1,634
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The green seaweed Ulva: tomorrow’s “wheat of the sea” in foods, feeds, nutrition, and biomaterials

, , , , , , , , , , , , , , , , , , , , , , , , , , & show all

References

  • Abd El-Baky, H. H., F. K. El-Baz, and G. S. El-Baroty. 2009. Natural preservative ingredient from marine alga Ulva lactuca L. International Journal of Food Science & Technology 44 (9):1688–95. doi: 10.1111/j.1365-2621.2009.01926.x.
  • Abdel-Warith, A.-W. A., E.-S. Younis, and N. A. Al-Asgah. 2016. Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African Catfish, Clarias gariepinus. Saudi Journal of Biological Sciences 23 (3):404–9. doi: 10.1016/j.sjbs.2015.11.010.
  • Abdul Khalil, H. P. S., C. K. Saurabh, Y. Y. Tye, T. K. Lai, A. M. Easa, E. Rosamah, M. R. N. Fazita, M. I. Syakir, A. S. Adnan, H. M. Fizree, et al. 2017. Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renewable and Sustainable Energy Reviews 77:353–62. doi: 10.1016/j.rser.2017.04.025.
  • Abudabos, A. M., A. B. Okab, R. S. Aljumaah, E. M. Samara, K. A. Abdoun, and A. A. Al-Haidary. 2013. Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Italian Journal of Animal Science 12 (2):e28. doi: 10.4081/ijas.2013.e28.
  • Adams, J., M. M. S. M. Morris, L. Steege, J. Robinson, and C. Bavington. 2021. Food-grade biorefinery processing of macroalgae at scale: Considerations, observations and recommendations. Journal of Marine Science and Engineering 9 (10):1082. doi: 10.3390/jmse9101082.
  • Aguilera-Morales, M., M. Casas-Valdez, S. Carrillo-Domínguez, B. González-Acosta, and F. Pérez-Gil. 2005. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis 18 (1):79–88. doi: 10.1016/j.jfca.2003.12.012.
  • Ainsa, A., A. Honrado, P. Marquina, J. A. Beltrán, and J. Calanche. 2022. Influence of seaweeds on the quality of pasta as a plant-based innovative food. Foods 11 (16):2525. doi: 10.3390/foods11162525.
  • Akomea-Frempong, S., D. I. Skonberg, M. E. Camire, and J. J. Perry. 2021. Impact of blanching, freezing, and fermentation on physicochemical, microbial, and sensory quality of sugar kelp (Saccharina latissima). Foods 10 (10):2258. doi: 10.3390/foods10102258.
  • Al-Hafedh, Y. S., A. Alam, and A. H. Buschmann. 2014. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea Coast of Saudi Arabia at different stocking densities and effluent flow rates. Reviews in Aquaculture 7 (3):161–71. doi: 10.1111/raq.12060.
  • Amin, H. H. 2021. Safe Ulvan silver nanoparticles composite films for active food packaging. American Journal of Biochemistry and Biotechnology 17 (1):28–39. doi: 10.3844/ajbbsp.2021.28.39.
  • Amorim, A. M., A. E. Nardelli, and F. Chow. 2020. Effects of drying processes on antioxidant properties and chemical constituents of four tropical macroalgae suitable as functional bioproducts. Journal of Applied Phycology 32 (2):1495–509. doi: 10.1007/s10811-020-02059-7.
  • Andrade, C., P. L. Martins, L. C. Duarte, A. C. Oliveira, and F. Carvalheiro. 2022. Development of an innovative macroalgae biorefinery: Oligosaccharides as pivotal compounds. Fuel 320 (July):123780. doi: 10.1016/j.fuel.2022.123780.
  • Angell, A. R., L. Mata, R. de Nys, and N. A. Paul. 2016. The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology 28 (1)February 30): :511–24. doi: 10.1007/s10811-015-0650-1.
  • Anisuzzaman, M., U.-C. Jeong, F. Jin, K. Kabery, J.-K. Choi, D.-I. Lee, H. S. Yu, S.-J. Kang, and K. Seok-Joong. 2018. Effects of Ulva lactuca and Laminaria japonica algae in prepared feeds on growth, survival, fatty acid compositions and interleukin (IL)-10 production of sea cucumber Apostichopus japonicus. International Journal of Fisheries and Aquatic Studies 6 (2):387–95. www.fisheriesjournal.com.
  • Anmarkrud, M. K. 2023. The use of soy in Norwegian fish farming–an industry perspective on sustainability in the food supply chain. MSc Thesis, University of Oslo.
  • Anon. 2024. USDA food data central. Accessed February 22. https://fdc.nal.usda.gov.
  • Ansary, M. W. R., S. Il Baek, H. S. Jeong, K. W. Lee, S. H. Cho, H. S. Kim, and M.-S. Jwa. 2019. Substitution effect of the combined fouling macroalgae Ulva australis and Sargassum horneri for Undaria pinnatifida in formulated diets on growth and body composition of juvenile abalone (Haliotis discus, Reeve 1846) subjected to air exposure stressor. Journal of Applied Phycology 31 (5):3245–54. doi: 10.1007/s10811-019-01812-x.
  • Araújo, G. S., T. Morais, J. Cotas, S. García-Poza, J. W. A. Silva, A. M. M. Gonçalves, and L. Pereira. 2022. A road to the sustainable seaweed aquaculture. In Sustainable global resources of seaweeds, ed. A. R.Rao, and G. A. Ravishankar, vol. 1, 63–73. Cham: Springer International Publishing.
  • Araújo, R., F. Vázquez Calderón, J. Sánchez López, I. C. Azevedo, A. Bruhn, S. Fluch, M. Garcia Tasende, et al. 2021. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy 7. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100760000&doi = 10.3389%2Ffmars.2020.626389&partnerID = 40&md5 = 8a2dba06b754e79b8b55009ddd44de96.
  • Arieli, A., G. Kissil, and D. Sklan. 1993. A note on the nutritive value of Ulva lactuca for ruminants. Animal Science 57 (2):329–31. https://www.cambridge.org/core/product/51D4AD1E81AD61BF9AC9B3FE7BC0C7AF. doi: 10.1017/S0003356100006978.
  • Arrieta, M. P., L. Peponi, D. López, J. López, and J. M. Kenny. 2017. An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. In Food packaging, ed. A. M. Grumezescu, 391–424. London, UK: Elsevier.
  • Arul Manikandan, N., and P. N. L. Lens. 2023. Sustainable biorefining and bioprocessing of green seaweed (Ulva spp.) for the production of edible (Ulvan) and non-edible (polyhydroxyalkanoate) biopolymeric films. Preprint Article SSRN. https://papers.ssrn.com/abstract=4377216.
  • Asino, H., Q. Ai, and K. Mai. 2011. Evaluation of Enteromorpha prolifera as a feed component in large yellow croaker (Pseudosciaena crocea, Richardson, 1846) diets. Aquaculture Research 42 (4):525–33. doi: 10.1111/j.1365-2109.2010.02648.x.
  • Azaza, M. S., F. Mensi, J. Ksouri, M. N. Dhraief, B. Brini, A. Abdelmouleh, and M. M. Kraïem. 2008. Growth of Nile Tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae Ulva meal (Ulva rigida) reared in geothermal waters of Southern Tunisia. Journal of Applied Ichthyology 24 (2):202–7. doi: 10.1111/j.1439-0426.2007.01017.x.
  • Badmus, U. O., M. A. Taggart, and K. G. Boyd. 2019. The effect of different drying methods on certain nutritionally important chemical constituents in edible brown seaweeds. Journal of Applied Phycology 31 (6):3883–97. doi: 10.1007/s10811-019-01846-1.
  • Bakan, M., B. Peksezer, N. S. Börekçi, M. T. Alp, and D. Ayas, Mersin University. 2021. Effect of regional differences on fatty acid profiles of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883) and Taonia atomaria (Agardh, 1848). Acta Natura et Scientia 2 (1):76–85. doi: 10.29329/actanatsci.2021.314.12.
  • Bansemer, M. S., J. G. Qin, J. O. Harris, D. N. Duong, K.-L. Currie, G. S. Howarth, and D. A. J. Stone. 2016. Dietary inclusions of dried macroalgae meal in formulated diets improve the growth of Greenlip Abalone (Haliotis laevigata). Journal of Applied Phycology 28 (6):3645–58. doi: 10.1007/s10811-016-0829-0.
  • Bansemer, M. S., J. G. Qin, J. O. Harris, D. N. Duong, T. H. Hoang, G. S. Howarth, and D. A. J. Stone. 2016. Growth and feed utilisation of Greenlip Abalone (Haliotis laevigata) fed nutrient enriched macroalgae. Aquaculture 452 (February):62–8. doi: 10.1016/j.aquaculture.2015.10.025.
  • Bao, M., J. S. Park, Q. Xing, P. He, J. Zhang, C. Yarish, H. I. Yoo, and J. K. Kim. 2022. Comparative analysis of physiological responses in two Ulva prolifera strains revealed the effect of eutrophication on high temperature and copper stress tolerance. Frontiers in Marine Science 9:863918. doi: 10.3389/fmars.2022.863918.
  • Barbier, M., B. Charrier, R. Araujo, S. L. Holdt, B. Jacquemin, and C. Rebours. 2019. PEGASUS – PHYCOMORPH European guidelines for a sustainable aquaculture of seaweeds. Applied Phycology. doi: 10.21411/2c3w-yc73.
  • Barcelo, A., J. Claustre, F. Moro, J.-A. Chayvialle, J.-C. Cuber, and P. Plaisancié. 2000. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46 (2):218. http://gut.bmj.com/content/46/2/218.abstract. doi: 10.1136/gut.46.2.218.
  • Barragán-Ocaña, A., H. Merritt, O. E. Sánchez-Estrada, J. L. Méndez-Becerril, and M. Del Pilar Longar-Blanco. 2023. Biorefinery and sustainability for the production of biofuels and value-added products: A trends analysis based on network and patent analysis. PLOS One. 18 (1):e0279659–e0279659. https://pubmed.ncbi.nlm.nih.gov/36634105. doi: 10.1371/journal.pone.0279659.
