic inflammation. Preventive Medicine 54 (Suppl):S29–S37. doi: 10.1016/j.ypmed.2011.11.011.
  • Puértolas-Balint, F., and B. O. Schroeder. 2023. Intestinal α-defensins play a minor role in modulating the small intestinal microbiota composition as compared to diet. Microbiology Spectrum 11 (3):e0056723. doi: 10.1128/spectrum.00567-23.
  • Purohit, M., G. Gupta, O. Afzal, A. S. A. Altamimi, S. I. Alzarea, I. Kazmi, W. H. Almalki, M. Gulati, I. P. Kaur, S. K. Singh, et al. 2023. Janus kinase/signal transducers and activator of transcription (JAK/STAT) and its role in Lung inflammatory disease. Chemico-Biological Interactions 371:110334. doi: 10.1016/j.cbi.2023.110334.
  • Qi, Y., D. Wu, L. Fang, Y. Leng, X. Wang, C. Liu, X. Liu, J. Wang, and W. Min. 2023. Anti-inflammatory effect of walnut-derived peptide via the activation of Nrf2/Keap1 pathway against oxidative stress. Journal of Functional Foods 110:105839. doi: 10.1016/j.jff.2023.105839.
  • Ranke, M. B., and J. M. Wit. 2018. Growth hormone – Past, present and future. Nature Reviews. Endocrinology 14 (5):285–300. doi: 10.1038/nrendo.2018.22.
  • Raziyeva, K., Y. Kim, Z. Zharkinbekov, K. Kassymbek, S. Jimi, and A. Saparov. 2021. Immunology of acute and chronic wound healing. Biomolecules 11 (5):700. doi: 10.3390/biom11050700.
  • Ramadass, V., T. Vaiyapuri, and V. Tergaonkar. 2020. Small molecule NF-κB pathway inhibitors in clinic. International Journal of Molecular Sciences 21 (14):5164. doi: 10.3390/ijms21145164.
  • Ren, X., J. Yu, L. Guo, and H. Ma. 2021. Dipeptidyl-peptidase 3 protects oxygen-glucose deprivation/reoxygenation-injured hippocampal neurons by suppressing apoptosis, oxidative stress and inflammation via modulation of Keap1/Nrf2 signaling. International Immunopharmacology 96:107595. doi: 10.1016/j.intimp.2021.107595.
  • Reigstad, C. S., C. E. Salmonson, J. F. Rainey, 3rd, J. H. Szurszewski, D. R. Linden, J. L. Sonnenburg, G. Farrugia, and P. C. Kashyap. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB Journal 29 (4):1395–403. doi: 10.1096/fj.14-259598.
  • Remanan, M. K., and J. Wu. 2014. Antioxidant activity in cooked and simulated digested eggs. Food & Function 5 (7):1464–74. doi: 10.1039/c4fo00204k.
  • Richie, J. P., Jr, S. Nichenametla, W. Neidig, A. Calcagnotto, J. S. Haley, T. D. Schell, and J. E. Muscat. 2015. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. European Journal of Nutrition 54 (2):251–63. doi: 10.1007/s00394-014-0706-z.
  • Roldán, N. R., M. Jiménez, D. Cervantes-García, E. Marín, and E. Salinas. 2016. Glycomacropeptide administration attenuates airway inflammation and remodeling associated to allergic asthma in rat. Inflammation Research 65 (4):273–83. doi: 10.1007/s00011-015-0913-y.
  • Rossi, J. F., Z. Y. Lu, C. Massart, and K. Levon. 2021. Dynamic immune/inflammation precision medicine: The good and the bad inflammation in infection and cancer. Frontiers in Immunology 12:595722. doi: 10.3389/fimmu.2021.595722.
  • Roy, F., J. I. Boye, and B. K. Simpson. 2010. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International 43 (2):432–42. doi: 10.1016/j.foodres.2009.09.002.
  • Saavedra, L., P. Castellano, and F. Sesma. 2004. Purification of bacteriocins produced by lactic acid bacteria. Methods in Molecular Biology 268:331–6. doi: 10.1385/1-59259-766-1:331.
