65
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Bioinformatics tools for the study of bioactive peptides from vegetal sources: evolution and future perspectives

, &

References

  • Abel, R., M. Paredes Ramos, Q. Chen, H. Pérez-Sánchez, F. Coluzzi, M. Rocco, P. Marchetti, C. Mura, M. Simmaco, P. E. Bourne, et al. 2020. Computational prediction of potential inhibitors of the main protease of SARS-CoV-2. Frontiers in Chemistry 8:590263. doi: 10.3389/fchem.2020.590263.
  • Agrawal, H., R. Joshi, and M. Gupta. 2019. Purification, identification and characterization of two novel antioxidant peptides from finger millet (eleusine coracana) protein hydrolysate. Food Research International (Ottawa, Ont.) 120:697–707. doi: 10.1016/j.foodres.2018.11.028.
  • Agyei, D., A. Tsopmo, and C. C. Udenigwe. 2018. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry 410 (15):3463–72. doi: 10.1007/s00216-018-0974-1.
  • Ajayi, F. F., P. Mudgil, A. Jobe, P. Antony, R. Vijayan, C-y Gan, and S. Maqsood. 2023. Novel plant-protein (quinoa) derived bioactive peptides with potential anti-hypercholesterolemic activities: Identification, characterization and molecular docking of bioactive peptides. Foods (Basel, Switzerland) 12 (6):1327. doi: 10.3390/foods12061327.
  • Asoodeh, A., L. Haghighi, J. Chamani, M. A. Ansari-Ogholbeyk, Z. Mojallal-Tabatabaei, and M. Lagzian. 2014. Potential angiotensin i converting enzyme inhibitory peptides from gluten hydrolysate: Biochemical characterization and molecular docking study. Journal of Cereal Science 60 (1):92–8. doi: 10.1016/j.jcs.2014.01.019.
  • Banegas-Luna, A. J., B. Imbernón, A. Llanes Castro, A. Pérez-Garrido, J. P. Cerón-Carrasco, S. Gesing, I. Merelli, D. D’Agostino, and H. Pérez-Sánchez. 2019. Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery 14 (1):9–22. doi: 10.1080/17460441.2019.1552936.
  • Bateman, A., M. J. Martin, S. Orchard, M. Magrane, S. Ahmad, E. Alpi, E. H. Bowler-Barnett, et al. 2023. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research 51 (D1):D523–D531. doi: 10.1093/nar/gkac1052.
  • Berendsen, H. J. C., D. van der Spoel, and R. van Drunen. 1995. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications 91 (1–3):43–56. doi: 10.1016/0010-4655(95)00042-E.
  • Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. 2000. The protein data bank. Nucleic Acids Research 28 (1):235–42. doi: 10.1093/nar/28.1.235.
  • Bo, W., L. Chen, D. Qin, S. Geng, J. Li, H. Mei, B. Li, and G. Liang. 2021. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects. Trends in Food Science & Technology 114 (July 2020):176–88. doi: 10.1016/j.tifs.2021.05.031.
  • Bowers, K. J., E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, et al. 2006. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06). Tampa, Florida.
  • Boyd, S. E., R. N. Pike, and G. B. Rudy. 2005. POPS : A computational tool for modeling and predicting protease specificity proteases (also referred to as proteinases, peptidases or proteolytic enzymes) are a class of proteins which appear in all forms of life. Their Function is to Cleave Other Pr 3 (3):551–85.
  • Brogi, S. 2019. Computational approaches for drug discovery. Molecules (Basel, Switzerland) 24 (17):3061. doi: 10.3390/molecules24173061.
  • Brooks, B. R., C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, et al. 2009. CHARMM: The biomolecular simulation program. Journal of Computational Chemistry 30 (10):1545–614. doi: 10.1002/jcc.21287.CHARMM.
  • Burley, S. K., H. M. Berman, C. Bhikadiya, C. Bi, L. Chen, L. Di Costanzo, C. Christie, et al. 2019. Protein data bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Research 47 (D1):D520–D528. doi: 10.1093/nar/gky949.
  • Carrasco-Castilla, J., A. J. Hernández-Álvarez, C. Jiménez-Martínez, G. F. Gutiérrez-López, and G. Dávila-Ortiz. 2012. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews 4 (4):224–43. doi: 10.1007/s12393-012-9058-8.
  • Case, H. E., V. Meyer, G. M. Rosen, S. S. Eaton, and G. R. Eaton. 2013. The amber biomolecular simulation programs. Journal of MAgnetic Resonance 236 (16):47–56.
