61
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A review of endogenous non-starch components in cereal matrix: spatial distribution and mechanisms for inhibiting starch digestion

, , ORCID Icon, , &

References

  • Annor, G. A., M. Marcone, E. Bertoft, and K. Seetharaman. 2013. In vitro starch digestibility and expected glycemic index of Kodo Millet (Paspalum scrobiculatum) as affected by starch–protein–lipid interactions. Cereal Chemistry 90 (3):211–7. doi: 10.1094/CCHEM-06-12-0074-R.
  • Antoine, C., S. Peyron, F. Mabille, C. Lapierre, B. Bouchet, J. Abecassis, and X. Rouau. 2003. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. Journal of Agricultural and Food Chemistry 51 (7):2026–33. doi: 10.1021/jf0261598.
  • Bae, J. E., J. S. Hong, M. Y. Baik, H. D. Choi, H. W. Choi, and H. S. Kim. 2020. Impact of starch granule-associated surface and channel proteins on physicochemical properties of corn and rice starches. Carbohydrate Polymers 250:116908. doi: 10.1016/j.carbpol.2020.116908.
  • Bancel, E., H. Rogniaux, C. Debiton, C. Chambon, and G. Branlard. 2010. Extraction and proteome analysis of starch granule-associated proteins in mature wheat kernel (Triticum aestivum L.). Journal of Proteome Research 9 (6):3299–310. doi: 10.1021/pr9010525.
  • Bhattarai, R. R., S. Dhital, A. Mense, M. J. Gidley, and Y. C. Shi. 2018. Intact cellular structure in cereal endosperm limits starch digestion in vitro. Food Hydrocolloids. 81:139–48. doi: 10.1016/j.foodhyd.2018.02.027.
  • Brouns, F., Y. Hemery, R. Price, and N. M. Anson. 2012. Wheat aleurone: Separation, composition, health aspects, and potential food use. Critical Reviews in Food Science and Nutrition 52 (6):553–68. doi: 10.1080/10408398.2011.589540.
  • Buanafina, M. M., and O. P. de Morris. 2022. The impact of cell wall feruloylation on plant growth, responses to environmental stress, plant pathogens and cell wall degradability. Agronomy 12 (8):1847. doi: 10.3390/agronomy12081847.
  • Cai, C., Y. Tian, C. Sun, and Z. Jin. 2022. Resistant structure of extruded starch: Effects of fatty acids with different chain lengths and degree of unsaturation. Food Chemistry 374:131510. doi: 10.1016/j.foodchem.2021.131510.
  • Cao, S., B. Liu, D. Wang, A. Rasheed, L. Xie, X. Xia, and Z. He. 2024. Orchestrating seed storage protein and starch accumulation toward overcoming yield–quality trade-off in cereal crops. Journal of Integrative Plant Biology 66 (3):468–83. doi: 10.1111/jipb.13633.
  • Cervantes-Pahm, S. K., Y. Liu, and H. H. Stein. 2014. Digestible indispensable amino acid score and digestible amino acids in eight cereal grains. The British Journal of Nutrition 111 (9):1663–72. doi: 10.1017/S0007114513004273.
  • Chao, C., S. Liang, Z. Zhang, M. J. Gidley, Y. Liu, and S. Wang. 2024. New insight into the effects of endogenous protein and lipids on the enzymatic digestion of starch in sorghum flour. Foods (Basel, Switzerland) 13 (5):663. doi: 10.3390/foods13050663.
  • Chen, X., X. He, B. Zhang, L. Sun, Z. Liang, and Q. Huang. 2019. Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules 129:433–41. doi: 10.1016/j.ijbiomac.2019.01.215.
  • Chen, Z.,A. Hu,A. Ihsan, andJ. Zheng. 2024. The formation, structure, and physicochemical characteristics of starch-lipid complexes and the impact of ultrasound on their properties: A review. Trends in Food Science & Technology 148:104515. doi: 10.1016/j.tifs.2024.104515.