  • Saeedi, B. J., K. H. Liu, J. A. Owens, S. Hunter-Chang, M. C. Camacho, R. U. Eboka, B. Chandrasekharan, N. F. Baker, T. M. Darby, B. S. Robinson, et al. 2020. Gut-resident lactobacilli activate hepatic nrf2 and protect against oxidative liver injury. Cell Metabolism 31 (5):956–68.e5. doi: 10.1016/j.cmet.2020.03.006.
  • Sadovnikova, I. S., A. P. Gureev, D. A. Ignatyeva, M. V. Gryaznova, E. V. Chernyshova, E. P. Krutskikh, A. G. Novikova, and V. N. Popov. 2021. Nrf2/ARE activators improve memory in aged mice via maintaining of mitochondrial quality control of brain and the modulation of gut microbiome. Pharmaceuticals 14 (7):607. doi: 10.3390/ph14070607.
  • Saha, S., B. Buttari, E. Panieri, E. Profumo, and L. Saso. 2020. An overview of nrf2 signaling pathway and its role in inflammation. Molecules 25 (22):5474. doi: 10.3390/molecules25225474.
  • Sahoo, T. K., P. K. Jena, B. Prajapati, L. Gehlot, A. K. Patel, and S. Seshadri. 2017. In vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c mice. Probiotics and Antimicrobial Proteins 9 (3):345–54. doi: 10.1007/s12602-016-9249-3.
  • Salamat-Miller, N., and T. P. Johnston. 2005. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. International Journal of Pharmaceutics 294 (1-2):201–16. doi: 10.1016/j.ijpharm.2005.01.022.
  • Salinas, E., D. Reyes-Pavón, N. G. Cortes-Perez, E. Torres-Maravilla, O. K. Bitzer-Quintero, P. Langella, and L. G. Bermúdez-Humarán. 2021. Bioactive compounds in food as a current therapeutic approach to maintain a healthy intestinal epithelium. Microorganisms 9 (8):1634. doi: 10.3390/microorganisms9081634.
  • Salminen, A., A. Kauppinen, and K. Kaarniranta. 2012. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cellular Signalling 24 (4):835–45. doi: 10.1016/j.cellsig.2011.12.006.
  • Sayed, S., N. T. Van Dam, S. R. Horn, M. M. Kautz, M. Parides, S. Costi, K. A. Collins, B. Iacoviello, D. V. Iosifescu, A. A. Mathé, et al. 2018. A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder. The International Journal of Neuropsychopharmacology 21 (1):3–11. doi: 10.1093/ijnp/pyx109.
  • Silva-Islas, C. A., and P. D. Maldonado. 2018. Canonical and non‐canonical mechanisms of Nrf2 activation. Pharmacological Research 134:92–9. doi: 10.1016/j.phrs.2018.06.013.
  • Singh, V., S. Ahlawat, H. Mohan, S. S. Gill, and K. K. Sharma. 2022. Balancing reactive oxygen species generation by rebooting gut microbiota. Journal of Applied Microbiology 132 (6):4112–29. doi: 10.1111/jam.15504.
  • Shaw, P., and A. Chattopadhyay. 2020. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. Journal of Cellular Physiology 235 (4):3119–30. doi: 10.1002/jcp.29219.
  • Shen, Q., N. Shang, and P. Li. 2011. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Current Microbiology 62 (4):1097–103. doi: 10.1007/s00284-010-9827-7.
  • Shen, X., J. Miao, Q. Wan, S. Wang, M. Li, F. Pu, G. Wang, W. Qian, Q. Yu, F. Marotta, et al. 2018. Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China. Gut Pathogens 10 (1):4. doi: 10.1186/s13099-018-0231-3.
  • Shirako, S., Y. Kojima, N. Tomari, Y. Nakamura, Y. Matsumura, K. Ikeda, N. Inagaki, and K. Sato. 2019. Pyroglutamyl leucine, a peptide in fermented foods, attenuates dysbiosis by increasing host antimicrobial peptide. NPJ Science of Food 3 (1):18. doi: 10.1038/s41538-019-0050-z.
