0
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications

ORCID Icon, ORCID Icon, , , , , , , , , , , , , , , ORCID Icon, , & ORCID Icon show all

References

  • Abdelhamid, A. S., T. J. Brown, J. S. Brainard, P. Biswas, G. C. Thorpe, H. J. Moore, K. H. O. Deane, C. D. Summerbell, H. V. Worthington, F. Song, et al. 2020. Omega‐3 fatty acids for the primary and secondary prevention of cardiovascular disease. The Cochrane Database of Systematic Reviews 7 (7):CD003177. doi: 10.1002/14651858.CD003177.pub3.
  • Aboelsoud, H., B. Engel, and K. Gad. 2020. Effect of planting methods and gypsum application on yield and water productivity of wheat under salinity conditions in North Nile Delta. Agronomy 10 (6):853. doi: 10.3390/agronomy10060853.
  • Abugoch, L., E. Castro, C. Tapia, M. C. Añón, P. Gajardo, and A. Villarroel. 2009. Stability of quinoa flour proteins (Chenopodium quinoa Willd.) during storage. International Journal of Food Science & Technology 44 (10):2013–20. doi: 10.1111/j.1365-2621.2009.02023.x.
  • Adamczewska-Sowińska, K., J. Sowiński, and A. Jama-Rodzeńska. 2021. The effect of sowing date and harvest time on leafy greens of quinoa (Chenopodium quinoa Willd.) Yield and selected nutritional parameters. Agriculture 11 (5):405. doi: 10.3390/agriculture11050405.
  • Aguilar, J., A. C. Miano, J. Obregón, J. Soriano-Colchado, and G. Barraza-Jáuregui. 2019. Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science 90:102858. doi: 10.1016/j.jcs.2019.102858.
  • Almaguer, C., H. Kollmannsberger, M. Gastl, and T. Becker. 2023a. Daily assessment of malting-induced changes in the volatile composition of barley (Hordeum vulgare L.), rye (Secale cereale L.), and quinoa (Chenopodium quinoa Willd.). Journal of Food Science 88 (9):3773–85. doi: 10.1111/1750-3841.16717.
  • Almaguer, C., H. Kollmannsberger, M. Gastl, and T. Becker. 2023b. Characterization of the aroma profile of quinoa (Chenopodium quinoa Willd.) and assessment of the impact of malting on the odor-active volatile composition. Journal of the Science of Food and Agriculture 103 (5):2283–94. doi: 10.1002/jsfa.12418.
  • Al-Qabba, M. M., M. A. El-Mowafy, S. A. Althwab, H. A. Alfheeaid, T. Aljutaily, and H. Barakat. 2020. Phenolic profile, antioxidant activity, and ameliorating efficacy of Chenopodium quinoa sprouts against CCl4-induced oxidative stress in rats. Nutrients 12 (10):2904. doi: 10.3390/nu12102904.
  • Al-Taher, F., and B. Nemzer. 2023. Effect of germination on fatty acid composition in cereal grains. Foods (Basel, Switzerland) 12 (17):3306. doi: 10.3390/foods12173306.
  • Altıkardeş, E., and N. Güzel. 2024. Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chemistry: X 21:101182. doi: 10.1016/j.fochx.2024.101182.
  • Alvarez-Jubete, L., H. Wijngaard, E. K. Arendt, and E. Gallagher. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry 119 (2):770–8. doi: 10.1016/j.foodchem.2009.07.032.
  • Békés, F., R. Schoenlechner, and S. Tömösközi. 2017. Chapter 14 - Ancient wheats and pseudocereals for possible use in cereal-grain dietary intolerances. Cereal grains (Second Edition). 353–89. doi: 10.1016/B978-0-08-100719-8.00014-0.
  • Bhargava, A., S. Shukla, and D. Ohri. 2006. Chenopodium quinoa—An Indian perspective. Industrial Crops and Products 23 (1):73–87. doi: 10.1016/j.indcrop.2005.04.002.
  • Bhargava, A., S. Shukla, and D. Ohri. 2010. Short communication. Mineral composition in foliage of some cultivated and wild species of Chenopodium. Spanish Journal of Agricultural Research 8 (2):371–6. doi: 10.5424/sjar/2010082-1197.
  • Bhinder, S., A. Kaur, B. Singh, M. P. Yadav, and N. Singh. 2020. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International (Ottawa, Ont.) 130:108946. doi: 10.1016/j.foodres.2019.108946.
  • Bhinder, S., S. Kumari, B. Singh, A. Kaur, and N. Singh. 2021. Impact of germination on phenolic composition, antioxidant properties, ­antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry 346:128915. doi: 10.1016/j.foodchem.2020.128915.
  • Cao, Y., L. Zou, W. Li, Y. Song, G. Zhao, and Y. Hu. 2020. Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. International Journal of Biological Macromolecules 163:55–65. doi: 10.1016/j.ijbiomac.2020.06.241.
  • Carciochi, R. A., K. Dimitrov, and L. Galván D Alessandro. 2016a. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. Journal of Food Science and Technology 53 (11):3978–85. doi: 10.1007/s13197-016-2393-7.
  • Carciochi, R. A., L. Galván-D’Alessandro, P. Vandendriessche, and S. Chollet. 2016b. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (4):361–7. doi: 10.1007/s11130-016-0567-0.