  • Chen, Z., Q. Huang, Q. Xia, B. Zha, J. Sun, B. Xu, and Y. C. Shi. 2020. Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro. Food Chemistry 330:127318. doi: 10.1016/j.foodchem.2020.127318.
  • Chen, X., H. Zhang, L. Zhu, G. Wu, L. Cheng, and J. Li. 2022. Effects of structural barriers on digestive properties of highland barley as compared with unpolished rice and oats. Food Bioscience 50:102089. doi: 10.1016/j.fbio.2022.102089.
  • Chen, X., L. Zhu, H. Zhang, G. Wu, L. Cheng, and J. Li. 2023. Effects of composition, starch structural orders, and kernel structure on starch in vitro digestion of highland barley. Carbohydrate Polymers 301 (Pt A):120274. doi: 10.1016/j.carbpol.2022.120274.
  • Cyran, M. R., K. K. Snochowska, M. J. Potrzebowski, S. Kaźmierski, P. Azadi, C. Heiss, L. Tan, I. Ndukwe, and R. Bonikowski. 2024. Xylan-cellulose core structure of oat water-extractable β-glucan macromolecule: Insight into interactions and organization of the cell wall complex. Carbohydrate Polymers 324:121522. doi: 10.1016/j.carbpol.2023.121522.
  • Dhital, S., C. Brennan, and M. J. Gidley. 2019. Location and interactions of starches in planta: Effects on food and nutritional functionality. Trends in Food Science & Technology 93:158–66. doi: 10.1016/j.tifs.2019.09.011.
  • Dhital, S., M. J. Gidley, and F. J. Warren. 2015. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications. Carbohydrate Polymers 123:305–12. doi: 10.1016/j.carbpol.2015.01.039.
  • Dhital, S., K. J. Shelat, A. K. Shrestha, and M. J. Gidley. 2013. Heterogeneity in maize starch granule internal architecture deduced from diffusion of fluorescent dextran probes. Carbohydrate Polymers 93 (2):365–73. doi: 10.1016/j.carbpol.2012.12.017.
  • Ding, Y., J. Cheng, Q. Lin, Q. Wang, J. Wang, and G. Yu. 2021. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocolloids. 111:106254. doi: 10.1016/j.foodhyd.2020.106254.
  • Dong, D., Z. Qi, and B. Cui. 2020. Complex formation between soy proteins and potato starch: Effect of ph, biopolymer ratio, and biopolymer concentration. Starch - Stärke 72 (1-2):1900020. doi: 10.1002/star.201900020.
  • Edwards, C. H., M. M. Grundy, T. Grassby, D. Vasilopoulou, G. S. Frost, P. J. Butterworth, S. E. Berry, J. Sanderson, and P. R. Ellis. 2015. Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: A randomized controlled trial in healthy ileostomy participants. The American Journal of Clinical Nutrition 102 (4):791–800. doi: 10.3945/ajcn.114.106203.
  • Edwards, C. H., P. Ryden, G. Mandalari, P. J. Butterworth, and P. R. Ellis. 2021. Structure–function studies of chickpea and durum wheat uncover mechanisms by which cell wall properties influence starch bioaccessibility. Nature Food 2 (2):118–26. doi: 10.1038/s43016-021-00230-y.
  • Fan, J. X., X. N. Guo, and K. X. Zhu. 2024. Insight into the dynamic molecular mechanism underlying the endogenous polyphenols inhibiting the in vitro starch digestion of highland barley noodles. Food Chemistry 437 (Pt 1):137870. doi: 10.1016/j.foodchem.2023.137870.
  • Finnie, S. M., N. A. Pugh, R. R. Klein, H. S. Martinez, R. S. Martinez, R. Rodriguez-Herrera, W. L. Rooney, and P. E. Klein. 2009. Quantitative characterization of polar lipids from wheat whole meal, flour, and starch. Cereal Chemistry 86 (6):637–45. doi: 10.1094/CCHEM-86-6-0637.