  • Soltani Hekmat, A., H. Najafipour, A. A. Nekooian, S. Esmaeli-Mahani, and K. Javanmardi. 2011. Cardiovascular responses to apelin in two-kidney-one-clip hypertensive rats and its receptor expression in ischemic and non-ischemic kidneys. Regulatory Peptides 172 (1-3):62–8. doi: 10.1016/j.regpep.2011.08.010.
  • Song, W., X. Yang, W. Wang, Z. Wang, J. Wu, and F. Huang. 2021. Sinomenine ameliorates septic acute lung injury in mice by modulating gut homeostasis via aryl hydrocarbon receptor/Nrf2 pathway. European Journal of Pharmacology 912:174581. doi: 10.1016/j.ejphar.2021.174581.
  • Srivastava, R., R. Fernández-Ginés, J. A. Encinar, A. Cuadrado, and G. Wells. 2022. The current status and future prospects for therapeutic targeting of KEAP1-NRF2 and β-TrCP-NRF2 interactions in cancer chemoresistance. Free Radical Biology and Medicine 192:246–60. doi: 10.1016/j.freeradbiomed.2022.09.023.
  • Sun, X., M. Gänzle, C. J. Field, and J. Wu. 2016. Effect of proteolysis on the sialic acid content and bifidogenic activity of ovomucin hydrolysates. Food Chemistry 212:78–86. doi: 10.1016/j.foodchem.2016.05.153.
  • Taguchi, K., and M. Yamamoto. 2020. The Keap1-Nrf2 system as a molecular target of cancer treatment. Cancers 13 (1):46. doi: 10.3390/cancers13010046.
  • Takaiwa, F., L. Yang, and H. Yasuda. 2008. Health-promoting transgenic rice: Application of rice seeds as a direct delivery system for bioactive peptides in human health. Rice Biology in the Genomics Era 62:26. doi: 10.1007/978-3-540-74250-0_26.
  • Tamma, G., and S. Dossena. 2022. Functional interplay between CFTR and pendrin: Physiological and pathophysiological relevance. Frontiers in Bioscience 27 (2):75. doi: 10.31083/j.fbl2702075.
  • Thiruvengadam, M., B. Venkidasamy, U. Subramanian, R. Samynathan, M. Ali Shariati, M. Rebezov, S. Girish, S. Thangavel, A. R. Dhanapal, N. Fedoseeva, et al. 2021. Bioactive compounds in oxidative stress-mediated diseases: Targeting the nrf2/are signaling pathway and epigenetic regulation. Antioxidants 10 (12):1859. doi: 10.3390/antiox10121859.
  • Tonolo, F., L. Moretto, A. Grinzato, F. Fiorese, A. Folda, V. Scalcon, S. Ferro, G. Arrigoni, M. Bellamio, E. Feller, et al. 2020. Fermented soy-derived bioactive peptides selected by a molecular docking approach show antioxidant properties involving the keap1/nrf2 pathway. Antioxidants 9 (12):1306. doi: 10.3390/antiox9121306.
  • Tsai, M. F., Y. Fang, and C. Miller. 2012. Sided functions of an arginine-agmatine antiporter oriented in liposomes. Biochemistry 51 (8):1577–85. doi: 10.1021/bi201897t.
  • Turner, M. D., B. Nedjai, T. Hurst, and D. J. Pennington. 2014. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta 1843 (11):2563–82. doi: 10.1016/j.bbamcr.2014.05.014.
  • Tuvia, S., J. Atsmon, S. L. Teichman, S. Katz, P. Salama, D. Pelled, I. Landau, I. Karmeli, M. Bidlingmaier, C. J. Strasburger, et al. 2012. Oral octreotide absorption in human subjects: Comparable pharmacokinetics to parenteral octreotide and effective growth hormone suppression. The Journal of Clinical Endocrinology and Metabolism 97 (7):2362–9. doi: 10.1210/jc.2012-1179.