  • Bartolo, A. G., G. Zammit, A. F. Peters, and F. C. Küpper. 2020. The current state of DNA barcoding of macroalgae in the Mediterranean Sea: Presently lacking but urgently required. Botanica Marina 63 (3):253–72. doi: 10.1515/bot-2019-0041.
  • Barzkar, N., S. Tamadoni Jahromi, H. B. Poorsaheli, and F. Vianello. 2019. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Marine Drugs 17 (8):464. https://pubmed.ncbi.nlm.nih.gov/31398953. doi: 10.3390/md17080464.
  • Batista, S., M. Pintado, A. Marques, H. Abreu, J. L. Silva, F. Jessen, F. Tulli, and L. M. P. Valente. 2020. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European Seabass (Dicentrarchus labrax) juveniles. Journal of Applied Phycology 32 (5):3429–46. doi: 10.1007/s10811-020-02185-2.
  • Becker, E. W., and L. V. Venkataraman. 1984. Production and utilization of the blue-green alga Spirulina in India. Biomass 4 (2):105–25. doi: 10.1016/0144-4565(84)90060-X.
  • Ben-Ari, T., A. Neori, D. Ben-Ezra, L. Shauli, V. Odintsov, and M. Shpigel. 2014. Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture 434:493–8. doi: 10.1016/j.aquaculture.2014.08.034.
  • Beril, N., and E. C. Çankırılıgil. 2019. The elemental composition of green seaweed (Ulva rigida) collected from Çanakkale, Turkey. Aquatic Sciences and Engineering 34 (3):74–9. doi: 10.26650/ASE2019557380.
  • Bermejo, R., A. H. Buschmann, E., Capuzzo, E. J. Cottier, Cook, A. Fricke, I. Hernández, L. C. Hofmann, R. Pereira, and S. W. K. van den Burg. 2022. State of knowledge regarding the potential of macroalgae cultivation in providing climate-related and other ecosystem services: A report of the Eklipse Expert Working Group on Macroalgae cultivation and Ecosystem Services No. 01/2022. Eklipse, 2022. https://eklipse.eu/wp-content/uploads/website_db/Request/Macro-Algae/EKLIPSE_DG-Mare-Report-PrintVersion_final.pdf
  • Berri, M., M. Olivier, S. Holbert, J. Dupont, H. Demais, M. Le Goff, and P. N. Collen. 2017. Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Research 28:39–47. doi: 10.1016/j.algal.2017.10.008.
  • Berri, M., C. Slugocki, M. Olivier, E. Helloin, I. Jacques, H. Salmon, H. Demais, M. Le Goff, and P. N. Collen. 2016. Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. Journal of Applied Phycology 28 (5):2999–3008. doi: 10.1007/s10811-016-0822-7.
  • Bikker, P., M. M. van Krimpen, P. van Wikselaar, B. Houweling-Tan, N. Scaccia, J. W. van Hal, W. J. J. J. Huijgen, J. W. Cone, and A. M. López-Contreras. 2016. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology 28 (6):3511–25. doi: 10.1007/s10811-016-0842-3.
  • Bird, K. T., T. C. Chiles, R. E. Longley, A. F. Kendrick, and M. D. Kinkema. 1993. Agglutinins from marine macroalgae of the Southeastern United States. Journal of Applied Phycology 5 (2):213–8. doi: 10.1007/BF00004020.
  • Blikra, M. J., T. Løvdal, M. R. Vaka, I. S. Roiha, B. T. Lunestad, C. Lindseth, and D. Skipnes. 2019. Assessment of food quality and microbial safety of brown macroalgae (Alaria esculenta and Saccharina latissima). Journal of the Science of Food and Agriculture 99 (3):1198–206. doi: 10.1002/jsfa.9289.
  • Blikra, M. J., T. Altintzoglou, T. Løvdal, G. Rognså, D. Skipnes, T. Skåra, M. Sivertsvik, and E. N. Fernández. 2021. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends in Food Science & Technology 118:765–76. doi: 10.1016/j.tifs.2021.11.002.
  • Blomster, J., C. A. Maggs, and M. J. Stanhope. 1999. Extensive intraspecific morphology variation in Enteromorpha muscoides (Chlorophyta) revealed by molecular analysis. Journal of Phycology 35 (3):575–86. doi: 10.1046/j.1529-8817.1999.3530575.x.
  • Blomme, J., T. Wichard, T. B. Jacobs, and O. De Clerck. 2023. Ulva: An emerging green seaweed model for systems biology. Journal of Phycology 59 (3):433–40. doi: 10.1111/jpy.13341.
  • Bolton, J. J., D. V. Robertson-Andersson, D. Shuuluka, and L. Kandjengo. 2009. Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: A Swot analysis. Journal of Applied Phycology 21 (5):575–83. doi: 10.1007/s10811-008-9385-6.
  • Bolton, J. J. 2020. The problem of naming commercial seaweeds. Journal of Applied Phycology 32 (2):751–8. doi: 10.1007/s10811-019-01928-0.
  • Bolton, J. J., M. D. Cyrus, M. J. Brand, M. Joubert, and B. M. Macey. 2016. Why grow Ulva? Its potential role in the future of aquaculture. Perspectives in Phycology 3 (3):113–20. doi: 10.1127/pip/2016/0058.
  • Bosse, R., and L. C. Hofmann. 2020. Verpackung Aus Algen. Bundesministerium Für Ernährung Und Landwirtschaft. https://www.innovationstage-digital.de/fachsektionen/ressourcenschonende-lebensmittelherstellung/verpackung-aus-algen/.
  • Boyd, C. E., and L. N. Jescovitch. 2020. Penaeid shrimp aquaculture. Fisheries and Aquaculture. New York: Oxford University Press.
  • Bruhn, A., G. Brynning, A. Johansen, M. S. Lindegaard, H. H. Sveigaard, B. Aarup, L. Fonager, L. L. Andersen, M. B. Rasmussen, M. M. Larsen, et al. 2019. Fermentation of sugar kelp (Saccharina latissima)—effects on sensory properties, and content of minerals and metals. Journal of Applied Phycology 31 (5):3175–87. doi: 10.1007/s10811-019-01827-4.
  • Bussy, F., L. G. Matthieu, H. Salmon, J. Delaval, M. Berri, and N. C. Pi. 2019. Immunomodulating effect of a seaweed extract from Ulva armoricana in pig: Specific IgG and total IgA in colostrum, milk, and blood. Veterinary and Animal Science 7:100051. https://www.sciencedirect.com/science/article/pii/S2451943X18302308. doi: 10.1016/j.vas.2019.100051.
  • Cai, J. 2021. Global status of seaweed production, trade and utilization,Seaweed innovation forum Belize, https://www.competecaribbean.org/wp-content/uploads/2021/05/Global-status-of-seaweed-production-trade-and-utilization-Junning-Cai-FAO.pdf
  • Calheiros, A. C., L. P. M. Sales, A. D. Pereira Netto, D. N. Cavalcanti, B. Castelar, and R. P. Reis. 2021. Commercial raw materials from algaculture and natural stocks of Ulva Spp. 33 (3):1805–18. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102278681&doi=10.1007/s10811-021-02413-3&partnerID=40&md5=5feee57ca303872342c1e21985a823f4.
  • Campbell, M., J. Ortuño, L. Ford, D. R. Davies, A. Koidis, P. J. Walsh, and K. Theodoridou. 2020. The effect of ensiling on the nutritional composition and fermentation characteristics of brown seaweeds as a ruminant feed ingredient. Animals 10 (6):1019. doi: 10.3390/ani10061019.
  • Caprita, F.-C., A. Ene, and A. Cantaragiu Ceoromila. 2021. Valorification of Ulva rigida algae in pulp and paper industry for improved paper characteristics and wastewater heavy metal filtration. Sustainability 13 (19):10763. doi: 10.3390/su131910763.
  • Cardoso, C., A. Ripol, C. Afonso, M. Freire, J. Varela, H. Quental-Ferreira, P. Pousão-Ferreira, and N. Bandarra. 2017. Fatty acid profiles of the main lipid classes of green seaweeds from fish pond aquaculture. Food Science & Nutrition 5 (6):1186–94. doi: 10.1002/fsn3.511.
  • Cardoso, I., A. Meiβner, A. Sawicki, I. Bartsch, K.-U. Valentin, S. Steinhagen, B. H. Buck, and L. C. Hofmann. 2023. Salinity as a tool for strain selection in recirculating land-based production of Ulva spp. from germlings to adults. Journal of Applied Phycology 35 (5):1971–86. doi: 10.1007/s10811-023-02960-x.
  • Castellanos-Barriga, L. G., F. Santacruz-Ruvalcaba, G. Hernández-Carmona, E. Ramírez-Briones, and R. M. Hernández-Herrera. 2017. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology 29 (5):2479–88. doi: 10.1007/s10811-017-1082-x.
  • Cerezo, I. M., M. Fumanal, S. T. Tapia-Paniagua, R. Bautista, V. Anguís, C. Fernández-Díaz, F. J. Alarcón, M. A. Moriñigo, and M. C. Balebona. 2022. Solea senegalensis bacterial intestinal microbiota is affected by low dietary inclusion of Ulva ohnoi. Frontiers in Microbiology 12:801744. https://pubmed.ncbi.nlm.nih.gov/35211100. doi: 10.3389/fmicb.2021.801744.
  • Chapman, V. J., and D. J. Chapman. 1980. Mariculture of seaweeds. In Seaweeds and their uses, 241–52. Dordrecht: Springer Netherlands.
  • Charlier, R. H., P. Morand, C. W. Finkl, and A. Thys. 2006. Green tides on the Brittany Coasts. In 2006 IEEE US/EU Baltic International Symposium, 1–13, IEEE.
  • Charlier, R. H., P. Morand, and C. W. Finkl. 2008. How Brittany and Florida coasts cope with green tides. International Journal of Environmental Studies 65 (2):191–208. doi: 10.1080/00207230701791448.