  • Gallant, D. J., B. Bouchet, A. Buléon, and S. Pérez. 1992. Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journal of Clinical Nutrition 46 (Suppl 2):S3–S16.
  • Gan, Z., M. Zhang, S. Xu, T. Li, X. Zhang, J. Wang, and L. Wang. 2023. Comparison of quinoa and highland barley derived dietary fibers influence on the physicochemical properties and digestion of rice starch. Food Research International (Ottawa, Ont.) 174 (Pt 1):113549. doi: 10.1016/j.foodres.2023.113549.
  • Gartaula, G., S. Dhital, O. Deshmukh, G. Netzel, and M. J. Gidley. 2019. Rheological characterisation of cell walls from wheat flour and endosperm: Effects of diferulate crosslink hydrolysis. Food Hydrocolloids. 88:265–71. doi: 10.1016/j.foodhyd.2018.10.004.
  • Gartaula, G., S. Dhital, G. Netzel, B. M. Flanagan, G. E. Yakubov, C. T. Beahan, H. M. Collins, R. A. Burton, A. Bacic, and M. J. Gidley. 2018. Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydrate Polymers 196:199–208. doi: 10.1016/j.carbpol.2018.05.041.
  • Gartaula, G., S. Dhital, D. Pleming, and M. J. Gidley. 2017. Isolation of wheat endosperm cell walls: Effects of non-endosperm flour components on structural analyses. Journal of Cereal Science 74:165–73. doi: 10.1016/j.jcs.2017.02.004.
  • Gong, L., D. Feng, J. Liu, Y. Yu, and J. Wang. 2022. Ionic liquid depolymerize the lignocellulose for the enzymatic extraction of feruloylated oligosaccharide from corn bran. Food Chemistry: X 15:100381. doi: 10.1016/j.fochx.2022.100381.
  • Gong, L., D. Feng, T. Wang, Y. Ren, Y. Liu, and J. Wang. 2020. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Science & Nutrition 8 (12):6320–37. doi: 10.1002/fsn3.1987.
  • Han, X., M. Benmoussa, J. A. Gray, J. N. BeMiller, and B. R. Hamaker. 2005. Detection of proteins in starch granule channels. Cereal Chemistry 82 (4):351–5. doi: 10.1094/CC-82-0351.
  • Hasjim, J., E. Li, and S. Dhital. 2013. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydrate Polymers 92 (1):682–90. doi: 10.1016/j.carbpol.2012.09.023.
  • He, J., S. Penson, S. J. Powers, C. Hawes, P. R. Shewry, and P. Tosi. 2013. Spatial patterns of gluten protein and polymer distribution in wheat grain. Journal of Agricultural and Food Chemistry 61 (26):6207–15. doi: 10.1021/jf401623d.
  • Kettlewell, P. S., M. W. Griffiths, T. J. Hocking, and D. J. Wallington. 1998. Dependence of wheat dough extensibility on flour sulphur and nitrogen concentrations and the influence of foliar-applied sulphur and nitrogen fertilisers. Journal of Cereal Science 28 (1):15–23. doi: 10.1006/jcrs.1997.0181.
  • Kim, Y., J. B. Keogh, and P. M. Clifton. 2016. Polyphenols and glycemic control. Nutrients 8 (1):17. doi: 10.3390/nu8010017.
  • Kong, H., L. Yu, C. Li, X. Ban, Z. Gu, L. Liu, and Z. Li. 2022. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydrate Polymers 292:119621. doi: 10.1016/j.carbpol.2022.119621.
  • Korompokis, K., N. D. Brier, and J. A. Delcour. 2019. Differences in endosperm cell wall integrity in wheat (Triticum aestivum L.) milling fractions impact on the way starch responds to gelatinization and pasting treatments and its subsequent enzymatic in vitro digestibility. Food & Function 10 (8):4674–84. doi: 10.1039/C9FO00947G.
