142
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism

, , &

References

  • Ahmad, N., Y. Zuo, F. Anwar, A. Abbas, M. Shahid, A. A. Hassan, M. Bilal, and T. Rasheed. 2021. Ultrasonic-assisted extraction as a green route for hydrolysis of bound phenolics in selected wild fruits: Detection and systematic characterization using GC–MS–TIC method. Process Biochemistry 111:79–85. doi: 10.1016/j.procbio.2021.10.021.
  • Alu’Datt, M. H., T. Rababah, M. N. Alhamad, M. A. Al-Mahasneh, K. Ereifej, G. Al-Karaki, M. Al-Duais, J. E. Andrade, C. C. Tranchant, S. Kubow, et al. 2017. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food & Function 8 (9):3187–97. doi: 10.1039/c7fo00212b.
  • Arranz, S., J. M. Silván, and F. Saura-Calixto. 2010. Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Molecular Nutrition & Food Research 54 (11):1646–58. doi: 10.1002/mnfr.200900580.
  • Arruda, H. S., G. A. Pereira, D. R. de Morais, M. N. Eberlin, and G. M. Pastore. 2018. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chemistry 245:738–49. doi: 10.1016/j.foodchem.2017.11.120.
  • Ban, C., S. J. Park, S. Lim, S. J. Choi, and Y. J. Choi. 2015. Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. Journal of Agricultural and Food Chemistry 63 (21):5266–72. doi: 10.1021/acs.jafc.5b01495.
  • Bermúdez-Oria, A., G. Rodríguez-Gutiérrez, Á. Fernández-Prior, H. Knicker, and J. Fernández-Bolaños. 2020. Confirmation by solid-state NMR spectroscopy of a strong complex phenol-dietary fiber with retention of antioxidant activity in vitro. Food Hydrocolloids. 102:105584. doi: 10.1016/j.foodhyd.2019.105584.
  • Bindon, K. A., P. A. Smith, and J. A. Kennedy. 2010. Interaction between grape-derived proanthocyanidins and cell wall material. 1. Effect on proanthocyanidin composition and molecular mass. Journal of Agricultural and Food Chemistry 58 (4):2520–8. doi: 10.1021/jf9037453.
  • Bindon, K. A., S. H. Madani, P. Pendleton, P. A. Smith, and J. A. Kennedy. 2014. Factors affecting skin tannin extractability in ripening grapes. Journal of Agricultural and Food Chemistry 62 (5):1130–41. doi: 10.1021/jf4050606.
  • Bordenave, N., B. R. Hamaker, and M. G. Ferruzzi. 2014. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & Function 5 (1):18–34. doi: 10.1039/c3fo60263j.
  • Brahem, M., C. M. G. C. Renard, S. Bureau, A. A. Watrelot, and C. Le Bourvellec. 2019. Pear ripeness and tissue type impact procyanidin-cell wall interactions. Food Chemistry 275:754–62. doi: 10.1016/j.foodchem.2018.09.156.
  • Brahem, M., S. Eder, C. M. G. C. Renard, M. Loonis, and C. Le Bourvellec. 2017. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT - Food Science and Technology 85:380–4. doi: 10.1016/j.lwt.2016.09.009.
  • Cai, X., X. Du, D. Cui, X. Wang, Z. Yang, and G. Zhu. 2019. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocolloids. 91:238–45. doi: 10.1016/j.foodhyd.2019.01.034.
  • Cholet, C., C. Delsart, M. Petrel, E. Gontier, N. Grimi, A. L’hyvernay, R. Ghidossi, E. Vorobiev, M. Mietton-Peuchot, and L. Gény. 2014. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: Impact on cell wall total tannins and polysaccharides. Journal of Agricultural and Food Chemistry 62 (13):2925–34. doi: 10.1021/jf404804d.
  • Clifford, M. N., J. J. J. van der Hooft, and A. Crozier. 2013. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. The American Journal of Clinical Nutrition 98 (6):1619S–30S. doi: 10.3945/ajcn.113.058958.
  • Das, A. K., and V. Singh. 2016. Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chemistry 201:298–306. doi: 10.1016/j.foodchem.2016.01.099.