  • Chaudhary, A., S. Bhalla, S. Patiyal, G. P. S. Raghava, and G. Sahni. 2021. FermFooDb: A database of bioactive peptides derived from fermented foods. Heliyon 7 (4):e06668. doi: 10.1016/j.heliyon.2021.e06668.
  • Chen, Z., W. Li, R. K. Santhanam, C. Wang, X. Gao, Y. Chen, C. Wang, L. Xu, and H. Chen. 2019. Bioactive peptide with antioxidant and anticancer activities from black soybean [glycine max (L.) merr.] byproduct: Isolation, identification and molecular docking study. European Food Research and Technology 245 (3):677–89. doi: 10.1007/s00217-018-3190-5.
  • Ciemny, M., M. Kurcinski, K. Kamel, A. Kolinski, N. Alam, O. Schueler-Furman, and S. Kmiecik. 2018. Protein–peptide docking: Opportunities and challenges. Drug Discovery Today 23 (8):1530–7. doi: 10.1016/j.drudis.2018.05.006.
  • Dang, H. X., and C. B. Lawrence. 2014. Allerdictor: Fast allergen prediction using text classification techniques. Bioinformatics (Oxford, England) 30 (8):1120–8. doi: 10.1093/bioinformatics/btu004.
  • Dharmendra K, Yadav, Praveen, Sharma, Sanjeev, Misra, Harpreet, Singh, Ricardo L, Mancera, Kang, Kim, Cheongyun, Jang, Mi-Hyun, Kim, Horacio, Pérez-Sánchez, Eun Ha, Choi, et al. 2018. Studies of the benzopyran class of selective COX-2 inhibitors using 3D-QSAR and molecular docking. Archives of Pharmacal Research 41 (12): 1178–1189. doi: 10.1007/s12272-017-0945-7.
  • Dimitrov, I., L. Naneva, I. Doytchinova, and I. Bangov. 2014. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England) 30 (6):846–51. doi: 10.1093/bioinformatics/btt619.
  • Du, Z., and Y. Li. 2022. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research 9 (August):100353. doi: 10.1016/j.jafr.2022.100353.
  • Du, Z., J. Comer, and Y. Li. 2023. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends in Analytical Chemistry 162:117051. doi: 10.1016/j.trac.2023.117051.
  • Fan, H., H. Liu, Y. Zhang, S. Zhang, T. Liu, and D. Wang. 2022. Review on plant-derived bioactive peptides: Biological activities, mechanism of action and utilizations in food development. Journal of Future Foods 2 (2):143–59. doi: 10.1016/j.jfutfo.2022.03.003.
  • Feher, M. 2006. Consensus scoring for protein-ligand interactions. Drug Discovery Today 11 (9–10):421–8. doi: 10.1016/j.drudis.2006.03.009.
  • Feng, Y. x., Z. c. Wang, J. x. Chen, H. r. Li, Y. b. Wang, D. F. Ren, and J. Lu. 2021. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (juglans regia L.) meal. Food Chemistry 353 (March):129471. doi: 10.1016/j.foodchem.2021.129471.
  • Ferreira, L. G., R. N. Dos Santos, G. Oliva, and A. D. Andricopulo. 2015. Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland) 20 (7):13384–421. doi: 10.3390/molecules200713384.
  • Fisayo Ajayi, F., P. Mudgil, C.-Y. Gan, and S. Maqsood. 2021. Identification and characterization of cholesterol esterase and lipase inhibitory peptides from amaranth protein hydrolysates. Food Chemistry: X 12 (December):100165. doi: 10.1016/j.fochx.2021.100165.
  • Friesner, R. A., J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, et al. 2004. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry 47 (7):1739–49. doi: 10.1021/jm0306430.
  • García, M. C., P. Puchalska, C. Esteve, and M. L. Marina. 2013. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 106:328–49. doi: 10.1016/j.talanta.2012.12.041.
  • Garzón, A. G., F. F. Veras, A. Brandelli, and S. R. Drago. 2022. Purification, identification and in silico studies of antioxidant, antidiabetogenic and antibacterial peptides obtained from sorghum spent grain hydrolysate. LWT 153:112414. doi: 10.1016/j.lwt.2021.112414.
  • Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy server. In: Walker, J. M. (eds) The Proteomics Protocols Handbook. Vol. 112. Springer Protocols Handbooks, Humana Press. doi:10.1385/1-59259-890-0:571
  • Ghislat, G., T. Rahman, and P. J. Ballester. 2021. Recent progress on the prospective application of machine learning to structure-based virtual screening. Current Opinion in Chemical Biology 65:28–34. doi: 10.1016/j.cbpa.2021.04.009.