  • Kraithong, S., S. Wang, S. A. Junejo, X. Fu, A. Theppawong, B. Zhang, and Q. Huang. 2022. Type 1 resistant starch: Nutritional properties and industry applications. Food Hydrocolloids. 125:107369. doi: 10.1016/j.foodhyd.2021.107369.
  • Langenaeken, N. A., P. Ieven, E. G. Hedlund, C. Kyomugasho, D. van de Walle, K. Dewettinck, A. M. Van Loey, M. B. J. Roeffaers, and C. M. Courtin. 2020. Arabinoxylan, β-glucan and pectin in barley and malt endosperm cell walls: A microstructure study using CLSM and cryo-SEM. The Plant Journal: For Cell and Molecular Biology 103 (4):1477–89. doi: 10.1111/tpj.14816.
  • Lazaridou, A., T. Chornick, and M. S. Izydorczyk. 2008. Variations in morphology and composition of barley endosperm cell walls. Journal of the Science of Food and Agriculture 88 (13):2388–99. doi: 10.1002/jsfa.3361.
  • Li, M., V. D. Daygon, V. Solah, and S. Dhital. 2023. Starch granule size: Does it matter? Critical Reviews in Food Science and Nutrition 63 (19):3683–703. doi: 10.1080/10408398.2021.1992607.
  • Li, W., J. Gao, G. Wu, J. Zheng, S. Ouyang, Q. Luo, and G. Zhang. 2016. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids. 60:364–73. doi: 10.1016/j.foodhyd.2016.04.011.
  • Li, Y., M. Li, L. Wang, and Z. Li. 2022. Effect of particle size on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion. Food Chemistry 367:130751. doi: 10.1016/j.foodchem.2021.130751.
  • Lin, Q., C. Qiu, X. Li, S. Sang, D. J. McClements, L. Chen, J. Long, A. Jiao, Y. Tian, and Z. Jin. 2022. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition 63 (33):12126–35. doi: 10.1080/10408398.2022.2098687.
  • Li, W., S. Sun, Z. Gu, L. Cheng, Z. Li, C. Li, and Y. Hong. 2023. Effect of protein on the gelatinization behavior and digestibility of corn flour with different amylose contents. International Journal of Biological Macromolecules 249:125971. doi: 10.1016/j.ijbiomac.2023.125971.
  • Liu, X., C. L. Bourvellec, and C. M. G. C. Renard. 2020. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety 19 (6):3574–617. doi: 10.1111/1541-4337.12632.
  • Liu, F. Y., Z. Yang, X. N. Guo, J. J. Xing, and K. X. Zhu. 2021. Influence of protein type, content and polymerization on in vitro starch digestibility of sorghum noodles. Food Research International (Ottawa, Ont.) 142:110199. doi: 10.1016/j.foodres.2021.110199.
  • Liu, M., Q. Yang, Y. Wu, and J. Ouyang. 2022. Effects of endogenous polyphenols in acorn (Quercus wutaishanica Blume) kernels on the physicochemical properties of starch. Starch - Stärke 74 (5-6):2200005. doi: 10.1002/star.202200005.
  • Li, Y. Q., F. C. Zhou, F. Gao, J. S. Bian, and F. Shan. 2009. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. Journal of Agricultural and Food Chemistry 57 (24):11463–8. doi: 10.1021/jf903083h.
  • Ma, M., X. Chen, R. Zhou, H. Li, Z. Sui, and H. Corke. 2021. Surface microstructure of rice starch is altered by removal of granule-associated proteins. Food Hydrocolloids. 121:107038. doi: 10.1016/j.foodhyd.2021.107038.
  • Ma, M., Y. Wen, C. Zhang, Z. Xu, H. Li, Z. Sui, and H. Corke. 2022a. Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocolloids. 126:107370. doi: 10.1016/j.foodhyd.2021.107370.