  • Domínguez-Fernández, M., Á. Irigoyen, M. D. L. A. Vargas-Alvarez, I. A. Ludwig, M. De Peña, and C. Cid. 2021. Influence of culinary process on free and bound (poly)phenolic compounds and antioxidant capacity of artichokes. International Journal of Gastronomy and Food Science 25:100389. doi: 10.1016/j.ijgfs.2021.100389.
  • Dong, R., J. Tian, Z. Huang, Q. Yu, J. Xie, B. Li, C. Li, and Y. Chen. 2023. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities. Food Chemistry 410:135375. doi: 10.1016/j.foodchem.2022.135375.
  • Dong, R., S. Liu, Y. Zheng, X. Zhang, Z. He, Z. Wang, Y. Wang, J. Xie, Y. Chen, and Q. Yu. 2020. Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity in in vitro digestion and colonic fermentation. Food & Function 11 (7):6652–65. doi: 10.1039/d0fo00975j.
  • Duke, K., C. Syeunda, J. F. Brantsen, S. Nindawat, and J. M. Awika. 2024. Polyphenol recovery from sorghum bran waste by microwave assisted extraction: Structural transformations as affected by grain phenolic profile. Food Chemistry 444:138645. doi: 10.1016/j.foodchem.2024.138645.
  • Eran Nagar, E., L. Berenshtein, Z. Okun, and A. Shpigelman. 2020. The structure-dependent influence of high pressure processing on polyphenol-cell wall material (CWM) interactions and polyphenol-polyphenol association in model systems: Possible implication to accessibility. Innovative Food Science & Emerging Technologies 66:102538. doi: 10.1016/j.ifset.2020.102538.
  • Feng, Z., L. Dong, R. Zhang, J. Chi, L. Liu, M. Zhang, and X. Jia. 2021. Structural elucidation, distribution and antioxidant activity of bound phenolics from whole grain brown rice. Food Chemistry 358:129872. doi: 10.1016/j.foodchem.2021.129872.
  • Fernandes, A., J. Oliveira, F. Fonseca, F. Ferreira-da-Silva, N. Mateus, J. Vincken, and V. de Freitas. 2020. Molecular binding between anthocyanins and pectic polysaccharides-Unveiling the role of pectic polysaccharides structure. Food Hydrocolloids. 102:105625. doi: 10.1016/j.foodhyd.2019.105645.
  • Garrido-Bañuelos, G., A. Buica, and W. Du Toit. 2022. Relationship between anthocyanins, proanthocyanidins, and cell wall polysaccharides in grapes and red wines. A current state-of-art review. Critical Reviews in Food Science and Nutrition 62 (28):7743–59. doi: 10.1080/10408398.2021.1918056.
  • Giambanelli, E., A. M. Gómez-Caravaca, A. Ruiz-Torralba, E. J. Guerra-Hernández, J. G. Figueroa-Hurtado, B. García-Villanova, and V. Verardo. 2020. New advances in the determination of free and bound phenolic compounds of banana passion fruit pulp (Passiflora tripartita, var. mollissima (kunth) l.h. bailey) and their in vitro antioxidant and hypoglycemic capacities. Antioxidants (Basel, Switzerland) 9 (7):628. doi: 10.3390/antiox9070628.
  • Gong, W., X. Zhao, S. Manickam, X. Liu, D. Li, Y. Han, H. Kiani, C. Feng, and Y. Tao. 2023. Impact of cell wall adsorption behaviours on phenolic stability under air drying of blackberry with and without contact ultrasound assistance. Food Hydrocolloids. 137:108312. doi: 10.1016/j.foodhyd.2022.108312.
  • Goñi, I., J. Serrano, and F. Saura-Calixto. 2006. Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables. Journal of Agricultural and Food Chemistry 54 (15):5382–7. doi: 10.1021/jf0609835.
  • Goñi, I., M. E. Díaz-Rubio, J. Pérez-Jiménez, and F. Saura-Calixto. 2009. Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Research International 42 (7):840–6. doi: 10.1016/j.foodres.2009.03.010.
  • González-Aguilar, G. A., F. J. Blancas-Benítez, and S. G. Sáyago-Ayerdi. 2017. Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Current Opinion in Food Science 13:84–8. doi: 10.1016/j.cofs.2017.03.004.