  • Gong, X., Q. An, L. Le, F. Geng, L. Jiang, J. Yan, D. Xiang, L. Peng, L. Zou, G. Zhao, et al. 2022. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Critical Reviews in Food Science and Nutrition 62 (11):2855–71. doi: 10.1080/10408398.2020.1860897.
  • Goodsell, D. S., and A. J. Olson. 1990. Automated docking of substrates to proteins by simulated annealing. Proteins 8 (3):195–202. doi: 10.1002/prot.340080302.
  • Grancieri, M., H. S. D. Martino, and E. Gonzalez de Mejia. 2019. Chia (salvia hispanica L.) seed total protein and protein fractions digests reduce biomarkers of inflammation and atherosclerosis in macrophages in vitro. Molecular Nutrition & Food Research 63 (19):e1900021. doi: 10.1002/mnfr.201900021.
  • Gu, H., J. Gao, Q. Shen, D. Gao, Q. Wang, M. Tangyu, and X. Mao. 2021. Dipeptidyl peptidase-IV inhibitory activity of millet protein peptides and the related mechanisms revealed by molecular docking. LWT 138 (July 2020):110587. doi: 10.1016/j.lwt.2020.110587.
  • Guedes, I. A., F. S. S. Pereira, and L. E. Dardenne. 2018. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Frontiers in Pharmacology 9 (SEP):1089. doi: 10.3389/fphar.2018.01089.
  • Gupta, S., P. Kapoor, K. Chaudhary, A. Gautam, R. Kumar, and G. P. S. Raghava, Open Source Drug Discovery Consortium. 2013. In silico approach for predicting toxicity of peptides and proteins. PLoS One 8 (9):e73957. doi: 10.1371/journal.pone.0073957.
  • Harrington, R. A., V. Adhikari, M. Rayner, and P. Scarborough. 2019. Nutrient composition databases in the age of big data: FoodDB, a comprehensive, real-time database infrastructure. BMJ Open 9 (6):e026652. doi: 10.1136/bmjopen-2018-026652.
  • Holtje, H-d, and G. Folkers. 2007. Molecular modeling: Basic principles and applications. Methods and Principles in Medicinal Chemistry. doi: 10.1002/9783527610907.scard.
  • Hospital, A., J. R. Goñi, M. Orozco, and J. L. Gelpí. 2015. Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC 8 (1):37–47. doi: 10.2147/AABC.S70333.
  • Hu, X., Z. Zeng, J. Zhang, D. Wu, H. Li, and F. Geng. 2023. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chemistry 405 (Pt A):134824. doi: 10.1016/j.foodchem.2022.134824.
  • Imai, K., D. Ji, I. D. Nwachukwu, D. Agyei, and C. C. Udenigwe. 2020. Bioinformatics and chemometrics for discovering biologically active peptides from food proteins. Comprehensive Foodomics, 482–94. doi: 10.1016/B978-0-08-100596-5.22878-3.
  • Israelachvili, J. N. 2011. Intrermolecular and surface forces. Intermolecular and surface forces, 3rd ed. Santa Barbara, California, USA: Elsevier. doi: 10.1016/b978-0-12-375182-9.10025-9.
  • Iwaniak, A., M. Darewicz, D. Mogut, and P. Minkiewicz. 2019. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods 61 (July):103486. doi: 10.1016/j.jff.2019.103486.
  • Iwaniak, A., P. Minkiewicz, M. Darewicz, M. Protasiewicz, and D. Mogut. 2015. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. Journal of Functional Foods 16:334–51. doi: 10.1016/j.jff.2015.04.038.
  • Jain, A. N. 2003. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry 46 (4):499–511. doi: 10.1021/jm020406h.
  • Jiang, M., H. Yan, R. He, and Y. Ma. 2018. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. European Food Research and Technology 244 (11):1995–2005. doi: 10.1007/s00217-018-3111-7.
  • Jones, G., P. Willett, R. C. Glen, A. R. Leach, and R. Taylor. 1997. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267 (3):727–48. doi: 10.1006/jmbi.1996.0897.
  • Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al. 2021. Highly accurate protein structure prediction with alphafold. Nature 596 (7873):583–9. doi: 10.1038/s41586-021-03819-2.
  • Kamal, H., P. Mudgil, B. Bhaskar, A. F. Fisayo, C. Yuen Gan, and S. Maqsood. 2021. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. Journal of Cereal Science 101 (July):103308. doi: 10.1016/j.jcs.2021.103308.