  • Ma, M., Z. Xu, P. Li, Z. Sui, and H. Corke. 2020b. Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Carbohydrate Polymers 247:116674. doi: 10.1016/j.carbpol.2020.116674.
  • Ma, M., Y. Xu, Z. Liu, Z. Sui, and H. Corke. 2020a. Removal of starch granule-associated proteins promotes alpha-amylase hydrolysis of rice starch granule. Food Chemistry 330:127313. doi: 10.1016/j.foodchem.2020.127313.
  • Ma, M., H. Zhu, Z. Liu, Z. Sui, and H. Corke. 2022b. Removal of starch granule-associated proteins alters the physicochemical properties of diverse small granule starches. Food Hydrocolloids. 124:107318. doi: 10.1016/j.foodhyd.2021.107318.
  • Ma, Z., Y. Zhu, Z. Wang, X. Chen, J. Cao, G. Liu, G. Li, H. Wei, and H. Zhang. 2024. Effect of starch and protein on eating quality of japonica rice in Yangtze River Delta. International Journal of Biological Macromolecules 261 (Pt 2):129918. doi: 10.1016/j.ijbiomac.2024.129918.
  • Mondal, D., M. Awana, S. Aggarwal, D. Das, B. Thomas, S. P. Singh, T. Satyavathi C, R. M. Sundaram, A. Anand, A. Singh, et al. 2022. Microstructure, matrix interactions, and molecular structure are the key determinants of inherent glycemic potential in pearl millet (Pennisetum glaucum). Food Hydrocolloids. 127:107481. doi: 10.1016/j.foodhyd.2022.107481.
  • Morrison, W. R. 1981. Starch lipids: A reappraisal. Starch - Stärke 33 (12):408–10. doi: 10.1002/star.19810331203.
  • Nguyen, T. T. L., B. M. Flanagan, K. Tao, D. Ni, M. J. Gidley, G. P. Fox, and R. G. Gilbert. 2022. Effect of processing on the solubility and molecular size of oat β-glucan and consequences for starch digestibility of oat-fortified noodles. Food Chemistry 372:131291. doi: 10.1016/j.foodchem.2021.131291.
  • Ogawa, Y., D. Donlao, S. Thuengtung, J. Tian, Y. Cai, F. C. Reginio, Jr, S. Ketnawa, N. Yamamoto, and M. Tamura. 2018. Impact of food structure and cell matrix on digestibility of plant-based food. Current Opinion in Food Science 19:36–41. doi: 10.1016/j.cofs.2018.01.003.
  • Patil, N. Y., N. A. Pugh, R. R. Klein, H. S. Martinez, R. S. Martinez, R. Rodriguez. Herrera, W. L. Rooney, and P. E. Klein. 2019. Heritability and quantitative trait loci of composition and structural characteristics in sorghum grain. Journal of Crop Improvement 33 (1):1–24. doi: 10.1080/15427528.2018.1536006.
  • Poutanen, K. S., A. O. Kårlund, C. Gómez-Gallego, D. P. Johansson, N. M. Scheers, I. M. Marklinder, A. K. Eriksen, P. C. Silventoinen, E. Nordlund, N. Sozer, et al. 2022. Grains – A major source of sustainable protein for health. Nutrition Reviews 80 (6):1648–63. doi: 10.1093/nutrit/nuab084.
  • Qin, W., L. Sun, M. Miao, and G. Zhang. 2021. Plant-sourced intrinsic dietary fiber: Physical structure and health function. Trends in Food Science & Technology 118:341–55. doi: 10.1016/j.tifs.2021.09.022.
  • Ren, Y., H. Xie, L. Liu, D. Jia, K. Yao, and Y. Chi. 2018. Processing and prebiotics characteristics of β-glucan extract from highland barley. Applied Sciences 8 (9):1481. doi: 10.3390/app8091481.