  • Grant, L. J., D. Mikkelsen, A. Phan, S. Kang, D. Ouwerkerk, A. V. Klieve, M. J. Gidley, and B. A. Williams. 2020. Purified plant cell walls with adsorbed polyphenols alter porcine faecal bacterial communities during in vitro fermentation. Food & Function 11 (1):834–45. doi: 10.1039/c9fo02428j.
  • Guo, F., L. Peng, H. Xiong, R. Tsao, H. Zhang, L. Jiang, and Y. Sun. 2023. Bioaccessibility and transport of lentil hull polyphenols in vitro, and their bioavailability and metabolism in rats. Food Research International (Ottawa, Ont.) 167:112634. doi: 10.1016/j.foodres.2023.112634.
  • Han, N. D., J. Cheng, O. Delannoy-Bruno, D. Webber, N. Terrapon, B. Henrissat, D. A. Rodionov, A. A. Arzamasov, A. L. Osterman, D. K. Hayashi, et al. 2022. Microbial liberation of N-methylserotonin from orange fiber in gnotobiotic mice and humans. Cell 185 (14):2495–509.e11. doi: 10.1016/j.cell.2022.06.004.
  • Herrera-Cazares, L. A., F. Hernández-Navarro, A. K. Ramírez-Jiménez, R. Campos-Vega, M. d l L. Reyes-Vega, G. Loarca-Piña, E. Morales-Sánchez, A. Wall-Medrano, and M. Gaytán-Martínez. 2017. Mango-bagasse functional-confectionery: Vehicle for enhancing bioaccessibility and permeability of phenolic compounds. Food & Function 8 (11):3906–16. doi: 10.1039/c7fo00873b.
  • Hollman, P. 2004. Absorption, bioavailability, and metabolism of flavonoids. Pharmaceutical Biology 42 (sup1):74–83. doi: 10.3109/13880200490893492.
  • Hu, J., J. Bi, X. Li, X. Wu, W. Wang, and Q. Yu. 2023. Understanding the impact of pectin on browning of polyphenol oxidation system in thermal and storage processing. Carbohydrate Polymers 307:120641. doi: 10.1016/j.carbpol.2023.120641.
  • Huang, W., Q. Fang, L. Fan, T. Hong, H. Tan, and S. Nie. 2022. Pectin with various degrees of esterification differentially alters gut microbiota and metabolome of healthy adults. eFood 3 (1-2):e5. doi: 10.1002/efd2.5.
  • Irakli, M., F. Kleisiaris, K. Kadoglidou, and D. Katsantonis. 2018. Optimizing extraction conditions of free and bound phenolic compounds from rice by-products and their antioxidant effects. Foods (Basel, Switzerland) 7 (6):93. doi: 10.3390/foods7060093.
  • Islam, T., K. Albracht-Schulte, L. Ramalingam, N. Schlabritz-Lutsevich, O. Park, M. Zabet-Moghaddam, N. S. Kalupahana, and N. Moustaid-Moussa. 2023. Anti-inflammatory mechanisms of polyphenols in adipose tissue: Role of gut microbiota, intestinal barrier integrity and zinc homeostasis. The Journal of Nutritional Biochemistry 115:109242. doi: 10.1016/j.jnutbio.2022.109242.
  • Jakobek, L., and P. Matić. 2019. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science & Technology 83:235–47. doi: 10.1016/j.tifs.2018.11.024.
  • Ke, Y., L. Deng, T. Dai, M. Xiao, M. Chen, R. Liang, W. Liu, C. Liu, and J. Chen. 2023. Effects of cell wall polysaccharides on the bioaccessibility of carotenoids, polyphenols, and minerals: An overview. Critical Reviews in Food Science and Nutrition 63 (32):11385–98. doi: 10.1080/10408398.2022.2089626.
  • Kilua, A., R. Nomata, R. Nagata, N. Fukuma, K. Shimada, K. Han, and M. Fukushima. 2019. Purple sweet potato polyphenols differentially influence the microbial composition depending on the fermentability of dietary fiber in a mixed culture of swine fecal bacteria. Nutrients 11 (7):1495. doi: 10.3390/nu11071495.
  • Kroon, P. A., C. B. Faulds, P. Ryden, J. A. Robertson, and G. Williamson. 1997. Release of covalently bound ferulic acid from fiber in the human colon. Journal of Agricultural and Food Chemistry 45 (3):661–7. doi: 10.1021/jf9604403.