  • Kawashima, S., P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, and M. Kanehisa. 2008. Aaindex: Amino acid index database, progress report 2008. Nucleic Acids Research 36 (Database issue):D202–D205. doi: 10.1093/nar/gkm998.
  • Kim, J., M. McFee, Q. Fang, O. Abdin, and P. M. Kim. 2023. Computational and artificial intelligence-based methods for antibody development. Trends in Pharmacological Sciences 44 (3):175–89. doi: 10.1016/j.tips.2022.12.005.
  • Kim, S., J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, et al. 2023. PubChem 2023 update. Nucleic Acids Research 51 (D1):D1373–D1380. doi: 10.1093/nar/gkac956.
  • Kuerban, A., A. L. Al-Malki, T. A. Kumosani, R. A. Sheikh, F. A. M. Al-Abbasi, F. A. Alshubaily, K. Omar Abulnaja, and S. Salama Moselhy. 2020. Identification, protein antiglycation, antioxidant, antiproliferative, and molecular docking of novel bioactive peptides produced from hydrolysis of lens culinaris. Journal of Food Biochemistry 44 (12):e13494. doi: 10.1111/jfbc.13494.
  • Kumar, R., K. Chaudhary, M. Sharma, G. Nagpal, J. Singh Chauhan, S. Singh, A. Gautam, and G. P. S. Raghava. 2015. AHTPDB: A comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Research 43 (Database issue):D956–62. doi: 10.1093/nar/gku1141.
  • Kuntz, I. D., J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin. 1982. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology 161 (2):269–88. doi: 10.1016/0022-2836(82)90153-x.
  • Kussmann, M. 2022. Prediction, discovery, and characterization of plant- and food-derived health-beneficial bioactive peptides. Nutrients 14 (22):4810. doi: 10.3390/nu14224810.
  • Lata, S., N. K. Mishra, and G. P. S. Raghava. 2010. AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinformatics 11 (Suppl. 1):S19. doi: 10.1186/1471-2105-11-S1-S19.
  • Lear, S., and S. L. Cobb. 2016. Pep-calc.com: A set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. Journal of Computer-Aided Molecular Design 30 (3):271–7. doi: 10.1007/s10822-016-9902-7.
  • Li, T., L. Lin, C. Li, J. Zheng, B. Chen, Y. Shen, and D. Ren. 2023. Amelioration of walnut-derived novel peptides against d-galactose-induced cognitive impairment by modulating the gut microbiota composition. Food & Function 14 (9):4228–41. doi: 10.1039/d2fo03775k.
  • Limongelli, V. 2020. Ligand binding free energy and kinetics calculation in 2020. Wiley Interdisciplinary Reviews: Computational Molecular Science 10 (4):1–32. doi: 10.1002/wcms.1455.
  • Lipkowitz, K. B., and D. B. Boyd. 1990. Reviews in computational chemistry. VCH: Wiley. doi: 10.1002/9780470125786.
  • Liu, F., G. Baggerman, L. Schoofs, and G. Wets. 2008. The construction of a bioactive peptide database in metazoa. Journal of Proteome Research 7 (9):4119–31. doi: 10.1021/pr800037n.
  • London, N., B. Raveh, and O. Schueler-Furman. 2013. Peptide docking and structure-based characterization of peptide binding: From knowledge to know-how. Current Opinion in Structural Biology 23 (6):894–902. doi: 10.1016/j.sbi.2013.07.006.
  • Maasch, J. R., M. D. T. Torres, Marcelo, C. R. M., and C. de la Fuente-Nunez. 2023. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host & Microbe 31 (8):1260–74.e6. doi: 10.1016/j.chom.2023.07.001.
  • Majumder, K., Y. Mine, and J. Wu. 2016. The potential of food protein-derived anti-inflammatory peptides against various chronic inflammatory diseases. Journal of the Science of Food and Agriculture 96 (7):2303–11. doi: 10.1002/jsfa.7600.
  • Mattei, A., and T. Li. 2018. Intermolecular Interactions and Computational Modeling. In Pharmaceutical Crystals: Science and Engineering, 123–67. Wiley doi: 10.1002/9781119046233.ch4.
  • McGann, M. 2011. FRED pose prediction and virtual screening accuracy. Journal of Chemical Information and Modeling 51 (3):578–96. doi: 10.1021/ci100436p.
  • Meng, X.-Y., H.-X. Zhang, M. Mezei, and M. Cui. 2011. Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design 7 (2):146–57. doi: 10.2174/157340911795677602.