  • Ulasov, A. V., A. A. Rosenkranz, G. P. Georgiev, and A. S. Sobolev. 2022. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sciences 291:120111. doi: 10.1016/j.lfs.2021.120111.
  • Vacca, M., G. Celano, F. M. Calabrese, P. Portincasa, M. Gobbetti, and M. De Angelis. 2020. The controversial role of human gut lachnospiraceae. Microorganisms 8 (4):573. doi: 10.3390/microorganisms8040573.
  • van Wijk, K. J., T. Leppert, Z. Sun, A. Kearly, M. Li, L. Mendoza, I. Guzchenko, E. Debley, G. Sauermann, P. Routray, et al. 2023. Detection of the arabidopsis proteome and its post-translational modifications and the nature of the unobserved (dark) proteome in peptideatlas. Journal of Proteome Research 23 (1):185–214. doi: 10.1021/acs.jproteome.3c00536.
  • Verardo, V., A. M. Gómez-Caravaca, D. Arráez-Román, and K. Hettinga. 2017. Recent advances in phospholipids from colostrum, milk and dairy by-products. International Journal of Molecular Sciences 18 (1):173. doi: 10.3390/ijms18010173.
  • Vomund, S., A. Schäfer, M. J. Parnham, B. Brüne, and A. von Knethen. 2017. Nrf2, the master regulator of anti-oxidative responses. International Journal of Molecular Sciences 18 (12):2772. doi: 10.3390/ijms18122772.
  • Wang, B., N. Xie, and B. Li. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. Journal of Food Biochemistry 43 (1):e12571. doi: 10.1111/jfbc.12571.
  • Wang, G., Y. Yu, Y. Z. Wang, J. J. Wang, R. Guan, Y. Sun, F. Shi, J. Gao, and X. L. Fu. 2019. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Journal of Cellular Physiology 234 (10):17023–49. doi: 10.1002/jcp.28436.
  • Wang, M., W. K. Amakye, L. Guo, C. Gong, Y. Zhao, M. Yao, and J. Ren. 2019. Walnut-derived peptide PW5 ameliorates cognitive impairments and alters gut microbiota in app/ps1 transgenic mice. Molecular Nutrition & Food Research 63 (18):e1900326. doi: 10.1002/mnfr.201900326.
  • Wang, R., D. Wang, H. Wang, T. Wang, Y. Weng, Y. Zhang, Y. Luo, Y. Lu, and Y. Wang. 2021. Therapeutic targeting of Nrf2 signaling by maggot extracts ameliorates inflammation-associated intestinal fibrosis in chronic DSS-induced colitis. Frontiers in Immunology 12:670159. doi: 10.3389/fimmu.2021.670159.
  • Wang, Z., J. Liu, F. Li, Y. Luo, P. Ge, Y. Zhang, H. Wen, Q. Yang, S. Ma, and H. Chen. 2022. The gut-lung axis in severe acute Pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids. Pharmacological Research 182:106321. doi: 10.1016/j.phrs.2022.106321.
  • Watanabe, K., M. Igarashi, X. Li, A. Nakatani, J. Miyamoto, Y. Inaba, A. Sutou, T. Saito, T. Sato, N. Tachibana, et al. 2018. Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS One 13 (8):e0202083. doi: 10.1371/journal.pone.0202083.
  • Wei, Y., L. Chang, T. Ishima, X. Wan, L. Ma, G. Wuyun, Y. Pu, and K. Hashimoto. 2021. Abnormalities of the composition of the gut microbiota and short-chain fatty acids in mice after splenectomy. Brain, Behavior, & Immunity-Health 11:100198. doi: 10.1016/j.bbih.2021.100198.
  • Wen, Z., W. Liu, X. Li, W. Chen, Z. Liu, J. Wen, and Z. Liu. 2019. A protective role of the NRF2-keap1 pathway in maintaining intestinal barrier function. Oxidative Medicine and Cellular Longevity 2019:1759149–7. doi: 10.1155/2019/1759149.