  • Chacaliaza, L., G. Espinoza-B, F. Ramos-Escu, and K. Servan. 2016. Proximate chemical composition and content of biologically active components in leaves of two quinoa cultivars (Salcedo and Altiplano) produced in Peru. Research Journal of Medicinal Plants 10 (8):450–6. doi: 10.3923/rjmp.2016.450.456.
  • Chaudhary, N., S. Walia, and R. Kumar. 2023. Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. Journal of Food Composition and Analysis 118:105192. doi: 10.1016/j.jfca.2023.105192.
  • Chen, X., Y. Zhang, B. Cao, X. Wei, Z. Shen, and N. Su. 2023. Assessment and comparison of nutritional qualities of thirty quinoa (Chenopodium quinoa Willd.) seed varieties. Food Chemistry: X 19:100808. doi: 10.1016/j.fochx.2023.100808.
  • Choque-Quispe, D., C. A. Ligarda-Samanez, B. S. Ramos-Pacheco, S. Leguía Damiano, M. Calla-Florez, L. M. Zamalloa Puma, and L. Colque Condeña. 2021. Phenolic compounds, antioxidant capacity, and protein content of three varieties of germinated quinoa (Chenopodium quinoa Willd). Ingeniería e Investigación 41 (2):e89831. doi: 10.15446/ing.investig.v41n2.89831.
  • Cordeiro, L. M. C., V. d F. Reinhardt, C. H. Baggio, M. F. d P. Werner, L. M. Burci, G. L. Sassaki, and M. Iacomini. 2012. Arabinan and arabinan-rich pectic polysaccharides from quinoa (Chenopodium quinoa) seeds: Structure and gastroprotective activity. Food Chemistry 130 (4):937–44. doi: 10.1016/j.foodchem.2011.08.020.
  • Czumaj, A., and T. Śledziński. 2020. Biological role of unsaturated fatty acid desaturases in health and disease. Nutrients 12 (2):356. doi: 10.3390/nu12020356.
  • Darwish, A. M. G., H. Jumayi, and H. A. Elhendy. 2021. Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti-anemic potential in Sprague-Dawley male albino rats. Cereal Chemistry 98 (2):315–27. doi: 10.1002/cche.10366.
  • Debski, B., M. A. Gralak, K. Gesinski, and E. Jendrzejczak. 2014. Mineral composition of quinoa (Chenopodium quinoa) plant during vegetation period with special reference to copper. Animal Nutrition and Feed Technology 14 (1):1–8. doi: 10.4314/sajas.v44i2.12.
  • Demir, B., and N. Bilgiçli. 2020. Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. Journal of Food Science and Technology 57 (10):3884–92. doi: 10.1007/s13197-020-04420-7.
  • Dewettinck, K., F. Van Bockstaele, B. Kühne, D. Van de Walle, T. M. Courtens, and X. Gellynck. 2008. Nutritional value of bread: Influence of processing, food interaction and consumer perception. Journal of Cereal Science 48 (2):243–57. doi: 10.1016/j.jcs.2008.01.003.
  • Di Cairano, M., F. Galgano, R. Tolve, M. C. Caruso, and N. Condelli. 2018. Focus on gluten free biscuits: Ingredients and issues. Trends in Food Science & Technology 81:203–12. doi: 10.1016/j.tifs.2018.09.006.
  • Ding, J., G. G. Hou, B. V. Nemzer, S. Xiong, A. Dubat, and H. Feng. 2018. Effects of controlled germination on selected physicochemical and functional properties of whole-wheat flour and enhanced γ-aminobutyric acid accumulation by ultrasonication. Food Chemistry 243:214–21. doi: 10.1016/j.foodchem.2017.09.128.
  • Dobor, L., Z. Barcza, T. Hlásny, T. Árendás, T. Spitkó, and N. Fodor. 2016. Crop planting date matters: Estimation methods and effect on future yields. Agricultural and Forest Meteorology 223:103–15. doi: 10.1016/j.agrformet.2016.03.023.
  • Dularia, C., B. Sashikala Vadakkoot, and S. Hossain. 2024. Effect of different processes on physicochemical, antinutritional and textural properties of quinoa seeds and flour. Food and Humanity 2:100246. doi: 10.1016/j.foohum.2024.100246.
  • El Hazzam, K., J. Hafsa, M. Sobeh, M. Mhada, M. Taourirte, K. El Kacimi, and A. Yasri. 2020. An insight into saponins from quinoa (Chenopodium quinoa Willd): A review. Molecules (Basel, Switzerland) 25 (5):1059. doi: 10.3390/molecules25051059.
  • Enciso-Roca, E. C., E. J. Aguilar-Felices, J. A. Tinco-Jayo, J. L. Arroyo-Acevedo, and O. Herrera-Calderon. 2021. Biomolecules with antioxidant capacity from the seeds and sprouts of 20 varieties of Chenopodium quinoa Willd. (quinoa). Plants (Basel, Switzerland) 10 (11):2417. doi: 10.3390/plants10112417.
  • Eryilmaz-Acikgoz, F., S. Adiloglu, Y. Solmaz, and A. Adiloglu. 2018. Determination of some mineral material content in quinoa greens (Chenopodium quinoa) as a vegetable. Fresenius Environmental Bulletin 27 (10):7108–11.