  • Le Bourvellec, C., A. A. Watrelot, C. Ginies, A. Imberty, and C. M. G. C. Renard. 2012. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall. Journal of Agricultural and Food Chemistry 60 (37):9484–94. doi: 10.1021/jf3015975.
  • Le Bourvellec, C., S. Guyot, and C. M. G. C. Renard. 2009. Interactions between apple (Malus x domestica Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydrate Polymers 75 (2):251–61. doi: 10.1016/j.carbpol.2008.07.010.
  • Lee, Y., and Y. H. Chang. 2020. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. International Journal of Biological Macromolecules 150:546–58. doi: 10.1016/j.ijbiomac.2020.02.091.
  • Li, C., B. Li, C. Zhu, and X. Meng. 2020. Modeling and optimization of tea polyphenol-alginate/chitosan magnetic microcapsules. Journal of Molecular Structure 1208:127827. doi: 10.1016/j.molstruc.2020.127827.
  • Li, F., F. Li, Y. Yang, R. Yin, and J. Ming. 2019. Comparison of phenolic profiles and antioxidant activities in skins and pulps of eleven grape cultivars (Vitis vinifera L.). Journal of Integrative Agriculture 18 (5):1148–58. doi: 10.1016/S2095-3119(18)62138-0.
  • Li, J., H. Zhang, X. Yang, L. Zhu, G. Wu, and H. Zhang. 2023b. The fiber-bound polyphenols from highland barley with inhibitory effects against carbonyls during in vitro digestion of cookies and French fries. Food Bioscience 53:102685. doi: 10.1016/j.fbio.2023.102685.
  • Li, J., H. Zhang, X. Yang, L. Zhu, G. Wu, X. Qi, H. Zhang, Y. Wang, and X. Chen. 2023a. Effect of fiber‐bound polyphenols from highland barley on lipid oxidation products of cooked pork during in vitro gastrointestinal digestion. Journal of the Science of Food and Agriculture 103 (10):5070–6. doi: 10.1002/jsfa.12581.
  • Li, J., J. Zhang, W. Yu, H. Gao, I. M. Y. Szeto, H. Feng, X. Liu, Y. Wang, and L. Sun. 2023. Soluble dietary fibres decrease α-glucosidase inhibition of epigallocatechin gallate through affecting polyphenol-enzyme binding interactions. Food Chemistry 409:135327. doi: 10.1016/j.foodchem.2022.135327.
  • Liao, W., S. Liu, R. Dong, J. Xie, Y. Chen, X. Hu, J. Xie, P. Xue, L. Feng, and Q. Yu. 2022. Mixed solid-state fermentation for releasing bound polyphenols from insoluble dietary fiber in carrots via Trichoderma viride and Aspergillus niger. Food & Function 13 (4):2044–56. doi: 10.1039/d1fo03107d.
  • Liu, D., M. Martinez-Sanz, P. Lopez-Sanchez, E. P. Gilbert, and M. J. Gidley. 2017. Adsorption behaviour of polyphenols on cellulose is affected by processing history. Food Hydrocolloids. 63:496–507. doi: 10.1016/j.foodhyd.2016.09.012.
  • Liu, D., P. Lopez-Sanchez, and M. J. Gidley. 2019. Cellular barriers in apple tissue regulate polyphenol release under different food processing and in vitro digestion conditions. Food & Function 10 (5):3008–17. doi: 10.1039/c8fo02528b.
  • Liu, J., H. Pu, S. Liu, J. Kan, and C. Jin. 2017. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydrate Polymers 174:999–1017. doi: 10.1016/j.carbpol.2017.07.014.
  • Liu, S., Q. Yu, H. Huang, K. Hou, R. Dong, Y. Chen, J. Xie, S. Nie, and M. Xie. 2020. The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro. Food & Function 11 (1):748–58. doi: 10.1039/c9fo02277e.
  • Liu, X., C. Le Bourvellec, and C. M. G. C. Renard. 2020. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety 19 (6):3574–617. doi: 10.1111/1541-4337.12632.
  • Loo, Y. T., K. Howell, H. Suleria, P. Zhang, C. Gu, and K. Ng. 2022. Sugarcane polyphenol and fiber to affect production of short-chain fatty acids and microbiota composition using in vitro digestion and pig faecal fermentation model. Food Chemistry 385:132665. doi: 10.1016/j.foodchem.2022.132665.