  • Chopin, T. 2021. Seaweeds are finally getting their moment. How do we translate it into a momentum beyond the present hype? International Aquafeed 24 (9):12–3
  • Cindana Mo’o, F. R., G. Wilar, H. P. Devkota, and N. Wathoni. 2020. Ulvan, a polysaccharide from macroalga Ulva sp.: A review of chemistry. Biological activities and potential for food and biomedical applications. Applied Sciences 10 (16):5488.
  • Coelho, D., P. A. Lopes, V. Cardoso, P. Ponte, J. Brás, M. S. Madeira, C. M. Alfaia, N. M. Bandarra, C. M. G. A. Fontes, and J. A. M. Prates. 2020. A two-enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets. Journal of Animal Physiology and Animal Nutrition 104 (1):310–21. doi: 10.1111/jpn.13239.
  • Cofrades, S., J. Benedí, A. Garcimartin, F. J. Sánchez-Muniz, and F. Jimenez-Colmenero. 2017. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Research International 99:1084–94. doi: 10.1016/j.foodres.2016.06.029.
  • Cofrades, S., M. Serdaroǧlu, and F. Jiménez-Colmenero. 2013. Design of healthier foods and beverages containing whole algae. Functional Ingredients from Algae for Foods and Nutraceuticals :609–33.
  • Colombo, M. L., P. Risè, F. Giavarini, L. De Angelis, C. Galli, and C. L. Bolis. 2006. Marine macroalgae as sources of polyunsaturated fatty acids. Plant Foods for Human Nutrition 61 (2):64–9. doi: 10.1007/s11130-006-0015-7.
  • Costa, M., C. Cardoso, C. Afonso, N. M. Bandarra, and J. A. M. Prates. 2021. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. Journal of Animal Physiology and Animal Nutrition 105 (6):1075–102. doi: 10.1111/jpn.13509.
  • Costa, M. M., J. M. Pestana, P. Carvalho, C. M. Alfaia, C. F. Martins, D. Carvalho, M. Mourato, S. Gueifão, I. Delgado, I. Coelho, et al. 2022. Effect on broiler production performance and meat quality of feeding Ulva lactuca supplemented with carbohydrases. Animals 12 (13):1720. doi: 10.3390/ani12131720.
  • Cottier-Cook, E. J., N. Nagabhatla, Y. Badis, M. Campbell, T. Chopin, W. Dai, J. Fang, et al. 2016. Safeguarding the future of the global seaweed aquaculture industry. United Nations University (INWEH) and Scottish Association for Marine Science Policy Brief. https://inweh.unu.edu/wp-content/uploads/2016/09/unu-seaweed-aquaculture-policy.pdf.
  • Cox, S., N. Abu-Ghannam, and S. Gupta. 2010. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal 17 (1):205–20.
  • Creed, J. C., V. Vieira, T. A. Norton, and D. Caetano. 2019. A meta-analysis shows that seaweeds surpass plants, setting life-on-earth’s limit for biomass packing. BMC Ecology 19 (1):6. doi: 10.1186/s12898-019-0218-z.
  • Cruz, C. 2019. A diet based on Ulva lactuca flour improves growth fingerlings sea chub Girella laevifrons (Pisces: Kyphosidae). Scientia Agropecuaria 10 (2):191–7. doi: 10.17268/sci.agropecu.2019.02.04.
  • Cyrus, M. D., J. J. Bolton, R. Scholtz, and B. M. Macey. 2015. The advantages of Ulva (Chlorophyta) as an additive in sea urchin formulated feeds: Effects on palatability. Consumption and Digestibility. Aquaculture Nutrition 21 (5): 578–591.
  • Davoodi, M. N., J. M. Milani, and R. Farahmandfar. 2021. Preparation and characterization of a novel biodegradable film based on sulfated polysaccharide extracted from seaweed Ulva intestinalis. Food Science and Nutrition 9 (8):4108–16. doi: 10.1002/fsn3.2370.
  • Debbarma, J., P. Viji, B. M. Rao, and M. M. Prasad. 2017. Nutritional and physical characteristics of noodles incorporated with green seaweed (Ulva reticulata) and fish (Pangasianodon hypophthalmus) mince. Indian Journal of Fisheries 64 (2). doi: 10.21077/ijf.2017.64.2.58918-14.
  • de Araújo Amatuzzi, J. C., L. do Nascimento Vieira, B. F. Sant’Anna-Santos, M. D. Noseda, and H. Pacheco de Freitas Fraga. 2020. Improved in vitro development of Epidendrum secundum (Orchidaceae) by using aqueous extract of the seaweed Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Acta Physiologiae Plantarum 42 (8):136. doi: 10.1007/s11738-020-03129-6.
  • de Clerck, O., S.-M. Kao, K. A. Bogaert, J. Blomme, F. Foflonker, M. Kwantes, E. Vancaester, L. Vanderstraeten, E. Aydogdu, J. Boesger, et al. 2018. Insights into the evolution of multicellularity from the sea lettuce genome. Current Biology 28 (18):2921–33.e5. doi: 10.1016/j.cub.2018.08.015.
  • de Oliveira, M. N., A. L. P. Freitas, A. F. U. Carvalho, T. M. T. Sampaio, D. F. Farias, D. I. Alves Teixeira, S. T. Gouveia, J. G. Pereira, M. M, and d C. C. d Sena. 2009. Nutritive and non-nutritive attributes of washed-up seaweeds from the Coast of Ceará, Brazil. Food Chemistry 115 (1):254–9. doi: 10.1016/j.foodchem.2008.12.004.
  • del Olmo, A., A. Picon, and M. Nuñez. 2018. Cheese supplementation with five species of edible seaweeds: Effect on microbiota, antioxidant activity, colour, texture and sensory characteristics. International Dairy Journal 84:36–45. doi: 10.1016/j.idairyj.2018.04.004.
  • del Olmo, A., A. Picon, and M. Nuñez. 2019. Probiotic dynamics during the fermentation of milk supplemented with seaweed extracts: The effect of milk constituents. LWT 107:249–55. doi: 10.1016/j.lwt.2019.03.006.
  • De Viçose, G. C., M. P. Viera, S. Huchette, and M. S. Izquierdo. 2012. Larval settlement, early growth and survival of Haliotis tuberculata coccinea using several algal cues. Journal of Shellfish Research 31 (4):1189–98. doi: 10.2983/035.031.0430.
  • Dhargalkar, V. K., and P. Neelam. 2005. Seaweed: Promising plant of the millennium. Science and Culture :60–6.
  • Diamahesa, W. A., T. Masumoto, D. Jusadi, and M. Setiawati. 2017. Growth and protein content of Ulva prolifera maintained at different flow rates in integrated aquaculture system. Jurnal Ilmu dan Teknologi Kelautan Tropis 9 (2):429–41. doi: 10.29244/jitkt.v9i2.19257.
  • Diler, I., A. A. Tekinay, B. Guroy, and D. Guroy. 2007. Effects of Ulva rigida on the growth, feed intake and body composition of common carp, Cyprinus carpio L. Journal of Biological Sciences 7 (2):305–8. doi: 10.3923/jbs.2007.305.308.
  • Dominguez, H., and E. P. Loret. 2019. Ulva lactuca, a source of troubles and potential riches. Marine Drugs 17 (6):357. doi: 10.3390/md17060357.
  • Du, X., Y. Xu, Z. Jiang, Y. Zhu, Z. Li, H. Ni, and F. Chen. 2021. Removal of the fishy malodor from Bangia fusco-purpurea via fermentation of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum. Journal of Food Biochemistry 45 (5):e13728. doi: 10.1111/jfbc.13728.
  • Duarte, C. M., A. Bruhn, and D. Krause-Jensen. 2021. A seaweed aquaculture imperative to meet global sustainability targets. Nature Sustainability 5 (3):185–93. doi: 10.1038/s41893-021-00773-9.
  • Duarte, C. M., M. Holmer, Y. Olsen, D. Soto, N. Marbà, J. Guiu, K. Black, and I. Karakassis. 2009. Will the oceans help feed humanity? BioScience 59 (11):967–76. doi: 10.1525/bio.2009.59.11.8.
  • Duarte, C. M., N. Marbá, and M. Holmer. 2007. Rapid domestication of marine species. Science 316 (5823):382–3. doi: 10.1126/science.1138042.
  • Dubois, B., N. W. Tomkins, R. D. Kinley, M. Bai, S. Seymour, N. A. Paul, and R. de Nys. 2013. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. American Journal of Plant Sciences 04 (12):34–43. doi: 10.4236/ajps.2013.412A2005.
  • El-Banna, S. G., A. A. Hassan, A. B. Okab, A. A. Koriem, and M. A. Ayoub. 2005. Effect of Feeding diets supplemented with seaweed on growth performance and some blood hematological and biochemical characteristics of male Baladi rabbits. In 4th International Conference on Rabbit Production in Hot Climate. Sharm El-Sheikh, Egypt.
  • El Boukhari, M. E. M., M. Barakate, N. Choumani, Y. Bouhia, and K. Lyamlouli. 2021. Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings. Plants 10 (6):1104. https://pubmed.ncbi.nlm.nih.gov/34070914. doi: 10.3390/plants10061104.
  • Elizondo-González, R., E. Quiroz-Guzmán, C. Escobedo-Fregoso, P. Magallón-Servín, and A. Peña-Rodríguez. 2018. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. PeerJ. doi: 10.7717/peerj.4459.
  • El-Tawil, N. E. 2010. Effects of green seaweeds (Ulva sp.) as feed supplements in Red Tilapia (Oreochromis sp.) Diet on growth performance, feed utilization and body composition. Journal of the Arabian Aquaculture Society 5 (2).
  • EL-Waziry, A., A. Al-Haidary, A. Okab, E. Samara, and K. Abdoun. 2015. Effect of dietary seaweed (Ulva lactuca) supplementation on growth performance of sheep and on in vitro gas production kinetics. Turkish Journal of Veterinary and Animal Sciences 39:81–6. doi: 10.3906/vet-1403-82.