  • Falowo, A. B., F. E. Mukumbo, E. M. Idamokoro, J. M. Lorenzo, A. J. Afolayan, and V. Muchenje. 2018. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Research International (Ottawa, Ont.) 106:317–34. doi: 10.1016/j.foodres.2017.12.079.
  • Fiallos-Jurado, J., J. Pollier, T. Moses, P. Arendt, N. Barriga-Medina, E. Morillo, V. Arahana, M. de Lourdes Torres, A. Goossens, and A. Leon-Reyes. 2016. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science: An International Journal of Experimental Plant Biology 250:188–97. doi: 10.1016/j.plantsci.2016.05.015.
  • Gaetani, S., R. Meli, G. Mattace Raso, C. Irace, R. Simeoli, A. Di Pascale, O. Paciello, T. B. Pagano, A. Calignano, A. Colonna, et al. 2013. High fat diet induces liver steatosis and early dysregulation of iron metabolism in rats. PloS One 8 (6):e66570. doi: 10.1371/journal.pone.0066570.
  • Gawlik-Dziki, U., D. Dziki, B. Baraniak, and R. Lin. 2009. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT - Food Science and Technology 42 (1):137–43. doi: 10.1016/j.lwt.2008.06.009.
  • Gawlik-Dziki, U., D. Dziki, M. Świeca, Ł. Sęczyk, R. Różyło, and U. Szymanowska. 2015. Bread enriched with Chenopodium quinoa leaves powder - The procedures for assessing the fortification efficiency. LWT - Food Science and Technology 62 (2):1226–34. doi: 10.1016/j.lwt.2015.02.007.
  • Gawlik-Dziki, U., M. Świeca, D. Dziki, B. Baraniak, J. Tomiło, and J. Czyż. 2013a. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chemistry 138 (2-3):1621–8. doi: 10.1016/j.foodchem.2012.09.151.
  • Gawlik-Dziki, U., M. Świeca, M. Sułkowski, D. Dziki, B. Baraniak, and J. Czyż. 2013b. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – In vitro study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 57:154–60. doi: 10.1016/j.fct.2013.03.023.
  • Gil-Ramirez, A., D. M. Salas-Veizaga, C. Grey, E. N. Karlsson, I. Rodriguez-Meizoso, and J. A. Linares-Pastén. 2018. Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd.). Industrial Crops and Products 121:54–65. doi: 10.1016/j.indcrop.2018.04.074.
  • Gobbetti, M., M. De Angelis, R. Di Cagno, A. Polo, and C. G. Rizzello. 2020. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Critical Reviews in Food Science and Nutrition 60 (13):2158–73. doi: 10.1080/10408398.2019.1631753.
  • Gómez, M. J. R., P. C. Magro, M. R. Blázquez, I. Maestro-Gaitán, F. M. S. Iñiguez, V. C. Sobrado, and J. M. Prieto. 2024. Nutritional composition of quinoa leafy greens: An underutilized plant-based food with the potential of contributing to current dietary trends. Food Research International (Ottawa, Ont.) 178:113862. doi: 10.1016/j.foodres.2023.113862.
  • Graziano, S., C. Agrimonti, N. Marmiroli, and M. Gullì. 2022. Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology 125:154–65. doi: 10.1016/j.tifs.2022.04.007.
  • Guardianelli, L. M., M. V. Salinas, C. Brites, and M. C. Puppo. 2022. Germination of white and red quinoa seeds: Improvement of nutritional and functional quality of flours. Foods (Basel, Switzerland) 11 (20):3272. doi: 10.3390/foods11203272.
  • He, Y., S. Song, C. Li, X. Zhang, and H. Liu. 2022. Effect of germination on the main chemical compounds and 5-methyltetrahydrofolate metabolism of different quinoa varieties. Food Research International (Ottawa, Ont.) 159:111601– doi: 10.1016/j.foodres.2022.111601.
  • Horstmann, S. W., J. J. Atzler, M. Heitmann, E. Zannini, K. M. Lynch, and E. K. Arendt. 2019. A comparative study of gluten-free sprouts in the gluten-free bread-making process. European Food Research and Technology 245 (3):617–29. doi: 10.1007/s00217-018-3185-2.
  • Hou, H. M., L. P. Shu, Z. H. Yu, D. Zheng, and Y. S. Chen. 2022. Effect of magnetic field-assisting germination on bioactive substances and antioxidant activities of quinoa. Journal of Food Processing and Preservation 46 (11):e17086. doi: 10.1111/jfpp.17086.
  • Hu, Y.-C., J.-L. Hu, J. Li, J. Wang, X.-Y. Zhang, X.-Y. Wu, X. Li, Z.-B. Guo, L. Zou, and D.-T. Wu. 2023. Physicochemical characteristics and biological activities of soluble dietary fibers isolated from the leaves of different quinoa cultivars. Food Research International (Ottawa, Ont.) 163:112166. doi: 10.1016/j.foodres.2022.112166.
  • Jan, N., S. Z. Hussain, B. Naseer, and T. A. Bhat. 2023. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chemistry: X 18:100687. doi: 10.1016/j.fochx.2023.100687.
  • Jimenez, M. D., M. Lobo, and N. Sammán. 2019. 12th IFDC 2017 Special Issue - Influence of germination of quinoa (Chenopodium quinoa) and amaranth (Amaranthus) grains on nutritional and techno-functional properties of their flours. Journal of Food Composition and Analysis 84:103290. doi: 10.1016/j.jfca.2019.103290.