  • Minkiewicz, P., A. Iwaniak, and M. Darewicz. 2019. BIOPEP-UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Sciences 20 (23):5978. doi: 10.3390/ijms20235978.
  • Minkiewicz, P., J. Dziuba, A. Iwaniak, M. Dziuba, and M. Darewicz. 2008. BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International 91 (4):965–80. doi: 10.1093/jaoac/91.4.965.
  • Mirdamadi, S., M. Mirzaei, N. Soleymanzadeh, M. Safavi, N. Bakhtiari, and M. Zandi. 2021. Antioxidant and cytoprotective effects of synthetic peptides identified from kluyveromyces marxianus protein hydrolysate: Insight into the molecular mechanism. LWT 148 (May):111792. doi: 10.1016/j.lwt.2021.111792.
  • Mirzaei, M., A. Shavandi, S. Mirdamadi, N. Soleymanzadeh, P. Motahari, N. Mirdamadi, M. Moser, G. Subra, H. Alimoradi, and S. Goriely. 2021. Bioactive peptides from yeast: A comparative review on production methods, bioactivity, structure-function relationship, and stability. Trends in Food Science & Technology 118:297–315. doi: 10.1016/j.tifs.2021.10.008.
  • Mirzaei, M., S. Mirdamadi, and M. Safavi. 2020. Structural analysis of ACE-inhibitory peptide (VL-9) derived from kluyveromyces marxianus protein hydrolysate. Journal of Molecular Structure 1213:128199. doi: 10.1016/j.molstruc.2020.128199.
  • Mirzaei, M., S. Mirdamadi, M. R. Ehsani, and M. Aminlari. 2018. Production of antioxidant and ACE-inhibitory peptides from kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis 26 (2):696–705. doi: 10.1016/j.jfda.2017.07.008.
  • Mirzaei, M., S. Mirdamadi, M. Safavi, and M. Hadizadeh. 2019. In vitro and in silico studies of novel synthetic ACE-inhibitory peptides derived from saccharomyces cerevisiae protein hydrolysate. Bioorganic Chemistry 87:647–54. doi: 10.1016/j.bioorg.2019.03.057.
  • Montoya-Rodríguez, A., and E. González de Mejía. 2015. Pure peptides from amaranth (amaranthus hypochondriacus) proteins inhibit LOX-1 receptor and cellular markers associated with atherosclerosis development in vitro. Food Research International 77:204–14. doi: 10.1016/j.foodres.2015.06.032.
  • Montoya-Rodríguez, A., M. A. Gómez-Favela, C. Reyes-Moreno, J. Milán-Carrillo, and E. González de Mejía. 2015. Identification of bioactive peptide sequences from amaranth (amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Comprehensive Reviews in Food Science and Food Safety 14 (2):139–58. doi: 10.1111/1541-4337.12125.
  • Mooney, C., N. J. Haslam, G. Pollastri, and D. C. Shields. 2012. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS One 7 (10):e45012. doi: 10.1371/journal.pone.0045012.
  • Mooney, C., N. J. Haslam, T. A. Holton, G. Pollastri, and D. C. Shields. 2013. PeptideLocator: Prediction of bioactive peptides in protein sequences. Bioinformatics (Oxford, England) 29 (9):1120–6. doi: 10.1093/bioinformatics/btt103.
  • Mora, L., and F. Toldrá. 2023. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science 49:100973. doi: 10.1016/j.cofs.2022.100973.
  • Morales, D., M. Miguel, and M. Garcés-Rimón. 2021. Pseudocereals: A novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition 61 (9):1537–44. doi: 10.1080/10408398.2020.1761774.
  • Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30 (16):2785–91. doi: 10.1002/jcc.21256.AutoDock4.
  • Mudgil, P., B. Priya Kilari, H. Kaml, O. A. Olalere, R. J. FitzGerald, C.-Y. Gan, and S. Maqsood. 2020. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Science of the Total Environment 96 (vember):103130. doi: 10.1016/j.jcs.2020.103130.
  • Nardo, A. E., M. C. Añón, and A. V. Quiroga. 2020. Identification of renin inhibitors peptides from amaranth proteins by docking protocols. Journal of Functional Foods 64 (July):103683. doi: 10.1016/j.jff.2019.103683.
  • Ni, H., L. Li, G. Liu, and S. Q. Hu. 2012. Inhibition mechanism and model of an angiotensin i-converting enzyme (ACE)-inhibitory hexapeptide from yeast (saccharomyces cerevisiae). PLoS One 7 (5):e37077. doi: 10.1371/journal.pone.0037077.