  • Emre, Y., S. Ergun, A. Kurtoglu, B. Guroy, and D. Guroy. 2013. Effects of Ulva meal on growth performance of gilthead seabream (Sparus aurata) at different levels of dietary lipid. Turkish Journal of Fisheries and Aquatic Sciences 13 (5). doi: 10.4194/1303-2712-v13_5_08.
  • Ennoury, A., R. BenMrid, N. Nhhala, Z. Roussi, S. Latique, Z. Zouaoui, and M. Nhiri. 2022. River’s Ulva intestinalis L. extract protects common bean plants (Phaseolus vulgaris L.) against salt stress. South African Journal of Botany 150 (November 1):334–41. https://www.sciencedirect.com/science/article/abs/pii/S0254629922004069. doi: 10.1016/j.sajb.2022.07.035.
  • Ergün, S., M. Soyutürk, B. Güroy, D. Güroy, and D. Merrifield. 2009. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile Tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International 17 (4):355–61. doi: 10.1007/s10499-008-9207-5.
  • Eroldoğan, O. T., B. Glencross, L. Novoveska, S. P. Gaudêncio, B. Rinkevich, G. C. Varese, M. de Fátima Carvalho, D. Tasdemir, I. Safarik, S. L. Nielsen, et al. 2022. From the sea to aquafeed: A perspective overview. Reviews in Aquaculture 15 (3):1028–57. doi: 10.1111/raq.12740.
  • Evans, F. D., and A. T. Critchley. 2014. Seaweeds for animal production use. Journal of Applied Phycology 26 (2):891–9. doi: 10.1007/s10811-013-0162-9.
  • European Commission. 2013. Commission Regulation No 68/2013 of 16 January 2013 on the catalogue of feed materials. Official Journal of the European Union 29 (1):1–64.
  • European Commission. 2022. Communication from the commission to the European Parliament, the council, the European Economic and Social Committee and the Committee of the Regions. Towards a strong and sustainable EU algae sector. https://oceans-and-fisheries.ec.europa.eu/system/files/2022-11/COM-2022-592_en.pdf.
  • European Council. 2007. Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Official Journal of the European Union, L 189 (1):1–23.
  • European Parliament and the Council of the European Union. 2002. Directive 2002/32/EC of 7 May 2002 on undesirable substances in animal feed – council statement. OJ L 140, 30.5.2002, 10–22. http://data.europa.eu/eli/dir/2002/32/oj.
  • European Parliament and the Council of the European Union. 2002. EC Regulation 178:2002. Official Journal of the European Communities, L31:1–24.
  • FAO. 2021. FAOSTAT. http://www.fao.org/faostat/en/#data.
  • FAO. 2022. The state of world fisheries and aquaculture 2022. Towards blue transformation. Rome: FAO.
  • FAO and WHO. 2022. Report of the expert meeting on food safety for seaweed – current status and future perspectives. FAO and WHO.
  • Faber, I., K. Henn, M. Brugarolas, F. J, and A. Perez‐Cueto. 2021. Relevant characteristics of food products based on alternative proteins according to european consumers. Journal of the Science of Food and Agriculture 102 (12):5034–43. doi: 10.1002/jsfa.11178.
  • Ferdouse, F., S. L. Holdt, R. Smith, P. Murúa, and Z. Yang. 2018. The global status of seaweed production, trade and utilization. FAO Globefish. http://www.fao.org/publications/card/en/c/CA1121EN.
  • Fernandes, H., N. Martins, L. Vieira, J. M. Salgado, C. Castro, A. Oliva-Teles, I. Belo, and H. Peres. 2022. Pre-treatment of Ulva rigida improves its nutritional value for European Seabass (Dicentrarchus Labrax) juveniles. Algal Research 66:102803. doi: 10.1016/j.algal.2022.102803.
  • Ferreira, M., C. Teixeira, H. Abreu, J. Silva, B. Costas, V. Kiron, and L. M. P. Valente. 2021. Nutritional value, antimicrobial and antioxidant activities of micro- and macroalgae, single or blended, unravel their potential use for aquafeeds. Journal of Applied Phycology 33 (6):3507–18. doi: 10.1007/s10811-021-02549-2.
  • Figueroa, V., M. Farfán, and J. M. Aguilera. 2021. Seaweeds as novel foods and source of culinary flavors. Food Reviews International 39 (1):1–26. doi: 10.1080/87559129.2021.1892749.
  • Fleurence, J., G. Gutbier, S. Mabeau, and C. Leray. 1994. Fatty acids from 11 marine macroalgae of the French Brittany Coast. Journal of Applied Phycology 6 (5–6):527–32. doi: 10.1007/BF02182406.
  • Floreto, E. A. T., S.-I. Teshima, and M. Ishikawa. 1996. The effects of seaweed diets on the growth, lipid and fatty acids of juveniles of the white sea urchin Tripneustes gratilla. Fisheries Science 62 (4):589–93. doi: 10.2331/fishsci.62.589.
  • Food Safety Authority of Ireland. 2020. Report of the Scientific Committee of the Food Safety Authority of Ireland – safety considerations of seaweed and seaweed-derived foods available on the Irish market.
  • Forster, J., and R. Radulovich. 2015. Seaweed and food security. Seaweed Sustainability 1:289–313. https://www.sciencedirect.com/science/article/pii/B9780124186972000118.
  • Fort, A., M. Lebrault, M. Allaire, A. A. Esteves-Ferreira, M. McHale, F. Lopez, J. M. Fariñas-Franco, S. Alseekh, A. R. Fernie, and R. Sulpice. 2019. Extensive variations in diurnal growth patterns and metabolism among Ulva spp. strains. Plant Physiology 180 (1):109–23. doi: 10.1104/pp.18.01513.
  • Fort, A., C. Linderhof, I. Coca-Tagarro, M. Inaba, M. McHale, K. Cascella, P. Potin, M. D. Guiry, and R. Sulpice. 2021. A sequencing-free assay for foliose Ulva species identification, hybrid detection and bulk biomass characterisation. Algal Research 55:102280. https://www.sciencedirect.com/science/article/pii/S2211926421000990. doi: 10.1016/j.algal.2021.102280.
  • Fort, A., C. Mannion, J. M. Fariñas-Franco, and R. Sulpice. 2020. Green tides select for fast expanding Ulva strains. Science of the Total Environment 698:134337. https://www.sciencedirect.com/science/article/pii/S0048969719343281. doi: 10.1016/j.scitotenv.2019.134337.
  • Fort, A., M. McHale, K. Cascella, P. Potin, M.-M. Perrineau, P. D. Kerrison, E. da Costa, et al. 2022. Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution. Molecular Ecology Resources 22 (1):86–101. doi: 10.1111/1755-0998.13453.
  • Fort, A., M. McHale, K. Cascella, P. Potin, B. Usadel, M. D. Guiry, and R. Sulpice. 2021. Foliose Ulva species show considerable inter-specific genetic diversity, low intra-specific genetic variation, and the rare occurrence of inter-specific hybrids in the wild. Journal of Phycology 57 (1):219–33. doi: 10.1111/jpy.13079.
  • Gajaria, T. K., P. Suthar, R. S. Baghel, N. B. Balar, P. Sharnagat, V. A. Mantri, and C. R. K. Reddy. 2017. Integration of protein extraction with a stream of byproducts from marine macroalgae: A model forms the basis for marine bioeconomy. Bioresource Technology 243 (November):867–73. doi: 10.1016/j.biortech.2017.06.149.
  • Ganesan, A. R., M. Shanmugam, and R. Bhat. 2018. Producing novel edible films from semi refined Carrageenan (SRC) and Ulvan polysaccharides for potential food applications. International Journal of Biological Macromolecules 112:1164–70. doi: 10.1016/j.ijbiomac.2018.02.089.
  • Ganesan, A. R., M. Shanmugam, S. Palaniappan, and G. Rajauria. 2018. Development of edible film from Acanthophora Spicifera: Structural, rheological and functional properties. Food Bioscience 23:121–8. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040015261&doi=10.1016/j.fbio.2017.12.009&partnerID=40&md5=47f2bd40604bdeabde148f6147175de2. doi: 10.1016/j.fbio.2017.12.009.
  • Gao, K., and K. R. McKinley. 1994. Use of macroalgae for marine biomass production and CO2 remediation: A review. Journal of Applied Phycology 6 (1):45–60. doi: 10.1007/BF02185904.
  • Gao, S., X. Chen, Q. Yi, G. Wang, G. Pan, A. Lin, and G. Peng. 2010. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLOS One. 5 (1):e8571. doi: 10.1371/journal.pone.0008571.
  • Gao, Z., D. Xu, C. Meng, X. Zhang, Y. Wang, D. Li, J. Zou, Z. Zhuang, and N. Ye. 2013. The green tide-forming macroalga Ulva linza outcompetes the red macroalga Gracilaria lemaneiformis via allelopathy and fast nutrients uptake. Aquatic Ecology 48 (1):53–62. doi: 10.1007/s10452-013-9465-9.
  • Gatlin, D. M., F. T. Barrows, P. Brown, K. Dabrowski, T. G. Gaylord, R. W. Hardy, E. Herman, G. Hu, Å. Krogdahl, R. Nelson, et al. 2007. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research 38 (6):551–79. doi: 10.1111/j.1365-2109.2007.01704.x.
  • Ghaderiardakani, F., J. C. Coates, and T. Wichard. 2017. Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): A contribution to the lottery theory. FEMS Microbiology Ecology 93 (8). doi: 10.1093/femsec/fix094.
  • Ghaderiardakani, F., L. Langhans, V. B. Kurbel, S. Fenizia, and T. Wichard. 2022. Metabolite profiling reveals insights into the species-dependent cold stress response of the green seaweed holobiont Ulva (Chlorophyta). Environmental and Experimental Botany 200:104913. doi: 10.1016/j.envexpbot.2022.104913.