  • Jiménez, D., M. Lobo, B. Irigaray, M. A. Grompone, and N. Sammán. 2020. Oxidative stability of baby dehydrated purees formulated with different oils and germinated grain flours of quinoa and amaranth. Lwt 127:109229. doi: 10.1016/j.lwt.2020.109229.
  • Kathuria, Deepika, Prasad Chavan, Amit K. Jaiswal, Abhimanyu Thakur, Anju K. Dhiman. 2024. A comprehensive review on sprouted seeds bioactives, the impact of novel processing techniques and health benefits. Food Reviews International 40 (1):370–398. doi: 10.1080/87559129.2023.2169453.
  • Kewuyemi, Y. O., H. Kesa, R. Meijboom, O. A. Alimi, and O. A. Adebo. 2023. Comparison of nutritional quality, phenolic compounds, and antioxidant activity of conventional and 3D printed biscuits from wholegrain and multigrain flours. Innovative Food Science & Emerging Technologies 83:103243. doi: 10.1016/j.ifset.2022.103243.
  • Khan, I. H., and A. Javaid. 2022. Hexane soluble bioactive components of leaf extract of quinoa. Journal of Animal and Plant Sciences-Japs 32 (2):609–14. doi: 10.36899/JAPS.2022.2.0461.
  • Laganà, V., A. M. Giuffrè, A. De Bruno, and M. Poiana. 2022. Formulation of biscuits fortified with a flour obtained from bergamot by-products (Citrus bergamia, Risso). Foods (Basel, Switzerland) 11 (8):1137. doi: 10.3390/foods11081137.
  • Lan, Y. L., X. Z. Wang, L. Wang, W. G. Zhang, Y. J. Song, S. Y. Zhao, X. J. Yang, and X. B. Liu. 2024. Change of physiochemical characteristics, nutritional quality, and volatile compounds of (Chenopodium quino Willd.) during germination. Food Chemistry 445:138693. doi: 10.1016/j.foodchem.2024.138693.
  • Le, L., X. Gong, Q. An, D. Xiang, L. Zou, L. Peng, X. Wu, M. Tan, Z. Nie, Q. Wu, et al. 2021. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chemistry 357:129752. doi: 10.1016/j.foodchem.2021.129752.
  • Liao, Z., Z. W. Tan, P. Zhu, and N. S. Tan. 2019. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor ­malignancy. Cellular Immunology 343:103729. doi: 10.1016/j.cellimm.2017.12.003.
  • Lim, J. G., H. M. Park, and K. S. Yoon. 2019. Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Science & Nutrition 8 (1):694–702. doi: 10.1002/fsn3.1358.
  • Lin, M. Y., P. P. Han, Y. Y. Li, W. X. Wang, D. W. Lai, and L. G. Zhou. 2019. Quinoa secondary metabolites and their biological activities or functions. Molecules (Basel, Switzerland) 24 (13):2512. doi: 10.3390/molecules24132512.
  • Lopes, C. D., M. D. P. Barcelos, C. N. D. Vieira, W. C. de Abreu, E. B. Ferreira, R. C. Pereira, and M. C. de Angelis-Pereira. 2019. Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. Journal of Food Science and Technology 56 (1):40–8. doi: 10.1007/s13197-018-3436-z.
  • Mäkinen, O. E., E. Zannini, and E. K. Arendt. 2013. Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (1):90–5. doi: 10.1007/s11130-013-0335-3.
  • Maldonado-Alvarado, P., D. J. Pavón-Vargas, J. Abarca-Robles, S. Valencia-Chamorro, and C. M. Haros. 2023. Effect of germination on the nutritional properties, phytic acid content, and phytase activity of quinoa (Chenopodium quinoan Willd). Foods (Basel, Switzerland) 12 (2):389. doi: 10.3390/foods12020389.
  • Maqbool, Zahra, Waseem Khalid, Anosha Khan, Maliha Azmat, Aqeela Sehrish, Sania Zia, Hyrije Koraqi, Ammar Al-Farga, Faisal Aqlan, Khalid Ali, Khan. 2024. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant ­potential, sensory evaluation, and health perspective. Food Science & nutrition 12 (2):707–721. doi: 10.1002/fsn3.3830.
  • Mbithi-Mwikya, S., J. Van Camp, Y. Yiru, and A. Huyghebaert. 2000. Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. LWT - Food Science and Technology 33 (1):9–14. doi: 10.1006/fstl.1999.0605.
  • Mecha, E., V. Correia, A. Bento da Silva, A. Ferreira, B. Sepodes, M. E. Figueira, M. C. Vaz Patto, and M. Rosário Bronze. 2021. Improvement of wheat cookies’ nutritional quality, by partial substitution with common bean and maize flours, sustained human glycemia and ­enhanced satiety perception. Cereal Chemistry 98 (5):1123–34. doi: 10.1002/cche.10460.
  • Meo, B., G. Freeman, O. Marconi, C. Booer, G. Perretti, and P. Fantozzi. 2011. Behaviour of malted cereals and pseudo-cereals for gluten-free beer production. Journal of the Institute of Brewing 117 (4):541–6. doi: 10.1002/j.2050-0416.2011.tb00502.x.