  • Roman, L., M. Gomez, C. Li, B. R. Hamaker, and M. M. Martinez. 2017. Biophysical features of cereal endosperm that decrease starch digestibility. Carbohydrate Polymers 165:180–8. doi: 10.1016/j.carbpol.2017.02.055.
  • Romero Hernández, H. A., T. J. Gutiérrez, and L. A. Bello-Pérez. 2022. Can starch-polyphenol V-type complexes be considered as resistant starch? Food Hydrocolloids. 124:107226. doi: 10.1016/j.foodhyd.2021.107226.
  • Saulnier, L., F. Guillon, and A. L. Chateigner Boutin. 2012. Cell wall deposition and metabolism in wheat grain. Journal of Cereal Science 56 (1):91–108. doi: 10.1016/j.jcs.2012.02.010.
  • Scott, G., and J. M. Awika. 2023. Effect of protein–starch interactions on starch retrogradation and implications for food product quality. Comprehensive Reviews in Food Science and Food Safety 22 (3):2081–111. doi: 10.1111/1541-4337.13141.
  • Seidi, F., M. K. Yazdi, M. Jouyandeh, S. Habibzadeh, M. T. Munir, H. Vahabi, B. Bagheri, N. Rabiee, P. Zarrintaj, and M. R. Saeb. 2022. Crystalline polysaccharides: A review. Carbohydrate Polymers 275:118624. doi: 10.1016/j.carbpol.2021.118624.
  • Shah, A., F. A. Masoodi, A. Gani, and B. A. Ashwar. 2016. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food Chemistry 212:749–58. doi: 10.1016/j.foodchem.2016.06.019.
  • Sharma, B., and H. S. Gujral. 2019. Influence of nutritional and antinutritional components on dough rheology and in vitro protein & starch digestibility of minor millets. Food Chemistry 299:125115. doi: 10.1016/j.foodchem.2019.125115.
  • Shen, Y., D. Wu, V. Fogliano, and N. Pellegrini. 2021. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food & Function 12 (22):11547–56. doi: 10.1039/D1FO03039F.
  • Shobana, S., Y. N. Sreerama, and N. G. Malleshi. 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry 115 (4):1268–73. doi: 10.1016/j.foodchem.2009.01.042.
  • Sun, L., M. Ma, X. Chen, Z. Xu, C. Zhang, W. Huang, Z. Sui, and H. Corke. 2022. Physicochemical properties of A- and B-type granules isolated from waxy and normal hull-less barley starch. International Journal of Biological Macromolecules 213:456–64. doi: 10.1016/j.ijbiomac.2022.05.187.
  • Sun, L., F. J. Warren, and M. J. Gidley. 2019. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology 91:262–73. doi: 10.1016/j.tifs.2019.07.009.
  • Tang, M., L. Wang, X. Cheng, Y. Wu, and J. Ouyang. 2019. Non-starch constituents influence the in vitro digestibility of naked oat (Avena nuda L.) starch. Food Chemistry 297:124953. doi: 10.1016/j.foodchem.2019.124953.
  • Tao, H., F. Lu, X. F. Zhu, G. X. Xu, H. Q. Xie, X. M. Xu, and H. L. Wang. 2021. Removing surface proteins promote the retrogradation of wheat starch. Food Hydrocolloids. 113:106437. doi: 10.1016/j.foodhyd.2020.106437.
  • Tomar, M., R. Bhardwaj, R. Verma, S. P. Singh, A. Dahuja, V. Krishnan, R. Kansal, V. K. Yadav, S. Praveen, and A. Sachdev. 2022. Interactome of millet-based food matrices: A review. Food Chemistry 385:132636. doi: 10.1016/j.foodchem.2022.132636.
  • Tu, J., J. Chen, S. Zhu, C. Zhang, H. Chen, and Y. Liu. 2013. Inhibition of wheat bran and it’s active compoments on α-glucosidase in vitro. Pharmacognosy Magazine 9 (36):309–14. doi: 10.4103/0973-1296.117826.