  • Lotito, S. B., W. Zhang, C. S. Yang, A. Crozier, and B. Frei. 2011. Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radical Biology & Medicine 51 (2):454–63. doi: 10.1016/j.freeradbiomed.2011.04.032.
  • Lou, X., H. Xu, M. Hanna, and L. Yuan. 2020. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. Lwt 130:109643. doi: 10.1016/j.lwt.2020.109643.
  • Lu, Z., B. Cheng, Y. Hu, Y. Zhang, and G. Zou. 2009. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry 113 (1):17–20. doi: 10.1016/j.foodchem.2008.04.042.
  • Ma, X., W. Chen, T. Yan, D. Wang, F. Hou, S. Miao, and D. Liu. 2020. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chemistry 309:125501. doi: 10.1016/j.foodchem.2019.125501.
  • Man, G., Y. Ma, L. Xu, X. Liao, and L. Zhao. 2023. Comparison of thermal and non-thermal extraction methods on free and bound phenolics in pomegranate peel. Innovative Food Science & Emerging Technologies 84:103291. doi: 10.1016/j.ifset.2023.103291.
  • Missang, C. E., P. Massiot, A. Baron, and J. F. Drilleau. 1993. Effect of oxidative browning of apple pulp on the chemical and enzymatic extraction of cell-wall polysaccharides. Carbohydrate Polymers 20 (2):131–8. doi: 10.1016/0144-8617(93)90088-L.
  • Moon, H., P. Lertpatipanpong, Y. Hong, C. Kim, and S. J. Baek. 2021. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. Journal of Functional Foods 87:104756. doi: 10.1016/j.jff.2021.104756.
  • Mosele, J. I., A. Macià, M. Romero, and M. Motilva. 2016. Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chemistry 201:120–30. doi: 10.1016/j.foodchem.2016.01.076.
  • Moser, S. E., J. Shin, P. Kasturi, B. R. Hamaker, M. G. Ferruzzi, and N. Bordenave. 2020. Formulation of orange juice with dietary fibers enhances bioaccessibility of orange flavonoids in juice but limits their ability to inhibit in vitro glucose transport. Journal of Agricultural and Food Chemistry 68 (35):9387–97. doi: 10.1021/acs.jafc.0c03334.
  • Obaroakpo, J. U., L. Liu, S. Zhang, J. Lu, L. Liu, X. Pang, and J. Lv. 2020. In vitro modulation of glucagon-like peptide release by DPP-IV inhibitory polyphenol-polysaccharide conjugates of sprouted quinoa yoghurt. Food Chemistry 324:126857. doi: 10.1016/j.foodchem.2020.126857.
  • Peanparkdee, M., and S. Iwamoto. 2022. Encapsulation for improving in vitro gastrointestinal digestion of plant polyphenols and their applications in food products. Food Reviews International 38 (4):335–53. doi: 10.1080/87559129.2020.1733595.
  • Pepe, G., E. Sommella, M. Manfra, M. De Nisco, G. C. Tenore, A. Scopa, A. Sofo, S. Marzocco, S. Adesso, T. Novellino, et al. 2015. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chemistry 167:153–61. doi: 10.1016/j.foodchem.2014.06.105.
  • Phan, A., B. A. Williams, G. Netzel, D. Mikkelsen, B. R. D’Arcy, and M. J. Gidley. 2020. Independent fermentation and metabolism of dietary polyphenols associated with a plant cell wall model. Food & Function 11 (3):2218–30. doi: 10.1039/c9fo02987g.
  • Prakash, O., R. Baskaran, and V. B. Kudachikar. 2019. Characterization, quantification of free, esterified and bound phenolics in Kainth (Pyrus pashia Buch.-Ham. Ex D.Don) fruit pulp by UPLC-ESI-HRMS/MS and evaluation of their antioxidant activity. Food Chemistry 299:125114. doi: 10.1016/j.foodchem.2019.125114.
  • Renard, C. M. 2005. Effects of conventional boiling on the polyphenols and cell walls of pears. Journal of the Science of Food and Agriculture 85 (2):310–8. doi: 10.1002/jsfa.1987.