  • Ghosh, S., S. Greiserman, A. Chemodanov, P. M. Slegers, B. Belgorodsky, M. Epstein, A. Kribus, M. Gozin, G.-Q. Chen, and A. Golberg. 2021. Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: Process optimization and a priori economic and greenhouse emissions break-even analysis. Science of the Total Environment 770 (May):145281. doi: 10.1016/j.scitotenv.2021.145281.
  • Glasson, C. R. K., I. M. Sims, S. M. Carnachan, R. de Nys, and M. Magnusson. 2017. A cascading biorefinery process targeting sulfated polysaccharides (Ulvan) from Ulva ohnoi. Algal Research 27 (November):383–91. doi: 10.1016/j.algal.2017.07.001.
  • Golberg, A., A. N. Robin, M. Zollmann, H. Traugott, R. R. Palatnik, and A. Israel. 2020. Macroalgal biorefineries for the Blue Economy World Scientific.
  • Gomaa, M., A. A. Al-Badaani, A. F. Hifney, and M. S. Adam. 2022. Utilization of cellulose and Ulvan from the green seaweed Ulva lactuca in the development of composite edible films with natural antioxidant properties. Journal of Applied Phycology 34 (5):2615–26. doi: 10.1007/s10811-022-02786-z.
  • Gross, M. 2017. Our planet wrapped in plastic. Current Biology 27 (16):R785–R788. doi: 10.1016/j.cub.2017.08.007.
  • Guerreiro, I., R. Magalhães, F. Coutinho, A. Couto, S. Sousa, C. Delerue-Matos, V. F. Domingues, A. Oliva-Teles, and H. Peres. 2019. Evaluation of the seaweeds Chondrus crispus and Ulva lactuca as functional ingredients in Gilthead Seabream (Sparus aurata). Journal of Applied Phycology 31 (3):2115–24. doi: 10.1007/s10811-018-1708-7.
  • Guidara, M., H. Yaich, S. Benelhadj, Y. D. Adjouman, A. Richel, C. Blecker, M. Sindic, S. Boufi, H. Attia, and H. Garna. 2020. Smart Ulvan films responsive to stimuli of plasticizer and extraction condition in physico-chemical, optical, barrier and mechanical properties. International Journal of Biological Macromolecules 150:714–26. doi: 10.1016/j.ijbiomac.2020.02.111.
  • Guidara, M., H. Yaich, A. Richel, C. Blecker, S. Boufi, H. Attia, and H. Garna. 2019. Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel Ulvan films. International Journal of Biological Macromolecules 135:647–58. doi: 10.1016/j.ijbiomac.2019.05.196.
  • Guo, Y., A.-K. Lundebye, N. Li, Å. Ergon, S. Pang, Y. Jiang, W. Zhu, Y. Zhao, X. Li, L. Yao, et al. 2023. Comparative assessment of food safety regulations and standards for arsenic, cadmium, lead, mercury and iodine in macroalgae used as food and feed in China and Europe. Trends in Food Science & Technology 141 (November):104204. doi: 10.1016/j.tifs.2023.104204.
  • Gupta, S., and N. Abu-Ghannam. 2012. Probiotic fermentation of plant based products: Possibilities and opportunities. Critical Reviews in Food Science and Nutrition 52 (2):183–99. doi: 10.1080/10408398.2010.499779.
  • Gupta, S., S. Cox, and N. Abu-Ghannam. 2011. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT - Food Science and Technology 44 (5):1266–72. https://www.sciencedirect.com/science/article/pii/S0023643810004469. doi: 10.1016/j.lwt.2010.12.022.
  • Güroy, D., B. Güroy, D. L. Merrifield, S. Ergün, A. A. Tekinay, and M. Yiğit. 2011. Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period. Journal of Animal Physiology and Animal Nutrition 95 (3):320–7. doi: 10.1111/j.1439-0396.2010.01057.x.
  • Hassan, S. M., M. Ashour, N. Sakai, L. Zhang, H. A. Hassanien, A. Gaber, and G. Ammar. 2021. Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture 11 (4):320. doi: 10.3390/agriculture11040320.
  • Hasselström, L., J.-B. Thomas, J. Nordström, G. Cervin, G. M. Nylund, H. Pavia, and F. Gröndahl. 2020. Socioeconomic prospects of a seaweed bioeconomy in Sweden. Scientific Reports 10 (1) doi: 10.1038/s41598-020-58389-6.
  • Hasselström, L., and J.-B. E. Thomas. 2022. A critical review of the life cycle climate impact in seaweed value chains to support carbon accounting and blue carbon financing. Cleaner Environmental Systems 6:100093. doi: 10.1016/j.cesys.2022.100093.
  • Hayden, H. S., J. Blomster, C. A. Maggs, P. C. Silva, M. J. Stanhope, and J. R. Waaland. 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology 38 (3):277–94. doi: 10.1080/1364253031000136321.
  • Hendriks, H., T. Van den Ingh, Å. Krogdahl, J. Olli, and J. F. J. G. Koninkx. 1990. Binding of soybean agglutinin to small intestinal brush border membranes and brush border membrane enzyme activities in Atlantic salmon (Salmo salar). Aquaculture 91 (1–2):163–70. https://www.sciencedirect.com/science/article/pii/004484869090185P. doi: 10.1016/0044-8486(90)90185-P.
  • Ho, K. K. H. Y., and B. W. Redan. 2022. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Critical Reviews in Food Science and Nutrition 62 (2):508–26. doi: 10.1080/10408398.2020.1821598.
  • Hofmann, L. C., J. C. Nettleton, C. D. Neefus, and A. C. Mathieson. 2010. 2010. Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): Introduced and indigenous distromatic species. European Journal of Phycology 45 (3):230–9. doi: 10.1080/09670261003746201.
  • Hognes, E. S., K. Nilsson, V. Sund, and F. Ziegler. 2012. 2014 LCA of Norwegian salmon production. https://hdl.handle.net/11250/2458163.
  • Holdt, S. L., and S. Kraan. 2011. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 23 (3):543–97. doi: 10.1007/s10811-010-9632-5.
  • Hughey, J. R., P. W. Gabrielson, C. A. Maggs, and F. Mineur. 2021. Genomic analysis of the lectotype specimens of European Ulva rigida and Ulva lacinulata (Ulvaceae, Chlorophyta) reveals the ongoing misapplication of names. European Journal of Phycology 57 (2):143–53. doi: 10.1080/09670262.2021.1914862.
  • Hughey, J. R., P. W. Gabrielson, C. A. Maggs, F. Mineur, and K. A. Miller. 2020. Taxonomic revisions based on genetic analysis of type specimens of Ulva conglobata, U. laetevirens, U. pertusa and U. spathulata (Ulvales, Chlorophyta). Phycological Research 69 (2):148–53. doi: 10.1111/pre.12450.
  • Hughey, J. R., C. A. Maggs, F. Mineur, C. Jarvis, K. A. Miller, S. H. Shabaka, and P. W. Gabrielson. 2019. Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies. Journal of Phycology 55 (3):503–8. doi: 10.1111/jpy.12860.
  • Hung, Y.-H. R., C.-Y. Peng, M.-Y. Huang, W.-J. Lu, H.-J. Lin, C.-L. Hsu, M.-C. Fang, and H.-T. V. Lin. 2023. Monitoring the aroma compound profiles in the microbial fermentation of seaweeds and their effects on sensory perception. Fermentation 9 (2):135. doi: 10.3390/fermentation9020135.
  • Hussein, M. H., E. Eltanahy, A. F. Al Bakry, N. Elsafty, and M. M. Elshamy. 2021. Seaweed extracts as prospective plant growth bio-stimulant and salinity stress alleviator for Vigna sinensis and Zea mays. Journal of Applied Phycology 33 (2):1273–91. doi: 10.1007/s10811-020-02330-x.
  • Hwang, H. J., S. Y. Lee, S. M. Kim, and S. B. Lee. 2011. Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnology and Bioprocess Engineering 16 (6):1231–9. doi: 10.1007/s12257-011-0278-1.
  • Irfan, I., S. Raj, A. Jaya-Ram, and S. P. Woo. 2022. Preliminary evaluation of seaweed of Ulva lactuca as supplemental diet for sea cucumber, Holothuria scabra, in aquaculture. Journal of Survey in Fisheries Sciences 9 (1):27–32. doi: 10.18331/SFS2022.9.1.3.
  • Ismail, B. P., L. Senaratne-Lenagala, A. Stube, and A. Brackenridge. 2020. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers 10 (4:53–63. doi: 10.1093/af/vfaa040.
  • Ismail, M. M., and E. S. Mohamed. 2017. Differentiation between some Ulva Spp. by morphological, genetic and biochemical analyses. Vavilov Journal of Genetics and Breeding 21 (3):360–7. doi: 10.18699/VJ17.253.
  • Ivanova, V., M. Stancheva, and D. Petrova. 2013. Fatty acid composition of Black Sea Ulva rigida and Cystoseira crinita. Bulgarian Journal of Agricultural Science 19:42–7.
  • Jacobsen, M., M. Bianchi, J. P. Trigo, I. Undeland, E. Hallström, and S. Bryngelsson. 2023. Nutritional and toxicological characteristics of Saccharina latissima, Ulva fenestrata, Ulva intestinalis, and Ulva rigida: A review. International Journal of Food Properties 26 (1):2349–78. doi: 10.1080/10942912.2023.2246677.
  • Jannat-Alipour, H., M. Rezaei, B. Shabanpour, M. Tabarsa, and F. Rafipour. 2019. Addition of seaweed powder and sulphated polysaccharide on shelf-life extension of functional fish Surimi restructured product. Journal of Food Science and Technology 56 (8):3777–89. doi: 10.1007/s13197-019-03846-y.
  • Jansen, H. M., M. S. Bernard, M. A. J. Nederlof, I. M. van der Meer, and A. van der Werf. 2022. Seasonal variation in productivity, chemical composition and nutrient uptake of Ulva spp. (Chlorophyta) strains. Journal of Applied Phycology 34 (3):1649–60. doi: 10.1007/s10811-022-02708-z.