  • Nielsen, S. D. H., N. Liang, H. Rathish, B. J. Kim, J. Lueangsakulthai, J. Koh, Y. Qu, H. J. Schulz, and D. C. Dallas. 2023. Bioactive milk peptides: An updated comprehensive overview and database. Critical Reviews in Food Science and Nutrition 0 (0):1–20. doi: 10.1080/10408398.2023.2240396.
  • Nielsen, S. D., R. L. Beverly, Y. Qu, and D. C. Dallas. 2017. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chemistry 232 (October):673–82. doi: 10.1016/j.foodchem.2017.04.056.
  • O’Leary, N. A., M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, et al. 2016. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44 (D1):D733–45. doi: 10.1093/nar/gkv1189.
  • Ou-Yang, S.-S., J.-Y. Lu, X.-Q. Kong, Z.-J. Liang, C. Luo, and H. Jiang. 2012. Computational drug discovery. Acta Pharmacologica Sinica 33 (9):1131–40. doi: 10.1038/aps.2012.109.
  • Paredes Ramos, M., and J. M. López Vilariño. 2023. Hop bitterness in beer evaluated by computational analysis. Jounal of the Institute of Brewing 129 (2):97–109. doi: 10.58430/jib.v129i2.20.
  • Paredes-Ramos, M., E. Conde Piñeiro, and J. M. Lopez Vilariño. 2022. Brewers’ spent hop revalorization for the production of high added-value cosmetics ingredients with elastase inhibition capacity. Scientific Reports 12 (1):22074. doi: 10.1038/s41598-022-26149-3.
  • Paredes-Ramos, M., E. Conde Piñeiro, H. Pérez-Sánchez, and J. M. López-Vilariño. 2022. Evaluation of natural peptides to prevent and reduce the novel SARS-CoV-2 infection. Journal of Food Quality 2022:1–13. doi: 10.1155/2022/2102937.
  • Pence, H. E., and A. Williams. 2010. Chemspider: An online chemical information resource. Journal of Chemical Education 87 (11):1123–4. doi: 10.1021/ed100697w.
  • Peredo-Lovillo, A., A. Hernández-Mendoza, B. Vallejo-Cordoba, and H. E. Romero-Luna. 2022. Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chemistry: X 13 (vember 2021):100183. doi: 10.1016/j.fochx.2021.100183.
  • Perpetuo, L., J. Klein, R. Ferreira, S. Guedes, F. Amado, A. Leite-Moreira, A. M. S. Silva, V. Thongboonkerd, and R. Vitorino. 2021. How can artificial intelligence be used for peptidomics? Expert Review of Proteomics 18 (7):527–56. doi: 10.1080/14789450.2021.1962303.
  • Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26 (16):1781–802. doi: 10.1002/jcc.20289.
  • Pronk, S., S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al. 2013. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England) 29 (7):845–54. doi: 10.1093/bioinformatics/btt055.
  • Puertas-Martín, S., A. J. Banegas-Luna, M. Paredes-Ramos, J. L. Redondo, P. M. Ortigosa, O. O. Brovarets, and H. Pérez-Sánchez. 2020. Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts? Expert Opinion on Drug Discovery 15 (9):981–6. doi: 10.1080/17460441.2020.1758664.
  • Renjuan, L., Z. Xiuli, S. Liping, and Z. Yongliang. 2022. Identification, in silico screening, and molecular docking of novel ACE inhibitory peptides isolated from the edible symbiot boletus griseus-hypomyces chrysospermus. LWT 169 (August):114008. doi: 10.1016/j.lwt.2022.114008.
  • Rivero-Pino, F., M. C. Millan-Linares, and S. Montserrat-de-la-Paz. 2023. Strengths and limitations of in silico tools to assess physicochemical properties, bioactivity, and bioavailability of food-derived peptides. Trends in Food Science & Technology 138:433–40. doi: 10.1016/j.tifs.2023.06.023.
  • Rizzello, C. G., D. Tagliazucchi, E. Babini, G. Sefora Rutella, D. L. Taneyo Saa, and A. Gianotti. 2016. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods 27:549–69. doi: 10.1016/j.jff.2016.09.023.
  • Sá, A. G. A., Y. M. F. Moreno, and B. A. M. Carciofi. 2020. Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology 97:170–84. doi: 10.1016/j.tifs.2020.01.011.
  • Sabe, V. T., T. Ntombela, L. A. Jhamba, G. E. M. Maguire, T. Govender, T. Naicker, and H. G. Kruger. 2021. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry 224:113705. doi: 10.1016/j.ejmech.2021.113705.