  • Miranda, M., A. Vega-Gálvez, E. A. Martínez, J. López, R. Marín, M. Aranda, and F. Fuentes. 2013. Influence of contrasting environments on seed composition of two quinoa genotypes: Nutritional and functional properties. Chilean Journal of Agricultural Research 73 (2):06–7. doi: 10.4067/S0718-58392013000200004.
  • Miranda, M., A. Vega-Gálvez, I. Quispe-Fuentes, M. J. Rodríguez, H. Maureira, and E. A. Martínez. 2012. Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) ecotypes from three geographical areas of chile. Chilean Journal of Agricultural Research 72 (2):175–81. doi: 10.4067/S0718-58392012000200002.
  • Miranda-Villa, P. P., J. R. Mufari, A. E. Bergesse, and E. L. Calandri. 2019. Effects of whole and malted quinoa flour addition on gluten-free muffins quality. Journal of Food Science 84 (1):147–53. doi: 10.1111/1750-3841.14413.
  • Montemurro, M., E. Pontonio, M. Gobbetti, and C. G. Rizzello. 2019. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology 302:. 7–58. doi: 10.1016/j.ijfoodmicro.2018.08.005.
  • Motta, C., I. Castanheira, G. B. Gonzales, I. Delgado, D. Torres, M. Santos, and A. S. Matos. 2019. Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis 76:58–65. doi: 10.1016/j.jfca.2018.10.001.
  • Motta, C., I. Delgado, A. S. Matos, G. B. Gonzales, D. Torres, M. Santos, M. V. Chandra-Hioe, J. Arcot, and I. Castanheira. 2017. Folates in quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum): Influence of cooking and malting. Journal of Food Composition and Analysis 64:. 81–7. doi: 10.1016/j.jfca.2017.09.003.
  • Mufari, J. R., A. C. Rodríguez-Ruiz, A. E. Bergesse, P. P. Miranda-Villa, V. Nepote, and A. R. Velez. 2021. Bioactive compounds extraction from malted quinoa using water-ethanol mixtures under subcritical conditions. Lwt 138:110574. doi: 10.1016/j.lwt.2020.110574.
  • Namrata, S., and A. Haripriya. 2022. Effect of germination on selected phytochemicals and antioxidant activity of quinoa (Chenopodium quinoa). Indian Journal of Traditional Knowledge 21 (4):876–82. doi: 10.56042/ijtk.v21i4.33004.
  • Navruz-Varli, S., and N. Sanlier. 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science 69:371–6. doi: 10.1016/j.jcs.2016.05.004.
  • Nowak, V., J. Du, and U. R. Charrondière. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry 193:47–54. doi: 10.1016/j.foodchem.2015.02.111.
  • Obaroakpo, J. U., W. Nan, L. Hao, L. Liu, S. Zhang, J. Lu, X. Pang, and J. Lv. 2020. The hyperglycemic regulatory effect of sprouted quinoa yoghurt in high-fat-diet and streptozotocin-induced type 2 diabetic mice via glucose and lipid homeostasis. Food & Function 11 (9):8354–68. doi: 10.1039/d0fo01575j.
  • Özdemir, N. 2015. Iron deficiency anemia from diagnosis to treatment in children. Turk Pediatri Arsivi 50 (1):11–9. doi: 10.5152/tpa.2015.2337.
  • Pandey, S., and K. G. Rajinder. 2014. Screening of nutritional, phytochemical, antioxidant and antibacterial activity of Chenopodium album (Bathua). Journal of Pharmacognosy and Phytochemistry 3 (3):1–9.
  • Pandya, A., B. Thiele, A. Zurita-Silva, B. Usadel, and F. Fiorani. 2021. Determination and metabolite profiling of mixtures of triterpenoid saponins from seeds of Chilean Quinoa (Chenopodium quinoa) Germplasm. Agronomy 11 (9):1867. doi: 10.3390/agronomy11091867.
  • Paśko, P., H. Bartoń, P. Zagrodzki, S. Gorinstein, M. Fołta, and Z. Zachwieja. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry 115 (3):994–8. doi: 10.1016/j.foodchem.2009.01.037.
  • Patel, A., S. S. Desai, V. K. Mane, J. Enman, U. Rova, P. Christakopoulos, and L. Matsakas. 2022. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends in Food Science & Technology 120:140–53. doi: 10.1016/j.tifs.2022.01.006.
  • Pathan, S., F. Eivazi, B. Valliyodan, K. Paul, G. Ndunguru, and K. Clark. 2019. Nutritional composition of the green leaves of quinoa (Chenopodium quinoa Willd.). Journal of Food Research 8 (6):55. doi: 10.5539/jfr.v8n6p55.
  • Pathan, S., and R. A. Siddiqui. 2022. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients 14 (3):558. doi: 10.3390/nu14030558.
  • Paucar-Menacho, L. M., C. Martínez-Villaluenga, M. Dueñas, J. Frias, and E. Peñas. 2018. Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science & Technology 53 (2):516–24. doi: 10.1111/ijfs.13623.
  • Paucar-Menacho, L. M., M. Schmiele, J. C. V. Guzmán, S. M. Rodrigues, W. D. Simpalo-Lopez, W. E. Castillo-Martínez, and C. Martínez-Villaluenga. 2024. Smart pasta design: Tailoring formulations for technological excellence with sprouted quinoa and kiwicha grains. Foods (Basel, Switzerland) 13 (2):353. doi: 10.3390/foods13020353.