  • Jeon, M.-R., and S.-H. Choi. 2012. Quality characteristics of pork patties added with seaweed powder. Korean Journal for Food Science of Animal Resources 32 (1):77–83. doi: 10.5851/kosfa.2012.32.1.71.
  • Jiang, R., Y. Linzon, E. Vitkin, Z. Yakhini, A. Chudnovsky, and A. Golberg. 2016. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method. Scientific Reports 6 (1):27761. doi: 10.1038/srep27761.
  • Joaquina Ibarra-Arana, M., Z.-H. Liao, H.-Y. Chen, and F.-H. Nan. 2018. The effects of dietary supplmented Ulva lactuca on the feeding preference and growth of sea cucumber Apostichopus japonicus (Selenka, 1867). Journal of the Fisheries Societyof Taiwan 45 (3):201–8.
  • Joniver, C. F. H., A. Photiades, P. J. Moore, A. L. Winters, A. Woolmer, and J. M. M. Adams. 2021. The global problem of nuisance macroalgal blooms and pathways to its use in the circular economy. Algal Research 58:102407. https://www.sciencedirect.com/science/article/pii/S2211926421002265?via%3Dihub. doi: 10.1016/j.algal.2021.102407.
  • Jönsson, M., and E. Nordberg Karlsson. 2023. Chemical food safety of seaweed: Species, spatial and thallus dependent variation of potentially toxic elements (PTEs) and techniques for their removal. Journal of Applied Phycology. doi: 10.1007/s10811-023-03131-8.
  • Kadam, S. U., C. Álvarez, B. K. Tiwari, and C. P. O’Donnell. 2015. Processing of seaweeds. In Seaweed sustainability, 61–78. Elsevier.
  • Kendel, M., G. Wielgosz-Collin, S. Bertrand, C. Roussakis, N. Bourgougnon, and G. Bedoux. 2015. Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Marine Drugs 13 (9):5606–28. doi: 10.3390/md13095606.
  • Kenneth, F., C. F. H. Joniver, W. Meredith, and J. M. M. Adams. 2022. The productivity effects of macroalgal biochar from Ulva Linnaeus bloom species on Arabidopsis thaliana Linnaeus seedlings. European Journal of Phycology 58 (3):284–99. doi: 10.1080/09670262.2022.2103739.
  • Khairy, H. M., and S. M. El-Shafay. 2013. Seasonal variations in the biochemical composition of some common seaweed species from the Coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 55 (2):435–52. doi: 10.5697/oc.55-2.435.
  • Khairy, H. M., and M. A. El-Sheikh. 2015. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi Journal of Biological Sciences 22 (5):623–30. https://pubmed.ncbi.nlm.nih.gov/26288568. doi: 10.1016/j.sjbs.2015.01.010.
  • Kidgell, J. T., M. Magnusson, R. de Nys, and C. R. K. Glasson. 2019. Ulvan: A systematic review of extraction, composition and function. Algal Research 39 (May):101422. doi: 10.1016/j.algal.2019.101422.
  • Kim, S. W., J. F. Less, L. Wang, T. Yan, V. Kiron, S. J. Kaushik, and X. G. Lei. 2019. Meeting global feed protein demand: challenge, opportunity, and strategy. Annual Review of Animal Biosciences 7 (1):221–43. doi: 10.1146/annurev-animal-030117-014838.
  • Kinley, R. D., M. J. Vucko, L. Machado, and N. W. Tomkins. 2016. In vitro evaluation of the antimethanogenic potency and effects on fermentation of individual and combinations of marine macroalgae. American Journal of Plant Sciences 07 (14):2038–54. doi: 10.4236/ajps.2016.714184.
  • Kirst, G. O. 1990. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology 41 (1):21–53. doi: 10.1146/annurev.pp.41.060190.000321.
  • Kite-Powell, H. L., E. Ask, S. Augyte, D. Bailey, J. Decker, C. A. Goudey, G. Grebe, Y. Li, S. Lindell, D. Manganelli, et al. 2022. Estimating Production Cost for Large-Scale Seaweed Farms. Applied Phycology 3 (1):435–45. December 31): doi: 10.1080/26388081.2022.2111271.
  • Koeman, R. P. T., and C. van den Hoek. 1981. The taxonomy of Ulva (Chlorophyceae) in the Netherlands. British Phycological Journal 16 (1):9–53. doi: 10.1080/00071618100650031.
  • Kraan, S. 2012. Algal polysaccharides, novel applications and outlook. In Carbohydrates-comprehensive studies on glycobiology and glycotechnology. IntechOpen.
  • Kraft, L. G. K., G. T. Kraft, and R. F. Waller. 2010. Investigations into Southern Australian Ulva (Ulvophyceae, Chlorophyta) taxonomy and molecular phylogeny indicate both cosmopolitanism and endemic cryptic species. Journal of Phycology 46 (6):1257–77. doi: 10.1111/j.1529-8817.2010.00909.x.
  • Kumar, R., K. Trivedi, K. G. V. Anand, and A. Ghosh. 2020. Science behind biostimulant action of seaweed extract on growth and crop yield: Insights into transcriptional changes in roots of maize treated with Kappaphycus alvarezii seaweed extract under soil moisture stressed conditions. Journal of Applied Phycology 32 (1):599–613. doi: 10.1007/s10811-019-01938-y.
  • Kumarathunge, N. C., J. M. P. Jayasinghe, and E. D. N. S. Abeyrathne. 2016. Development of sea lettuce (Ulva lactuca) and Catla (Catla catla) incorporated protein and fiber rich fish burger. International Journal of Research in Agricultural Sciences 3:2348–3997.
  • Kusumawati, R., E. Sinurat, D. Fransiska, A. H. Purnomo, B. S. B. Utomo, and J. Basmal. 2022. Utilization of Ulva spp. in biscuit formulation: Feasibility studies at the household scale. In IOP Conference Series: Earth and Environmental Science, vol. 978, 12036. IOP Publishing.
  • Kut Güroy, B., Cirik, D. Güroy, F. Sanver, and A. A. Tekinay. Ş 2007. Effects of Ulva rigida and Cystoseira barbata meals as a feed additive on growth performance, feed utilization, and body composition of Nile Tilapia, Oreochromis niloticus. Turkish Journal of Veterinary and Animal Sciences 31 (2):91–7.
  • Lahaye, M., and A. Robic. 2007. Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8 (6):1765–74. doi: 10.1021/bm061185q.
  • Lähteenmäki-Uutela, A., M. Rahikainen, M. T. Camarena-Gómez, J. Piiparinen, K. Spilling, and B. Yang. 2021. European Union legislation on macroalgae products. Aquaculture International 29 (2):487–509. doi: 10.1007/s10499-020-00633-x.
  • Lamm, R. 2003. Governance barriers to sustainability. World Futures 59 (3–4):275–85. doi: 10.1080/02604020310119.
  • Lanfer-Marquez, U. M., R. M. C. Barros, and P. Sinnecker. 2005. Antioxidant activity of chlorophylls and their derivatives. Food Research International 38 (8–9):885–91. doi: 10.1016/j.foodres.2005.02.012.
  • Lange, L., K. O. Connor, S. Arason, U. Bundgård-Jørgensen, A. Canalis, D. Carrez, J. Gallagher, et al. 2021. Developing a sustainable and circular bio-based economy in EU: By partnering across sectors, upscaling and using new knowledge faster, and for the benefit of climate, environment and biodiversity, and people and business. Frontiers in Bioengineering and Biotechnology 8. doi: 10.3389/fbioe.2020.619066.
  • Laramore, S., R. Baptiste, P. S. Wills, and M. D. Hanisak. 2018. Utilization of IMTA-produced Ulva lactuca to supplement or partially replace pelleted diets in shrimp (Litopenaeus vannamei) reared in a clear water production system. Journal of Applied Phycology 30 (6):3603–10. doi: 10.1007/s10811-018-1485-3.
  • Latique, S., R. Ben Mrid, I. Kabach, A. Kchikich, H. Sammama, A. Yasri, M. Nhiri, M. El Kaoua, A. Douira, and K. Selmaoui. 2021. Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L.). Agronomy 11 (2):265. doi: 10.3390/agronomy11020265.
  • Lauber, K., R. Ralston, M. Mialon, A. Carriedo, and A. B. Gilmore. 2020. Non-communicable disease governance in the era of the sustainable development goals: A qualitative analysis of food industry framing in WHO consultations. Globalization and Health 16 (1):76. https://pubmed.ncbi.nlm.nih.gov/32847604. doi: 10.1186/s12992-020-00611-1.
  • Lawton, R. J., L. Mata, R. de Nys, and N. A. Paul. 2013. Algal bioremediation of waste waters from land-based aquaculture using Ulva: Selecting target species and strains. PLOS One. 8 (10):e77344. doi: 10.1371/journal.pone.0077344.
  • Lawton, R. J., J. E. Sutherland, C. R. K. Glasson, and M. E. Magnusson. 2021. Selection of temperate Ulva species and cultivars for land-based cultivation and biomass applications. Algal Research 56:102320. https://www.sciencedirect.com/science/article/abs/pii/S2211926421001399. doi: 10.1016/j.algal.2021.102320.
  • Lee, S. Y., J. H. Chang, and S. B. Lee. 2014. Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa. Biotechnology and Bioprocess Engineering 19 (6):1022–33. doi: 10.1007/s12257-014-0654-8.
  • Li, F., S. Zuo, Y. Chi, C. Du, Z. Shen, X. Han, X. Wang, and P. Wang. 2020. Alleviation of drought stress in wheat using exogenous Ulva prolifera extract produced by enzymatic hydrolysis. Journal of Renewable Materials 8 (11):1519–29. https://www.techscience.com/jrm/v8n11/40269. doi: 10.32604/jrm.2020.011453.
  • Li, J.-Y., F. Yang, L. Jin, Q. Wang, J. Yin, P. He, and Y. Chen. 2018. Safety and quality of the green tide algal species Ulva prolifera for option of human consumption: A nutrition and contamination study. Chemosphere 210:1021–8. doi: 10.1016/j.chemosphere.2018.07.076.