  • Wernlund, P. G., C. L. Hvas, J. F. Dahlerup, M. I. Bahl, T. R. Licht, K. E. B. Knudsen, and J. S. Agnholt. 2021. Casein glycomacropeptide is well tolerated in healthy adults and changes neither high-sensitive C-reactive protein, gut microbiota nor faecal butyrate: A restricted randomised trial. The British Journal of Nutrition 125 (12):1374–85. doi: 10.1017/S0007114520003736.
  • Wruck, C. J., A. Fragoulis, A. Gurzynski, L. O. Brandenburg, Y. W. Kan, K. Chan, J. Hassenpflug, S. Freitag-Wolf, D. Varoga, S. Lippross, et al. 2011. Role of oxidative stress in rheumatoid arthritis: Insights from the Nrf2-knockout mice. Annals of the Rheumatic Diseases 70 (5):844–50. doi: 10.1136/ard.2010.132720.
  • Wu, S., Q. Wu, J. Wang, Y. Li, B. Chen, Z. Zhu, R. Huang, M. Chen, A. Huang, Y. Xie, et al. 2022. Novel selenium peptides obtained from selenium-enriched cordyceps militaris alleviate neuroinflammation and gut microbiota dysbacteriosis in LPS-injured mice. Journal of Agricultural and Food Chemistry 70 (10):3194–206. doi: 10.1021/acs.jafc.1c08393.
  • Wu, Y., Y. Wang, H. Zou, B. Wang, Q. Sun, A. Fu, Y. Wang, Y. Wang, X. Xu, and W. Li. 2017. Probiotic bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Frontiers in Microbiology 8:469. doi: 10.3389/fmicb.2017.00469.
  • Xia, Y., Y. Gong, X. Lin, Y. Yang, X. Song, G. Wang, Z. Xiong, Y. Qian, Z. Liao, H. Zhang, et al. 2023. Lactobacillus plantarum AR113 attenuates liver injury in D-Galactose-induced aging mice via the inhibition of oxidative stress and endoplasmic reticulum stress. Food Science and Human Wellness 13 (2):885–97. doi: 10.26599/FSHW.2022.9250076.
  • Xu, Q., H. Hong, J. Wu, and X. Yan. 2019. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 86:399–411. doi: 10.1016/j.tifs.2019.02.050.
  • Yamamoto, M., T. W. Kensler, and H. Motohashi. 2018. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiological Reviews 98 (3):1169–203. doi: 10.1152/physrev.00023.2017.
  • Yan, X. H. 2015. Molecular nutrition: Basic understanding of the digestion, absorption, and metabolism of nutrients. Journal of Zhejiang University. Science. B 16 (6):413–6. doi: 10.1631/jzus.B1500130.
  • Yang, F., X. He, T. Chen, J. Liu, Z. Luo, S. Sun, D. Qin, W. Huang, Y. Tang, C. Liu, et al. 2021. Peptides isolated from Yak Milk residue exert antioxidant effects through Nrf2 signal pathway. Oxidative Medicine and Cellular Longevity 2021:9426314–7. doi: 10.1155/2021/9426314.
  • Yang, H. L., M. W. Lin, M. Korivi, J. J. Wu, C. H. Liao, C. T. Chang, J. W. Liao, and Y. C. Hseu. 2016. Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies. Biochimica et Biophysica Acta 1859 (2):246–61. doi: 10.1016/j.bbagrm.2015.11.001.
  • Yang, L., L. Wang, X. Wang, C. J. Xian, and H. Lu. 2016. A possible role of intestinal microbiota in the pathogenesis of ankylosing spondylitis. International Journal of Molecular Sciences 17 (12):2126. doi: 10.3390/ijms17122126.
  • Yang, Q., Q. Liang, B. Balakrishnan, D. P. Belobrajdic, Q. J. Feng, and W. Zhang. 2020. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients 12 (2):381. doi: 10.3390/nu12020381.
  • Yang, W., Z. Huang, H. Xiong, J. Wang, H. Zhang, F. Guo, C. Wang, and Y. Sun. 2022. Rice protein peptides alleviate dextran sulfate sodium-induced colitis via the Keap1-Nrf2 signaling pathway and regulating gut microbiota. Journal of Agricultural and Food Chemistry 70 (39):12469–83. doi: 10.1021/acs.jafc.2c04862.