  • Ribas-Agustí, A., S. Van Buggenhout, P. Palmero, M. Hendrickx, and A. Van Loey. 2014. Investigating the role of pectin in carrot cell wall changes during thermal processing: A microscopic approach. Innovative Food Science & Emerging Technologies 24:113–20. doi: 10.1016/j.ifset.2013.09.005.
  • Sela, A., N. Shkuri, N. Tish, Y. Vinokur, V. Rodov, and E. Poverenov. 2023. Carboxymethyl chitosan-quercetin conjugate: A sustainable one-step synthesis and use for food preservation. Carbohydrate Polymers 316:121084. doi: 10.1016/j.carbpol.2023.121084.
  • Shahwan, M., F. Alhumaydhi, G. M. Ashraf, P. M. Z. Hasan, and A. Shamsi. 2022. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. International Journal of Biological Macromolecules 206:567–79. doi: 10.1016/j.ijbiomac.2022.03.004.
  • Shao, Y., Z. Hu, Y. Yu, R. Mou, Z. Zhu, and T. Beta. 2018. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry 239:733–41. doi: 10.1016/j.foodchem.2017.07.009.
  • Shen, S., W. Yang, L. Li, Y. Zhu, Y. Yang, H. Ni, Z. Jiang, and M. Zheng. 2023. In vitro fermentation of seaweed polysaccharides and tea polyphenol blends by human intestinal flora and their effects on intestinal inflammation. Food & Function 14 (2):1133–47. doi: 10.1039/d2fo03390a.
  • Sun, L., and M. Miao. 2020. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Critical Reviews in Food Science and Nutrition 60 (4):541–55. doi: 10.1080/10408398.2018.1544883.
  • Sun, L., F. J. Warren, and M. J. Gidley. 2018. Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic alpha-amylase. Food Hydrocolloids. 79:63–70. doi: 10.1016/j.foodhyd.2017.12.011.
  • Sun, Y., Z. Deng, R. Liu, H. Zhang, H. Zhu, L. Jiang, and R. Tsao. 2020. A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products. Food Chemistry 325:126925. doi: 10.1016/j.foodchem.2020.126925.
  • Suo, H., Z. Peng, Z. Guo, C. Wu, J. Liu, L. Wang, J. Xiao, and X. Li. 2022. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from different potato genotypes: Comparison of free and bound phenolic profiles and antioxidant activity. Food Chemistry 388:133058. doi: 10.1016/j.foodchem.2022.133058.
  • Suwannachot, J., F. C. Reginio, Jr, Y. Hamauzu, and Y. Ogawa. 2022. Assessment of free, esterified, and insoluble-bound phenolics of green and red perilla leaves and changes during simulated gastrointestinal digestion. Food Chemistry Advances 1:100018. doi: 10.1016/j.focha.2022.100018.
  • Swallah, M. S., H. Fu, H. Sun, R. Affoh, and H. Yu. 2020. The impact of polyphenol on general nutrient metabolism in the monogastric gastrointestinal tract. Journal of Food Quality 2020:1–12. doi: 10.1155/2020/5952834.
  • Szejk, M., T. Poplawski, A. Czubatka-Bienkowska, A. K. Olejnik, I. Pawlaczyk-Graja, R. Gancarz, and H. M. Zbikowska. 2017. A comparative study on the radioprotective potential of the polyphenolic glycoconjugates from medicinal plants of Rosaceae and Asteraceae families versus their aglycones. Journal of Photochemistry and Photobiology. B, Biology 171:50–7. doi: 10.1016/j.jphotobiol.2017.04.027.
  • Tang, R., H. Yu, Z. Ruan, L. Zhang, Y. Xue, X. Yuan, M. Qi, and Y. Yao. 2022. Effects of food matrix elements (dietary fibres) on grapefruit peel flavanone profile and on faecal microbiota during in vitro fermentation. Food Chemistry 371:131065. doi: 10.1016/j.foodchem.2021.131065.
  • Tang, Y., B. Zhang, X. Li, P. X. Chen, H. Zhang, R. Liu, and R. Tsao. 2016. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of Agricultural and Food Chemistry 64 (8):1712–9. doi: 10.1021/acs.jafc.5b05761.