  • Lindberg, J., G. Lindberg, J. Teräs, G. Poulsen, S. Solberg, K. Tybirk, J. Przedrzymirska, et al. 2016. Nordic alternative protein potentials mapping of regional bioeconomy opportunities. Nordic Council of Ministers.
  • Lomartire, S., and A. M. M. Gonçalves. 2022. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications. Marine Drugs 20 (2):141. https://pubmed.ncbi.nlm.nih.gov/35200670. doi: 10.3390/md20020141.
  • Lopes, D., T. Melo, F. Rey, J. Meneses, F. L. Monteiro, L. A. Helguero, M. H. Abreu, A. I. Lillebø, R. Calado, and M. R. Domingues. 2020. Valuing bioactive lipids from green, red and brown macroalgae from aquaculture, to foster functionality and biotechnological applications. Molecules 25 (17):3883. https://www.mdpi.com/1420-3049/25/17/3883. doi: 10.3390/molecules25173883.
  • Lopes, D., A. S. P. Moreira, F. Rey, E. da Costa, T. Melo, E. Maciel, A. Rego, M. H. Abreu, P. Domingues, R. Calado, et al. 2019. Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture. Journal of Applied Phycology 31 (2):1369–81. doi: 10.1007/s10811-018-1644-6.
  • Lorenzo, J. M., J. Sineiro, I. R. Amado, and D. Franco. 2014. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Science 96 (1):526–34. https://www.sciencedirect.com/science/article/pii/S0309174013004919. doi: 10.1016/j.meatsci.2013.08.007.
  • Loureiro, R., C. M. M. Gachon, and C. Rebours. 2015. Seaweed cultivation: Potential and challenges of crop domestication at an unprecedented pace. New Phytologist 206 (2):489–92. doi: 10.1111/nph.13278.
  • Løvdal, T., B. T. Lunestad, M. Myrmel, J. T. Rosnes, and D. Skipnes. 2021. Microbiological food safety of seaweeds. Foods 10 (11):2719. doi: 10.3390/foods10112719.
  • Macey, B. M., M. J. Brand, M. Brink-Hull, M. D. Cyrus, and J. J. Bolton. 2021. Effluent grown Ulva as a functional ingredient for farmed abalone: Impacts on growth, physiology and microbiome. In Aquaculture.
  • Machado, L., M. Magnusson, N. A. Paul, R. de Nys, and N. Tomkins. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLOS One. 9 (1):e85289. doi: 10.1371/journal.pone.0085289.
  • Madibana, M. J., V. Mlambo, B. Lewis, and C. Fouché. 2017. Effect of graded levels of dietary seaweed (Ulva sp.) on growth, hematological and serum biochemical parameters in dusky kob, Argyrosomus japonicus, Sciaenidae. Egyptian Journal of Aquatic Research 43 (3):249–54. doi: 10.1016/j.ejar.2017.09.003.
  • Maehre, H. K., M. K. Malde, K.-E. Eilertsen, and E. O. Elvevoll. 2014. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Journal of the Science of Food and Agriculture 94 (15):3281–90. doi: 10.1002/jsfa.6681.
  • Magnoni, L. J., J. A. Martos-Sitcha, A. Queiroz, J. A. Calduch-Giner, J. F. M. Gonçalves, C. M. R. Rocha, H. T. Abreu, J. W. Schrama, R. O. A. Ozorio, and J. Pérez-Sánchez. 2017. Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata). Biology Open 6 (6):897–908. https://pubmed.ncbi.nlm.nih.gov/28495962. doi: 10.1242/bio.024299.
  • Magnusson, M., C. R. K. Glasson, M. J. Vucko, A. Angell, T. L. Neoh, and R. de Nys. 2019. Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal Research 41:101555. doi: 10.1016/j.algal.2019.101555.
  • Magnusson, M., C. Carl, L. Mata, R. de Nys, and N. A. Paul. 2016. Seaweed salt from Ulva: A novel first step in a cascading biorefinery model. Algal Research 16:308–16. doi: 10.1016/j.algal.2016.03.018.
  • Maia, M., R. G. A. J. M. Fonseca, H. M. Oliveira, C. Mendonça, and A. R. J. Cabrita. 2016. the potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific Reports 6 (1):32321. doi: 10.1038/srep32321.
  • Mamede, R., F. Ricardo, M. H. Abreu, E. F. da Silva, C. Patinha, and R. Calado. 2021. Spatial variability of elemental fingerprints of sea lettuce (Ulva spp.) and its potential use to trace geographic origin. Algal Research 59:102451. doi: 10.1016/j.algal.2021.102451.
  • Maneein, S., J. J. Milledge, B. V. Nielsen, and P. J. Harvey. 2018. A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 4 (4):100. doi: 10.3390/fermentation4040100.
  • Mapelli-Brahm, P., F. J. Barba, F. Remize, C. Garcia, A. Fessard, A. Mousavi Khaneghah, A. S. Sant’Ana, J. M. Lorenzo, D. Montesano, and A. J. Meléndez-Martínez. 2020. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science & Technology 99:389–401. doi: 10.1016/j.tifs.2020.03.013.
  • Marinho, G., C. Nunes, I. Sousa-Pinto, R. Pereira, P. Rema, and L. M. P. Valente. 2013. The IMTA-cultivated Chlorophyta Ulva spp. as a sustainable ingredient in Nile Tilapia (Oreochromis niloticus) diets. Journal of Applied Phycology 25 (5):1359–67. doi: 10.1007/s10811-012-9965-3.
  • Marrion, O., A. Schwertz, J. Fleurence, J. L. Guéant, and C. Villaume. 2003. Improvement of the digestibility of the proteins of the red alga Palmaria palmata by physical processes and fermentation. Nahrung [Food] 47 (5):339–44. doi: 10.1002/food.200390078.
  • Martin, N., and H. Maes. 1979. Multivariate analysis. London, UK: Academic.
  • Martínez-Antequera, F. P., J. A. Martos-Sitcha, J. M. Reyna, and F. J. Moyano. 2021. Evaluation of the inclusion of the green seaweed Ulva ohnoi as an ingredient in feeds for gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Animals 11 (6):1684. doi: 10.3390/ani11061684.
  • Masasa, M., A. Kushmaro, E. Kramarsky-Winter, M. Shpigel, R. Barkan, A. Golberg, A. Kribus, N. Shashar, and L. Guttman. 2021. Mono-specific algal diets shape microbial networking in the gut of the sea urchin Tripneustes gratilla elatensis. Animal Microbiome 3 (1):79. doi: 10.1186/s42523-021-00140-1.
  • Mata, L., M. Magnusson, N. A. Paul, and R. de Nys. 2016. The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: Biomass and bioproducts. Journal of Applied Phycology 28 (1):365–75. doi: 10.1007/s10811-015-0561-1.
  • Mata, L., A. Schuenhoff, and R. Santos. 2010. A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. Journal of Applied Phycology 22 (5):639–44. doi: 10.1007/s10811-010-9504-z.
  • Matos, G. S., S. G. Pereira, Z. A. Genisheva, A. M. Gomes, J. A. Teixeira, and C. M. R. Rocha. 2021. Advances in extraction methods to recover added-value compounds from seaweeds: Sustainability and functionality. Foods 10 (3):516. doi: 10.3390/foods10030516.
  • Matshogo, T. B., C. M. Mnisi, and V. Mlambo. 2020. Dietary green seaweed compromises overall feed conversion efficiency but not blood parameters and meat quality and stability in broiler chickens. Agriculture 10 (11):547. doi: 10.3390/agriculture10110547.
  • Matshogo, T. B., C. M. Mnisi, and V. Mlambo. 2021. Effect of pre-treating dietary green seaweed with proteolytic and fibrolytic enzymes on physiological and meat quality parameters of broiler chickens. Foods 10 (8):1862. doi: 10.3390/foods10081862.
  • Mazarrasa, I., Y. S. Olsen, E. Mayol, N. Marbà, and C. M. Duarte. 2014. Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnology Advances 32 (5):1028–36. doi: 10.1016/j.biotechadv.2014.05.002.
  • Meléndez-Martínez, A. J., A. I. Mandić, F. Bantis, V. Böhm, G. I. A. Borge, M. Brnčić, A. Bysted, et al. 2021. A comprehensive review on carotenoids in foods and feeds: Status Quo, applications, patents, and research needs. Critical Reviews in Food Science and Nutrition 62 (8):1999–2049. doi: 10.1080/10408398.2020.1867959.
  • Mendoza-Morales, L. T., A. C. Mendoza-González, L. E. Mateo Cid, and A. Rodríguez-Dorantes. 2019. Análisis Del Efecto de Extractos de Sargassum vulgare y Ulva fasciata Como Bioestimulantes Del Crecimiento de Lens esculenta. Mexican Journal of Biotechnology 4 (4):15–28. https://docs.wixstatic.com/ugd/38ce56_8b3325c087b84dd0a2901e56d8f3f940.pdf. doi: 10.29267/mxjb.2019.4.4.15.
  • Menezes, B. S., M. S. Coelho, S. L. R. Meza, M. Salas-Mellado, and M. Souza. 2015. Macroalgal biomass as an additional ingredient of bread. International Food Research Journal 22 (2).
  • Mhatre, A., S. Gore, A. Mhatre, N. Trivedi, M. Sharma, R. Pandit, A. Anil, and A. Lali. 2019. Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renewable Energy. 132 (March):742–51. doi: 10.1016/j.renene.2018.08.012.
  • Michalak, I., K. Chojnacka, and D. Korniewicz. 2015. New feed supplement from macroalgae as the dietary source of microelements for pigs. Open Chemistry 13 (1). doi: 10.1515/chem-2015-0149.
  • Michalak, I., B. Górka, P. P. Wieczorek, E. Rój, J. Lipok, B. Łęska, B. Messyasz, R. Wilk, G. Schroeder, A. Dobrzyńska-Inger, et al. 2016. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology 51 (3):243–52. doi: 10.1080/09670262.2015.1134813.