  • Yang, Y., B. Wang, and B. Li. 2019. Structural requirement of casein peptides for transcytosis through the caco-2 cell monolayer: Hydrophobicity and charge property affect the transport pathway and efficiency. Journal of Agricultural and Food Chemistry 67 (42):11778–87. doi: 10.1021/acs.jafc.9b04831.
  • Yi, G., J. U. Din, F. Zhao, and X. Liu. 2020. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling. Food & Function 11 (3):2725–37. doi: 10.1039/c9fo01466g.
  • Young, D., M. Z. Fan, and Y. Mine. 2010. Egg yolk peptides up-regulate glutathione synthesis and antioxidant enzyme activities in a porcine model of intestinal oxidative stress. Journal of Agricultural and Food Chemistry 58 (13):7624–33. doi: 10.1021/jf1011598.
  • Yu, Y., D. M. Wu, J. Li, S. H. Deng, T. Liu, T. Zhang, M. He, Y. Y. Zhao, and Y. Xu. 2020. Bixin attenuates experimental autoimmune encephalomyelitis by suppressing TXNIP/NLRP3 inflammasome activity and activating NRF2 signaling. Frontiers in Immunology 11:593368. doi: 10.3389/fimmu.2020.593368.
  • Zhang, D. W., J. L. Lu, B. Y. Dong, M. Y. Fang, X. Xiong, X. J. Qin, and X. M. Fan. 2024. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Frontiers in Immunology 15:1330021. doi: 10.3389/fimmu.2024.1330021.
  • Zhang, H. P., F. L. Zheng, J. H. Zhao, D. X. Guo, and X. L. Chen. 2013. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Archives of Medical Research 44 (1):13–20. doi: 10.1016/j.arcmed.2012.12.001.
  • Zhang, T., J. Wu, and X. Zhan. 2023. Dietary sialic acids: Distribution, structure, and functions. Critical Reviews in Food Science and Nutrition 2023:1–24. doi: 10.1080/10408398.2023.2202254.
  • Zhang, Q., J. Wang, H. Zhang, and T. Zeng. 2021. Dihydromyricetin inhibits oxidative stress and apoptosis in oxygen and glucose deprivation/reoxygenation-induced HT22 cells by activating the Nrf2/HO-1 pathway. Molecular Medicine Reports 23 (6):397. doi: 10.3892/mmr.2021.12036.
  • Zhao, Z., R. Dong, K. Cui, Q. You, and Z. Jiang. 2023. An updated patent review of Nrf2 activators (2020-present). Expert Opinion on Therapeutic Patents 33 (1):29–49. doi: 10.1080/13543776.2023.2178299.
  • Zhou, J., L. Kong, N. Fang, B. Mao, and H. Ai. 2016. Synthesis and functional characterization of MAF-1A peptide derived from the larvae of housefly, musca domestica (diptera: Muscidae). Journal of Medical Entomology 53 (6):1467–72. doi: 10.1093/jme/tjw110.
  • Zhou, N., Y. Zhao, Y. Yao, N. Wu, M. Xu, H. Du, J. Wu, and Y. Tu. 2022. Antioxidant stress and anti-inflammatory activities of egg white proteins and their derived peptides: A review. Journal of Agricultural and Food Chemistry 70 (1):5–20. doi: 10.1021/acs.jafc.1c04742.
  • Zhu, L., L. Qiao, X. Dou, X. Song, J. Chang, X. Zeng, and C. Xu. 2023. Lactobacillus casei ATCC 393 combined with vasoactive intestinal peptide alleviates dextran sodium sulfate-induced ulcerative colitis in C57BL/6 mice via NF-κB and Nrf2 signaling pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 165:115033. doi: 10.1016/j.biopha.2023.115033.
  • Zhu, Y., F. Lao, X. Pan, and J. Wu. 2022. Food protein-derived antioxidant peptides: Molecular mechanism, stability and bioavailability. Biomolecules 12 (11):1622. doi: 10.3390/biom12111622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.