  • Saha, S., and G. P. S. Raghava. 2006. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research 34 (Web Server issue):W202–9. doi: 10.1093/nar/gkl343.
  • San Pablo-Osorio, B., L. Mojica, and J. E. Urías-Silvas. 2019. Chia seed (salvia hispanica L.) pepsin hydrolysates inhibit angiotensin-converting enzyme by interacting with its catalytic site. Journal of Food Science 84 (5):1170–9. doi: 10.1111/1750-3841.14503.
  • Shen, P., Y. Peng, X. Zhou, X. Jiang, R. Raj, H. Ge, W. Wang, B. Yu, and J. Zhang. 2022. A comprehensive spectral and in silico analysis on the interactions between quercetin, isoquercitrin, rutin and HMGB1. LWT 169:113983. doi: 10.1016/j.lwt.2022.113983.
  • Shtatland, T., D. Guettler, M. Kossodo, M. Pivovarov, and R. Weissleder. 2007. PepBank - a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 8 (1):280. doi: 10.1186/1471-2105-8-280.
  • Singh, B. P., S. P. Bangar, M. Alblooshi, F. F. Ajayi, P. Mudgil, and S. Maqsood. 2023. Plant-derived proteins as a sustainable source of bioactive peptides: Recent research updates on emerging production methods, bioactivities, and potential application. Critical Reviews in Food Science and Nutrition 63 (28):9539–60. doi: 10.1080/10408398.2022.2067120.
  • Southey, B. R., A. Amare, T. A. Zimmerman, S. L. Rodriguez-Zas, and J. V. Sweedler. 2006. NeuroPred: A tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Research 34 (Web Server issue):W267–72. doi: 10.1093/nar/gkl161.
  • Surabhi, S., and B. K. Singh. 2018. Computer aided drug design: An overview. Journal of Drug Delivery and Therapeutics 8 (5):504–9. doi: 10.22270/jddt.v8i5.1894.
  • Tonolo, F., L. Moretto, A. Grinzato, F. Fiorese, A. Folda, V. Scalcon, S. Ferro, G. Arrigoni, M. Bellamio, E. Feller, et al. 2020. Fermented soy-derived bioactive peptides selected by a molecular docking approach show antioxidant properties involving the Keap1/Nrf2 pathway. Antioxidants (Basel, Switzerland) 9 (12):1306. doi: 10.3390/antiox9121306.
  • Tripathi, A., and K. Misra. 2017. Molecular docking: A structure-based drug designing approach. JSM Chemistry 5 (2):1042.
  • Trott, O., and A. Olson. 2010. Autodock vina: Improving the speed and accuracy of docking. Journal of Computational Chemistry 31 (2):455–61. doi: 10.1002/jcc.21334.AutoDock.
  • Tu, M., S. Cheng, W. Lu, and M. Du. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry 105:7–17. doi: 10.1016/j.trac.2018.04.005.
  • Tyagi, A., A. Tuknait, P. Anand, S. Gupta, M. Sharma, D. Mathur, A. Joshi, S. Singh, A. Gautam, and G. P. S. Raghava. 2015. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Research 43 (Database issue):D837–43. doi: 10.1093/nar/gku892.
  • Udenigwe, C. C. 2014. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology 36 (2):137–43. doi: 10.1016/j.tifs.2014.02.004.
  • Urbizo-Reyes, U., A. M. Liceaga, L. Reddivari, K. H. Kim, and J. M. Anderson. 2022. Enzyme kinetics, molecular docking, and in silico characterization of canary seed (phalaris canariensis L.) peptides with ACE and pancreatic lipase inhibitory activity. Journal of Functional Foods 88:104892. doi: 10.1016/j.jff.2021.104892.
  • Vecchi, B., and M. C. Añón. 2009. ACE inhibitory tetrapeptides from amaranthus hypochondriacus 11S globulin. Phytochemistry 70 (7):864–70. doi: 10.1016/j.phytochem.2009.04.006.
  • Velarde-Salcedo, A. J., A. Barrera-Pacheco, S. Lara-González, G. M. Montero-Morán, A. Díaz-Gois, E. González De Mejia, and A. P. Barba De La Rosa. 2013. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (amaranthus hypochondriacus L.) proteins. Food Chemistry 136 (2):758–64. doi: 10.1016/j.foodchem.2012.08.032.