  • Paucar-Menacho, L. M., M. Schmiele, A. A. Lavado-Cruz, A. L. Verona-Ruiz, C. Mollá, E. Peñas, J. Frias, W. D. Simpalo-Lopez, W. E. Castillo-Martínez, and C. Martínez-Villaluenga. 2022a. Andean sprouted pseudocereals to produce healthier extrudates: Impact in nutritional and physicochemical properties. Foods (Basel, Switzerland) 11 (20):. 259. doi: 10.3390/foods11203259.
  • Paucar-Menacho, L. M., W. D. Simpalo-López, W. E. Castillo-Martínez, L. J. Esquivel-Paredes, and C. Martínez-Villaluenga. 2022b. Improving nutritional and health benefits of biscuits by optimizing formulations based on sprouted pseudocereal grains. Foods (Basel, Switzerland) 11 (11):. 533. doi: 10.3390/foods11111533.
  • Peiretti, P. G., F. Gai, and S. Tassone. 2013. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183 (1-2):56–61. doi: 10.1016/j.anifeedsci.2013.04.012.
  • Peng, X., J. Ma, K.-W. Cheng, Y. Jiang, F. Chen, and M. Wang. 2010. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry 119 (1):49–53. doi: 10.1016/j.foodchem.2009.05.083.
  • Perri, G., F. M. Calabrese, C. G. Rizzello, M. De Angelis, M. Gobbetti, and M. Calasso. 2020. Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. Lwt 126:109314. doi: 10.1016/j.lwt.2020.109314.
  • Phillips, K. M., M. T. Tarrago-Trani, R. C. McGinty, A. S. Rasor, D. B. Haytowitz, and P. R. Pehrsson. 2018. Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. Journal of the Science of Food and Agriculture 98 (11):4191–204. doi: 10.1002/jsfa.8941.
  • Pilco-Quesada, S., Y. Tian, B. R. Yang, R. Repo-Carrasco-Valencia, and J. P. Suomela. 2020. Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science 94:102996. doi: 10.1016/j.jcs.2020.102996.
  • Ramos-Pacheco, B. S., D. Choque-Quispe, C. A. Ligarda-Samanez, A. M. Solano-Reynoso, H. Palomino-Rincón, Y. Choque-Quispe, D. E. Peralta-Guevara, E. Moscoso-Moscoso, and A. S. Aiquipa-Pillaca. 2024. Effect of germination on the physicochemical properties, functional groups, content of bioactive compounds, and antioxidant capacity of different varieties of quinoa (Chenopodium quinoa Willd.) grown in the high Andean Zone of Peru. Foods (Basel, Switzerland) 13 (3):417. doi: 10.3390/foods13030417.
  • Rebollo-Hernanz, M., Y. Aguilera, T. Herrera, L. T. Cayuelas, M. Dueñas, P. Rodríguez-Rodríguez, D. Ramiro-Cortijo, S. M. Arribas, and M. A. Martín-Cabrejas. 2020. Bioavailability of melatonin from lentil sprouts and its role in the plasmatic antioxidant status in rats. Foods (Basel, Switzerland) 9 (3):330. doi: 10.3390/foods9030330.
  • Repo-Carrasco-Valencia, R. A.-M., and L. A. Serna. 2011. Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Ciência e Tecnologia de Alimentos 31 (1):225–30. doi: 10.1590/S0101-20612011000100035.
  • Rieusset, J. 2018. The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: An update. Cell Death & Disease 9 (3):388. doi: 10.1038/s41419-018-0416-1.
  • Roberfroid, M. 1993. Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Critical Reviews in Food Science and Nutrition 33 (2):103–48. doi: 10.1080/10408399309527616.
  • Roshani, K., M. Emtyazjoo, M. Rabbani, M. J. Shakouri, and S. Movahhed. 2024. Ultrasound-assisted extraction of quinoa seed malt extract for the determination of nutritional content, antioxidant, and anticancer activity against HT-29 colorectal cancer cell lines. Journal of Food Measurement and Characterization 18 (5):3950–9. doi: 10.1007/s11694-024-02467-0.
  • Rubinovich, L., R. Dagan, Y. Lugasi, S. Galili, and A. Asher. 2023. The potential of young vegetative quinoa (Chenopodium quinoa) as a new sustainable protein-rich winter leafy crop under Mediterranean climate. PloS One 18 (12):e0290000. doi: 10.1371/journal.pone.0290000.
  • Ruiz, K. B., S. Biondi, R. Oses, I. S. Acuña-Rodríguez, F. Antognoni, E. A. Martinez-Mosqueira, A. Coulibaly, A. Canahua-Murillo, M. Pinto, A. Zurita-Silva, et al. 2014. Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development 34 (2):349–59. doi: 10.1007/s13593-013-0195-0.
  • Schmidt, D., M. R. Verruma-Bernardi, V. A. Forti, and M. T. M. R. Borges. 2023. Quinoa and amaranth as functional foods: A review. Food Reviews International 39 (4):2277–96. doi: 10.1080/87559129.2021.1950175.
  • Sezgin, A. C., and N. Sanlier. 2019. A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Wild.). Trends in Food Science & Technology 86:51–8. doi: 10.1016/j.tifs.2019.02.039.