  • Verhertbruggen, Y., X. Falourd, M. Sterner, F. Guillon, C. Girousse, L. Foucat, S. Le Gall, A. L. Chateigner Boutin, and L. Saulnier. 2019. Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydrate Polymers 224:115063. doi: 10.1016/j.carbpol.2019.115063.
  • Wang, S., C. Chao, J. Cai, B. Niu, L. Copeland, and S. Wang. 2020. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 19 (3):1056–79. doi: 10.1111/1541-4337.12550.
  • Wang, Y., T. Han, T. Liu, L. Sun, B. Dou, J. Xin, and N. Zhang. 2024. New insights into starch, lipid, and protein interactions—Colon microbiota fermentation. Carbohydrate Polymers 335:122113. doi: 10.1016/j.carbpol.2024.122113.
  • Wang, J., C. Liu, X. Zheng, J. Hong, B. Sun, and M. Liu. 2023. The structural integrity of endosperm/cotyledon cells and cell modification affect starch digestion properties. Food & Function 14 (15):6784–801. doi: 10.1039/D3FO00856H.
  • Wang, J., J. Tang, S. Ruan, R. Lv, J. Zhou, J. Tian, H. Cheng, E. Xu, and D. Liu. 2021. A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application. Food Chemistry 362:130066. doi: 10.1016/j.foodchem.2021.130066.
  • Xie, Y., M. Zhu, H. Liu, Z. Fan, Y. Zhang, X. Qin, and X. Liu. 2021. Effects of β-glucan and various thermal processing methods on the in vitro digestion of hulless barley starch. Food Chemistry 360:129952. doi: 10.1016/j.foodchem.2021.129952.
  • Xiong, W., L. Devkota, B. Zhang, J. Muir, and S. Dhital. 2022. Intact cells: “Nutritional capsules” in plant foods. Comprehensive Reviews in Food Science and Food Safety 21 (2):1198–217. doi: 10.1111/1541-4337.12904.
  • Xiong, W., B. Zhang, Q. Huang, C. Li, E. A. Pletsch, and X. Fu. 2018. Variation in the rate and extent of starch digestion is not determined by the starch structural features of cooked whole pulses. Food Hydrocolloids. 83:340–7. doi: 10.1016/j.foodhyd.2018.05.022.
  • Xu, Z., L. Song, S. Ming, C. Zhang, Z. Li, Y. Wu, Z. Sui, and H. Corke. 2022. Removal of starch granule associated proteins affects annealing of normal and waxy maize starches. Food Hydrocolloids. 131:107695. doi: 10.1016/j.foodhyd.2022.107695.
  • Yang, Y., A. Jiao, Q. Liu, X. Ren, K. Zhu, and Z. Jin. 2022. The effects of removing endogenous proteins, β-glucan and lipids on the surface microstructure, water migration and glucose diffusion in vitro of starch in highland barley flour. Food Hydrocolloids. 127:107457. doi: 10.1016/j.foodhyd.2021.107457.
  • Yang, Y., A. Jiao, S. Zhao, Q. Liu, X. Fu, and Z. Jin. 2021. Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocolloids. 117:106698. doi: 10.1016/j.foodhyd.2021.106698.
  • Yang, Y., Y. Wang, R. Zhang, A. Jiao, and Z. Jin. 2024. The impact of different soluble endogenous proteins and their combinations with β-glucan on the in vitro digestibility, microstructure, and physicochemical properties of highland barley starch. International Journal of Biological Macromolecules 260 (Pt 1):129417. doi: 10.1016/j.ijbiomac.2024.129417.
  • Yao, T., Z. Xu, M. Ma, Y. Wen, X. Liu, and Z. Sui. 2024. Impact of granule-associated lipid removal on the property changes of octenylsuccinylated small-granule starches. Carbohydrate Polymers 323:121448. doi: 10.1016/j.carbpol.2023.121448.