  • Tang, Y., X. Li, B. Zhang, P. X. Chen, R. Liu, and R. Tsao. 2015. Characterisation of phenolics, betanins and antioxidant activities in seeds of three chenopodium quinoa Willd. genotypes. Food Chemistry 166:380–8. doi: 10.1016/j.foodchem.2014.06.018.
  • Tomas, M., G. Rocchetti, S. Ghisoni, G. Giuberti, E. Capanoglu, and L. Lucini. 2020. Effect of different soluble dietary fibres on the phenolic profile of blackberry puree subjected to in vitro gastrointestinal digestion and large intestine fermentation. Food Research International (Ottawa, Ont.) 130:108954. doi: 10.1016/j.foodres.2019.108954.
  • Tomás-Barberán, F. A., M. V. Selma, and J. C. Espín. 2016. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Current Opinion in Clinical Nutrition and Metabolic Care 19 (6):471–6. doi: 10.1097/MCO.0000000000000314.
  • Unno, T., M. Sakuma, and S. Mitsuhashi. 2014. Effect of dietary supplementation of (-)-epigallocatechin gallate on gut microbiota and biomarkers of colonic fermentation in rats. Journal of Nutritional Science and Vitaminology 60 (3):213–9. doi: 10.3177/jnsv.60.213.
  • Viacava, F., J. Santana-Gálvez, E. Heredia-Olea, E. Pérez-Carrillo, V. Nair, L. Cisneros-Zevallos, and D. A. Jacobo-Velázquez. 2020. Sequential application of postharvest wounding stress and extrusion as an innovative tool to increase the concentration of free and bound phenolics in carrots. Food Chemistry 307:125551. doi: 10.1016/j.foodchem.2019.125551.
  • Wang, C., L. Wang, J. Ye, and F. Xu. 2022. Fruit quality of Vitis vinifera: How plant metabolites are affected by genetic, environmental, and agronomic factors. Scientia Horticulturae 305:111404. doi: 10.1016/j.scienta.2022.111404.
  • Wang, J., W. Liu, Z. Chen, and H. Chen. 2017. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 90:160–70. doi: 10.1016/j.biopha.2017.03.059.
  • Wang, M., Y. Lu, Q. Wu, G. Chen, H. Zhao, C. Ho, and S. Li. 2023. Biotransformation and gut microbiota-mediated bioactivity of flavonols. Journal of Agricultural and Food Chemistry 71 (22):8317–31. doi: 10.1021/acs.jafc.3c01087.
  • Wang, Z., X. Chen, Z. Guo, X. Feng, P. Huang, M. Du, Z. Zalán, and J. Kan. 2022. Distribution and natural variation of free, esterified, glycosylated, and insoluble-bound phenolic compounds in brocade orange (Citrus sinensis L. Osbeck) peel. Food Research International (Ottawa, Ont.) 153:110958. doi: 10.1016/j.foodres.2022.110958.
  • Wellala, C. K. D., J. Bi, X. Liu, X. Wu, J. Lyu, J. Liu, D. Liu, and C. Guo. 2022. Effect of high pressure homogenization on water-soluble pectin characteristics and bioaccessibility of carotenoids in mixed juice. Food Chemistry 371:131073. doi: 10.1016/j.foodchem.2021.131073.
  • Wu, G., S. K. Johnson, J. F. Bornman, S. J. Bennett, and Z. Fang. 2017. Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chemistry 214:199–207. doi: 10.1016/j.foodchem.2016.07.089.
  • Xia, C., K. Yang, Y. Zhu, T. Liu, J. Chen, J. Deng, B. Zhu, Z. Shi, and Z. Xiang. 2022. Distribution of free and bound phenolic compounds, β-glucan, and araboxylan in fractions of milled hulless barley. Lwt 169:113935. doi: 10.1016/j.lwt.2022.113935.
  • Xia, T., Z. Zhang, Y. Zhao, C. Kang, X. Zhang, Y. Tian, J. Yu, H. Cao, and M. Wang. 2022. The anti-diabetic activity of polyphenols-rich vinegar extract in mice via regulating gut microbiota and liver inflammation. Food Chemistry 393:133443. doi: 10.1016/j.foodchem.2022.133443.
  • Xiao, J. 2022. Recent advances on the stability of dietary polyphenols. eFood 3 (3):e21. doi: 10.1002/efd2.21.