  • Sezgin, S., T. Sarkar, M. Salauddin, S. Roy, R. Chakraborty, M. Rebezov, M. A. Shariati, M. Thiruvengadam, and K. R. R. Rengasamy. 2022. Underutilized green leafy vegetables: Frontier in fortified food development and nutrition. Critical Reviews in Food Science and Nutrition 63 (33):11679–733. doi: 10.1080/10408398.2022.2095555.
  • Sharma, K. D., G. Bindal, R. Rathour, and J. C. Rana. 2012. β-Carotene and mineral content of different Chenopodium species and the effect of cooking on micronutrient retention. International Journal of Food Sciences and Nutrition 63 (3):290–5. doi: 10.3109/09637486.2011.624493.
  • Simnadis, T. G., L. C. Tapsell, and E. J. Beck. 2015. Physiological effects associated with quinoa consumption and implications for research involving humans: A review. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 70 (3):238–49. doi: 10.1007/s11130-015-0506-5.
  • Sivam, A. S., D. Sun-Waterhouse, S. Quek, and C. O. Perera. 2010. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. Journal of Food Science 75 (8):R163–R174. doi: 10.1111/j.1750-3841.2010.01815.x.
  • Song, L., L. S. Song, H. Su, F. M. Ma, and B. Q. Zhang. 2022. Superfine grinding affects particle size, chemical ingredients, and physicochemical properties of sprouting quinoa. Cereal Chemistry 99 (3):520–9. doi: 10.1002/cche.10515.
  • Stoleru, V., S. E. Jacobsen, M. Vitanescu, G. Jitareanu, M. Butnariu, N. Munteanu, T. Stan, G. C. Teliban, A. Cojocaru, and G. Mihalache. 2022b. Nutritional and antinutritional compounds in leaves of quinoa. Food Bioscience 45:101494. doi: 10.1016/j.fbio.2021.101494.
  • Stoleru, V., M. Vitanescu, G.-C. Teliban, A. Cojocaru, L. Vlase, A.-M. Gheldiu, I. Mangalagiu, D. Amăriucăi-Mantu, M. Burducea, V. Zheljazkov, et al. 2022a. Phytosterol and polyphenol contents and quinoa leave yields variation in relationships to variety, density and harvesting date. Agronomy 12 (10):2397. doi: 10.3390/agronomy12102397.
  • Suárez-Estrella, D., G. Borgonovo, S. Buratti, P. Ferranti, F. Accardo, M. A. Pagani, and A. Marti. 2021. Sprouting of quinoa (Chenopodium quinoa Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. Lwt 144:111234. doi: 10.1016/j.lwt.2021.111234.
  • Suárez-Estrella, D., G. Cardone, S. Buratti, M. A. Pagani, and A. Marti. 2020. Sprouting as a pre-processing for producing quinoa-enriched bread. Journal of Cereal Science 96:103111. doi: 10.1016/j.jcs.2020.103111.
  • Suárez-Estrella, D., L. Torri, M. A. Pagani, and A. Marti. 2018. Quinoa bitterness: Causes and solutions for improving product acceptability. Journal of the Science of Food and Agriculture 98 (11):4033–41. doi: 10.1002/jsfa.8980.
  • Thakur, P., K. Kumar, and H. S. Dhaliwal. 2021. Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Bioscience 42:101170. doi: 10.1016/j.fbio.2021.101170.
  • Troesch, B., M. Eggersdorfer, A. Laviano, Y. Rolland, A. D. Smith, I. Warnke, A. Weimann, and P. C. Calder. 2020. Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients 12 (9):2555. doi: 10.3390/nu12092555.
  • Ujiroghene, O. J., L. Liu, S. W. Zhang, J. Lu, X. Y. Pang, and J. P. Lv. 2019. α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. Food Chemistry 299:124985. doi: 10.1016/j.foodchem.2019.124985.
  • Vázquez-Luna, A., V. Pimentel Cortés, F. Fuentes Carmona, and R. Díaz-Sobac. 2019. Quinoa leaf as a nutritional alternative. Ciencia e Investigacion Agraria 46 (2):137–43. doi: 10.7764/rcia.v46i2.2098.
  • Vega-Gálvez, A., M. Miranda, J. Vergara, E. Uribe, L. Puente, and E. A. Martínez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Wild.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture 90 (15):2541–7. doi: 10.1002/jsfa.4158.
  • Villacrés, E., M. Quelal, S. Galarza, D. Iza, and E. Silva. 2022. Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants (Basel, Switzerland) 11 (2):213. doi: 10.3390/plants11020213.
  • Vollmannová, A., E. Margitanová, T. Tóth, M. Timoracká, D. Urminská, T. Bojňanská, and I. Čičová. 2013. Cultivar influence on total polyphenol and rutin contents and total antioxidant capacity in buckwheat, amaranth, and quinoa seeds. Czech Journal of Food Sciences 31 (6):589–95. doi: 10.17221/452/2012-CJFS.
  • Wang, X., X. Cai, C. Xu, Q. Zhao, C. Ge, S. Dai, and Q-h Wang. 2017. Diversity of nitrate, oxalate, vitamin C and carotenoid contents in different spinach accessions and their correlation with various morphological traits. The Journal of Horticultural Science and Biotechnology 93 (4):409–15. doi: 10.1080/14620316.2017.1404438.