  • Ye, J., X. Hu, S. Luo, D. J. McClements, L. Liang, and C. Liu. 2018. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International (Ottawa, Ont.) 106:404–9. doi: 10.1016/j.foodres.2018.01.008.
  • Ye, X., Y. Zhang, C. Qiu, H. Corke, and Z. Sui. 2019. Extraction and characterization of starch granule-associated proteins from rice that affect in vitro starch digestibility. Food Chemistry 276:754–60. doi: 10.1016/j.foodchem.2018.10.042.
  • Yoon, J. W., J. Y. Jung, H. J. Chung, M. R. Kim, C. W. Kim, and S. T. Lim. 2010. Identification of botanical origin of starches by SDS-PAGE analysis of starch granule-associated proteins. Journal of Cereal Science 52 (2):321–6. doi: 10.1016/j.jcs.2010.06.015.
  • Yu, W., W. Zou, S. Dhital, P. Wu, M. J. Gidley, G. P. Fox, and R. G. Gilbert. 2018. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chemistry 241:493–501. doi: 10.1016/j.foodchem.2017.09.021.
  • Yuan, B., C. Ritzoulis, and J. Chen. 2019. Rheological investigations of beta glucan functionality: Interactions with mucin. Food Hydrocolloids 87:180–6. doi: 10.1016/j.foodhyd.2018.07.049.
  • Zhan, Q., X. Ye, Y. Zhang, X. Kong, J. Bao, H. Corke, and Z. Sui. 2020. Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocolloids 101:105504. doi: 10.1016/j.foodhyd.2019.105504.
  • Zhang, H., Z. Li, Y. Tian, Z. Song, and L. Ai. 2019. Interaction between barley beta-glucan and corn starch and its effects on the in vitro digestion of starch. International Journal of Biological Macromolecules 141:240–6. doi: 10.1016/j.ijbiomac.2019.08.268.
  • Zhang, H., S. Sun, and L. Ai. 2022. Physical barrier effects of dietary fibers on lowering starch digestibility. Current Opinion in Food Science 48:100940. doi: 10.1016/j.cofs.2022.100940.
  • Zhang, C., M. Wang, Z. Tan, M. Ma, Z. Sui, and H. Corke. 2023a. Differential distribution of surface proteins/lipids between wheat A- and B-starch granule contributes to their difference in pasting and rheological properties. International Journal of Biological Macromolecules 240:124430. doi: 10.1016/j.ijbiomac.2023.124430.
  • Zhang, C., Z. Xu, X. Liu, M. Ma, S. Khalid, M. Bordiga, Z. Sui, and H. Corke. 2023b. Removing starch granule-associated surface lipids affects structure of heat-moisture treated hull-less barley starch. Carbohydrate Polymers 303:120477. doi: 10.1016/j.carbpol.2022.120477.
  • Zhang, S.,S. Zhu,M. N. Saqib,M. Yu,C. Du,D. Huang, andY. Li. 2024. Extensive inhibition of starch digestion by exogenous proteins and inhibition mechanisms: A comprehensive review. Trends in Food Science & Technology 143:104303. doi: 10.1016/j.tifs.2023.104303.
  • Zhang, S., S. Zhu, F. Zhong, D. Huang, X. Chen, and Y. Li. 2023. Study on the mechanism of various exogenous proteins with different inhibitions on wheat starch digestion: From the distribution behaviors of protein in the starch matrix. International Journal of Biological Macromolecules 242 (Pt 4):124909. doi: 10.1016/j.ijbiomac.2023.124909.
  • Zhu, F. 2020. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers 248:116819. doi: 10.1016/j.carbpol.2020.116819.
  • Zurak, D., K. Kljak, and D. Grbeša. 2020. The composition of floury and vitreous endosperm affects starch digestibility kinetics of the whole maize kernel. Journal of Cereal Science 95:103079. doi: 10.1016/j.jcs.2020.103079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.