  • Xu, L., J. Cheng, X. Liu, and M. Zhu. 2019. Effect of microencapsulated process on stability of mulberry polyphenol and oxidation property of dried minced pork slices during heat processing and storage. Lwt 100:62–8. doi: 10.1016/j.lwt.2018.10.025.
  • Xu, Z., X. Xiong, Q. Zeng, S. He, Y. Yuan, Y. Wang, Y. Wang, X. Yang, and D. Su. 2020. Alterations in structural and functional properties of insoluble dietary fibers-bound phenolic complexes derived from lychee pulp by alkaline hydrolysis treatment. Lwt 127:109335. doi: 10.1016/j.lwt.2020.109335.
  • Yang, L., Y. Gao, M. A. Farag, J. Gong, Q. Su, H. Cao, W. Zhang, Y. Zhao, and H. Wang. 2023. Dietary flavonoids and gut microbiota interaction: A focus on animal and human studies to maximize their health benefits. Food Frontiers 4 (4):1794–809. doi: 10.1002/fft2.309.
  • Ye, C., R. Zhang, L. Dong, J. Chi, F. Huang, L. Dong, M. Zhang, and X. Jia. 2022. α-Glucosidase inhibitors from brown rice bound phenolics extracts (BRBPE): Identification and mechanism. Food Chemistry 372:131306. doi: 10.1016/j.foodchem.2021.131306.
  • Yu, Q., X. Li, J. Hu, W. Wang, and J. Bi. 2023. The effect of three pectin fractions variation on the browning of different dried apple products. Food Hydrocolloids. 134:108052. doi: 10.1016/j.foodhyd.2022.108052.
  • Zhang, L., P. García-Pérez, E. Martinelli, G. Giuberti, M. Trevisan, and L. Lucini. 2023. Different fractions from wheat flour provide distinctive phenolic profiles and different bioaccessibility of polyphenols following in vitro digestion. Food Chemistry 404 (Pt A):134540. doi: 10.1016/j.foodchem.2022.134540.
  • Zhang, L., T. Wu, Y. Zhang, Y. Chen, X. Ge, W. Sui, Q. Zhu, J. Geng, and M. Zhang. 2023. Release of bound polyphenols from wheat bran soluble dietary fiber during simulated gastrointestinal digestion and colonic fermentation in vitro. Food Chemistry 402:134111. doi: 10.1016/j.foodchem.2022.134111.
  • Zhang, X., M. Zhang, L. Dong, X. Jia, L. Liu, Y. Ma, F. Huang, and R. Zhang. 2019. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation. Journal of Agricultural and Food Chemistry 67 (46):12796–805. doi: 10.1021/acs.jafc.9b06477.
  • Zhong, J., Y. Wang, C. Li, Q. Yu, J. Xie, R. Dong, Y. Xie, B. Li, J. Tian, and Y. Chen. 2022. Natural variation on free, esterified, glycosylated and insoluble-bound phenolics of Rubus chingii Hu: Correlation between phenolic constituents and antioxidant activities. Food Research International (Ottawa, Ont.) 162 (Pt A):112043. doi: 10.1016/j.foodres.2022.112043.
  • Zhou, X., Y. Qin, Y. Wang, Y. Wang, and Z. Qin. 2024. Phytochemical profile and antioxidant characteristics of bound and free phenolics from rosa roxburghii tratt. Food Bioscience 57:103576. doi: 10.1016/j.fbio.2024.103576.
  • Zhu, F. 2018. Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition 58 (11):1808–31. doi: 10.1080/10408398.2017.1287659.
  • Zhu, H., J. Li, X. Yuan, J. Zhao, L. Ma, F. Chen, X. Hu, and J. Ji. 2024. Synergistic effects of superfine grinding and high hydrostatic pressure on the contents, distribution, digestive behaviors and antioxidant activities of polyphenols in barley leaves. Food Chemistry 452:139574. doi: 10.1016/j.foodchem.2024.139574.
  • Zhu, R., J. Shen, C. L. Law, X. Ma, D. Li, Y. Han, H. Kiani, S. Manickam, and Y. Tao. 2023. Combined calcium pretreatment and ultrasonic/microwave drying to dehydrate black chokeberry: Novel mass transfer modeling and metabolic pathways of polyphenols. Innovative Food Science & Emerging Technologies 83:103215. doi: 10.1016/j.ifset.2022.103215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.