  • Wang, Y., Y. Fang, P. K. Witting, F. J. Charchar, C. G. Sobey, G. R. Drummond, and J. Golledge. 2023. Dietary fatty acids and mortality risk from heart disease in US adults: An analysis based on NHANES. Scientific Reports 13 (1):1614. doi: 10.1038/s41598-023-28738-2.
  • Wang, J. F., H. Ma, and S. M. Wang. 2019. Application of ultrasound, microwaves, and magnetic fields techniques in the germination of cereals. Food Science and Technology Research 25 (4):489–97. doi: 10.3136/fstr.25.489.
  • Wang, X. K., R. Q. Yang, X. L. Jin, C. Shen, Y. L. Zhou, Z. J. Chen, and Z. X. Gu. 2016. Effect of supplemental Ca2+ on yield and quality characteristics of soybean sprouts. Scientia Horticulturae 198:352–62. doi: 10.1016/j.scienta.2015.11.022.
  • Wang, S., X. Zhang, Y. Fan, Y. Wang, R. Yang, J. Wu, J. Xu, and K. Tu. 2024. Effect of magnetic field pretreatment on germination characteristics, phenolic biosynthesis, and antioxidant capacity of quinoa. Plant Physiology and Biochemistry: PPB 212:108734. doi: 10.1016/j.plaphy.2024.108734.
  • Wires, E. S., K. A. Trychta, S. Bäck, A. Sulima, K. C. Rice, and B. K. Harvey. 2017. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. Journal of Hepatology 67 (5):1009–17. doi: 10.1016/j.jhep.2017.05.023.
  • Wu, D.-T., J. Wang, J. Li, J.-L. Hu, H. Yan, J. Zhao, L. Zou, and Y.-C. Hu. 2023. Physicochemical properties and biological functions of soluble dietary fibers isolated from common and Tartary buckwheat sprouts. Lwt 183:114944. doi: 10.1016/j.lwt.2023.114944.
  • Wu, M. Y., Q. Zhou, L. F. Zhou, J. Wang, T. Ren, Y. Zheng, W. Lv, and W. Zhao. 2024. Enhancement of γ-aminobutyric acid and the characteristics of nutrition and function in white quinoa through ultrasound stress at the pre-germination stage. Foods (Basel, Switzerland) 13 (1):57. doi: 10.3390/foods13010057.
  • Xia, Q., L. Wang, C. Xu, J. Mei, and Y. Li. 2017. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry 214:533–42. doi: 10.1016/j.foodchem.2016.07.114.
  • Xiao, F., and F. Guo. 2022. Impacts of essential amino acids on energy balance. Molecular Metabolism 57:101393. doi: 10.1016/j.molmet.2021.101393.
  • Xing, B., C. Teng, M. H. Sun, Q. P. Zhang, B. W. Zhou, H. L. Cui, G. X. Ren, X. S. Yang, and P. Y. Qin. 2021. Effect of germination treatment on the structural and physicochemical properties of quinoa starch. Food Hydrocolloids. 115:106604. doi: 10.1016/j.foodhyd.2021.106604.
  • Xu, M., Z. Jin, S. Simsek, C. Hall, J. Rao, and B. Chen. 2019. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry 295:579–87. doi: 10.1016/j.foodchem.2019.05.167.
  • Yao, Y., X. S. Yang, Z. X. Shi, and G. X. Ren. 2014. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. Journal of Food Science 79 (5):H1018–H1023. doi: 10.1111/1750-3841.12425.
  • Yarabbi, H., S. Roshanak, and E. Milani. 2023. Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage. Food Science & Nutrition 11 (9):5596–608. doi: 10.1002/fsn3.3517.
  • Yoon, Y.-E., S. Kuppusamy, S. Y. Kim, J. H. Kim, and Y. B. Lee. 2016. Free amino acid composition of Korean Spinach (Spinacia oleracea) cultivars as influenced by different harvesting time. Korean Journal of Environmental Agriculture 35 (2):104–10. doi: 10.5338/KJEA.2016.35.2.21.
  • Zhang, Y., Z. Ma, H. Cao, K. Huang, and X. Guan. 2022. Effect of germinating quinoa flour on wheat noodle quality and changes in blood glucose. Food Bioscience 48:101809. doi: 10.1016/j.fbio.2022.101809.
  • Zhang, Q. P., B. Xing, M. H. Sun, B. W. Zhou, G. X. Ren, and P. Y. Qin. 2020. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Science & Nutrition 8 (8):4232–41. doi: 10.1002/fsn3.1718.
  • Zhu, F. 2020. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers 248:116819. doi: 10.1016/j.carbpol.2020.116819.
  • Złotek, U., U. Gawlik-Dziki, D. Dziki, M. Świeca, R. Nowak, and E. Martinez. 2019. Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. Journal of Chemistry 2019:1–8. doi: 10.1155/2019/7125169.
  • Zrig, A., A. M. Saleh, M. S. Sheteiwy, F. Hamouda, S. Selim, M. Abdel-Mawgoud, M. S. Almuhayawi, M. K. Okla, Z. K. Abbas, W. H. Al-Qahtani, et al. 2022. Melatonin priming as a promising ­approach to improve biomass accumulation and the nutritional values of Chenopodium quinoa sprouts: A genotype-based study. Scientia Horticulturae 301:111088. doi: 10.1016/j.scienta.2022.11108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.