  • Vijayakumar, V., A. N. Guerrero, N. Davey, C. B. Lebrilla, D. C. Shields, and N. Khaldi. 2012. Enzymepredictor: A tool for predicting and visualizing enzymatic cleavages of digested proteins. Journal of Proteome Research 11 (12):6056–65. doi: 10.1021/pr300721f.
  • Wang, F., Y. Zhang, T. Yu, J. He, J. Cui, J. Wang, X. Cheng, and J. Fan. 2018. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in Caco-2 cells. Journal of Functional Foods 42 (September 2017):12–20. doi: 10.1016/j.jff.2017.12.061.
  • Wang, X., H. Chen, X. Fu, S. Li, and J. Wei. 2017. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT 75:93–9. doi: 10.1016/j.lwt.2016.08.047.
  • Wen, L., L. Huang, Y. Li, Y. Feng, Z. Zhang, Z. Xu, M.-L. Chen, and Y. Cheng. 2021. New peptides with immunomodulatory activity identified from rice proteins through peptidomic and in silico analysis. Food Chemistry 364 (January):130357. doi: 10.1016/j.foodchem.2021.130357.
  • Wenhui, T., H. Shumin, Z. Yongliang, S. Liping, and Y. Hua. 2022. Identification of in vitro angiotensin-converting enzyme and dipeptidyl peptidase IV inhibitory peptides from draft beer by virtual screening and molecular docking. Journal of the Science of Food and Agriculture 102 (3):1085–94. doi: 10.1002/jsfa.11445.
  • Wiener, A., M. Shudler, A. Levit, and M. Y. Niv. 2012. BitterDB: A database of bitter compounds. Nucleic Acids Research 40 (Database issue):D413–19. doi: 10.1093/nar/gkr755.
  • Wolber, G., and T. Langer. 2005. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling 45 (1):160–9. doi: 10.1021/ci049885e.
  • Wong, F., C. de la Fuente-Nunez, and J. J. Collins. 2023. Leveraging artificial intelligence in the fight against infectious diseases. Science (New York, N.Y.) 381 (6654):164–70. doi: 10.1126/science.adh1114.
  • Wu, Q., J. Du, J. Jia, and C. Kuang. 2016. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study. Food Chemistry 199:140–9. doi: 10.1016/j.foodchem.2015.12.012.
  • Xiong, Y., P. Peng, S.-J. Chen, M. Chang, Q. Wang, S.-N. Yin, and D.-F. Ren. 2022. Preparation, identification, and molecular docking of novel elastase inhibitory peptide from walnut (juglans regia L.) meal. Food Chemistry: Molecular Sciences 5 (October):100139. doi: 10.1016/j.fochms.2022.100139.
  • Xu, F., E. Gonzalez de Mejia, H. Chen, K. Rebecca, M. Pan, R. He, Y. Yao, L. Wang, and X. Ju. 2020. Assessment of the DPP-IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco-2 cell monolayers and molecular docking analysis. Journal of Food Biochemistry 44 (10):e13406. doi: 10.1111/jfbc.13406.
  • Ye, H., X. Tao, W. Zhang, Y. Chen, Q. Yu, and J. Xie. 2022. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. Journal of Future Foods 2 (4):294–306. doi: 10.1016/j.jfutfo.2022.08.002.
  • Zamyatnin, A. A., A. S. Borchikov, M. G. Vladimirov, and O. L. Voronina. 2006. The EROP-Moscow oligopeptide database. Nucleic Acids Research 34 (Database issue):D261–6. doi: 10.1093/nar/gkj008.
  • Zhang, Y., Y. Li, T. Ren, P. Xiao, and J. Ao Duan. 2023. Novel and efficient techniques in the discovery of antioxidant peptides. Critical Reviews in Food Science and Nutrition 10:1–15. doi: 10.1080/10408398.2023.2245052.
  • Zheng, Y., X. Wang, Y. Zhuang, Y. Li, H. Tian, P. Shi, and G. Li. 2019. Isolation of novel ACE-inhibitory and antioxidant peptides from quinoa bran albumin assisted with an in silico approach: Characterization, in vivo antihypertension, and molecular docking. Molecules (Basel, Switzerland) 24 (24):4562. doi: 10.3390/molecules24244562.
  • Zheng, Y., X. Wang, Y. Zhuang, Y. Li, P. Shi, H. Tian, X. Li, and X. Chen. 2020. Isolation of novel ACE-inhibitory peptide from naked oat globulin hydrolysates in silico approach: Molecular docking, in vivo antihypertension and effects on renin and intracellular endothelin-1. Journal of Food Science 85 (4):1328–37. doi: 10.1111/1750-3841.15115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.