  • Mihaila, A. A., C. R. K. Glasson, R. Lawton, S. Muetzel, G. Molano, and M. Magnusson. 2022. New temperate seaweed targets for mitigation of ruminant methane emissions: an in vitro assessment. Applied Phycology 3 (1):274–84. doi: 10.1080/26388081.2022.2059700.
  • Mišurcová, L. 2011. Chemical composition of seaweeds. In Handbook of marine macroalgae, 171–92. Wiley.
  • Mohammed, H. O., M. N. O’Grady, M. G. O’Sullivan, R. M. Hamill, K. N. Kilcawley, and J. P. Kerry. 2022. Acceptable inclusion levels for selected brown and red Irish seaweed species in pork sausages. Foods11(10):1522. doi: 10.3390/foods11101522.
  • Morais, T., A. Inácio, T. Coutinho, M. Ministro, J. Cotas, L. Pereira, and K. Bahcevandziev. 2020. Seaweed potential in the animal feed: A review. Journal of Marine Science and Engineering 8 (8):559. doi: 10.3390/jmse8080559.
  • Moreira, A., S. Cruz, R. Marques, and P. Cartaxana. 2022. The underexplored potential of green macroalgae in aquaculture. Reviews in Aquaculture 14 (1):5–26. doi: 10.1111/raq.12580.
  • Mouritsen, O. G., P. Rhatigan, and J. L. Pérez-Lloréns. 2019. The rise of seaweed gastronomy: Phycogastronomy. Botanica Marina 62 (3):195–209. doi: 10.1515/bot-2018-0041.
  • Mustafa, M. G., S. Wakamatsu, T. Takeda, T. Umino, and H. Nakagawa. 1995. Effect of algae as a feed additive on growth performance in red sea bream, Pagrus major. Trace Nutrients Research 12:67–72.
  • Nair, R. M., V. N. Boddepalli, M.-R. Yan, V. Kumar, B. Gill, R. S. Pan, C. Wang, G. L. Hartman, R. Silva e Souza, and P. Somta. 2023. Global status of vegetable soybean. Plants 12 (3):609. doi: 10.3390/plants12030609.
  • Nakagawa, H., S. Kasahara, and T. Sugiyama. 1987. Effect of Ulva meal supplementation on lipid metabolism of black sea bream, Acanthopagrus schlegeli (Bleeker). Aquaculture 62 (2):109–21. 10.1016/0044-8486(87)90315-2.
  • Natify, W., M. Droussi, N. Berday, A. Araba, and M. Benabid. 2015. Effect of the seaweed Ulva lactuca as a feed additive on growth performance, feed utilization and body composition of Nile Tilapia (Oreochromis niloticus L.). International Journal of Agriculture and Agricultural Research 7:85–92.
  • Naylor, R. L., R. W. Hardy, D. P. Bureau, A. Chiu, M. Elliott, A. P. Farrell, I. Forster, et al. 2009. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences of the United States of America 106 (36):15103–10. https://pubmed.ncbi.nlm.nih.gov/19805247. doi: 10.1073/pnas.0905235106.
  • Neto, R., C. Marçal, A. Queirós, H. Abreu, A. Silva, and S. Cardoso. 2018. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as functional ingredients. International Journal of Molecular Sciences 19 (10): 2987. doi: 10.3390/ijms19102987.
  • New Zealand Food Safety. 2023. Evaluation of food safety risks associated with seaweed and seaweed products. New Zealand Food Safety Technical Paper No: 2023/01. Palmerston North: New Zealand Food Safety Science & Research Centre.
  • Nhlane, L. T., C. M. Mnisi, V. Mlambo, and M. J. Madibana. 2021. Effect of seaweed-containing diets on visceral organ sizes, carcass characteristics, and meat quality and stability of Boschveld indigenous hens. Poultry Science 100 (2):949–56. https://www.sciencedirect.com/science/article/pii/S0032579120308907. doi: 10.1016/j.psj.2020.11.038.
  • Nielsen, C. W., S. L. Holdt, J. J. Sloth, G. S. Marinho, M. Sæther, J. Funderud, and T. Rustad. 2020. Reducing the high iodine content of Saccharina latissima and improving the profile of other valuable compounds by water blanching. Foods 9 (5):569. doi: 10.3390/foods9050569.
  • Nitschke, U., and D. B. Stengel. 2016. Quantification of iodine loss in edible Irish seaweeds during processing. Journal of Applied Phycology 28 (6):3527–33. doi: 10.1007/s10811-016-0868-6.
  • Nordic Council of Ministers. 2023. A Nordic approach to food safety risk management of seaweed for use as food. https://pub.norden.org/temanord2022-564.
  • Ólafsdóttir, G., G. Viera, E. Larsen, T. Nielsen, G. M. Ingólfsdóttir, E. Yngvadóttir, and S. Bogason. 2013. D.1.1, Key environmental challenges for food groups and regions representing the variation within the EU, Ch.3 Salmon Aquaculture Supply Chain. SENSE: Harmonised Environmental Sustainability in the European food and drink chain. http://www.ascs.is/wp-content/uploads/2010/04/SENSE_D1_1_Aquaculture_review.pdf
  • Olsson, J., S. Raikova, J. J. Mayers, S. Steinhagen, C. J. Chuck, G. M. Nylund, and E. Albers. 2020. Effects of geographical location on potentially valuable components in Ulva intestinalis sampled along the Swedish Coast. Applied Phycology 1 (1):80–92. doi: 10.1080/26388081.2020.1827454.
  • Olsson, J., G. B. Toth, A. Oerbekke, S. Cvijetinovic, N. Wahlström, H. Harrysson, S. Steinhagen, A. Kinnby, J. White, U. Edlund, et al. 2020. Cultivation conditions affect the monosaccharide composition in Ulva fenestrata. Journal of Applied Phycology 32 (5):3255–63. doi: 10.1007/s10811-020-02138-9.
  • Ortiz, J., N. Romero, P. Robert, J. Araya, J. Lopez-Hernández, C. Bozzo, E. Navarrete, A. Osorio, and A. Rios. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry 99 (1):98–104. doi: 10.1016/j.foodchem.2005.07.027.
  • Osuna-Ruíz, I., A. K. D. Ledezma, E. Martínez-Montaño, J. A. Salazar-Leyva, V. A. R. Tirado, and I. B. García. 2023. Enhancement of in-vitro antioxidant properties and growth of amaranth seed sprouts treated with seaweed extracts. Journal of Applied Phycology 35 (1):471–81. doi: 10.1007/s10811-022-02872-2.
  • Øverland, M., L. T. Mydland, and A. Skrede. 2019. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture 99 (1):13–24. doi: 10.1002/jsfa.9143.
  • Paiva, L., E. Lima, A. I. Neto, M. Marcone, and J. Baptista. 2016. Health-promoting ingredients from four selected Azorean macroalgae. Food Research International 89 (November):432–8. doi: 10.1016/j.foodres.2016.08.007.
  • Patrick, R., and J. Kingsley. 2017. Health promotion and sustainability programmes in Australia: Barriers and enablers to evaluation. Global Health Promotion 26 (2):82–92. doi: 10.1177/1757975917715038.
  • Paulert, R., R. Ascrizzi, S. Malatesta, P. Berni, M. D. Noseda, M. Mazetto de Carvalho, I. Marchioni, et al. 2021. Ulva intestinalis extract acts as biostimulant and modulates metabolites and hormone balance in basil (Ocimum Basilicum L.) and parsley (Petroselinum Crispum L.). Plants 10 (7):1391. doi: 10.3390/plants10071391.
  • Peñalver, R., J. M. Lorenzo, G. Ros, R. Amarowicz, M. Pateiro, and G. Nieto. 2020. Seaweeds as a functional ingredient for a healthy diet. Marine Drugs 18 (6):301. doi: 10.3390/md18060301.
  • Peña-Rodríguez, A., T. P. Mawhinney, D. Ricque-Marie, and L. E. Cruz-Suárez. 2011. Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chemistry 129 (2)November): :491–8. doi: 10.1016/j.foodchem.2011.04.104.
  • Pezoa-Conte, R., A. Leyton, I. Anugwom, S. von Schoultz, J. Paranko, P. Mäki-Arvela, S. Willför, M. Muszyński, J. Nowicki, M. E. Lienqueo, et al. 2015. Deconstruction of the green alga Ulva rigida in ionic liquids: Closing the mass balance. Algal Research 12 (November):262–73. doi: 10.1016/j.algal.2015.09.011.
  • Pinheiro, V. F., C. Marçal, H. Abreu, J. A. Lopes da Silva, A. M. S. Silva, and S. M. Cardoso. 2019. Physicochemical changes of air-dried and salt-processed Ulva rigida over storage time. Molecules 24 (16):2955. doi: 10.3390/molecules24162955.
  • Pirian, K., K. Piri, J. Sohrabipour, S. T. Jahromi, and J. Blomster. 2016. Nutritional and phytochemical evaluation of the common green algae, Ulva spp. (Ulvophyceae), from the Persian Gulf. Fundamental and Applied Limnology 188 (4):315–27. doi: 10.1127/fal/2016/0947.
  • Polikovsky, M., G. Califano, N. Dunger, T. Wichard, and A. Golberg. 2020. Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): Significant for the feedstock of bioethanol production. Algal Research 49:101945. doi: 10.1016/j.algal.2020.101945.
  • Population Reference Bureau. 2023. World population data sheet. https://www.prb.org/wp-content/uploads/2023/12/2023-World-Population-Data-Sheet-Booklet.pdf
  • Postma, P. R., O. Cerezo-Chinarro, R. J. Akkerman, G. Olivieri, R. H. Wijffels, W. A. Brandenburg, and M. H. M. Eppink. 2018. Biorefinery of the macroalgae Ulva lactuca: Extraction of proteins and carbohydrates by mild disintegration. Journal of Applied Phycology 30 (2):1281–93. doi: 10.1007/s10811-017-1319-8.
  • Prabhu, M., A. Chemodanov, R. Gottlieb, M. Kazir, O. Nahor, M. Gozin, A. Israel, Y. D. Livney, and A. Golberg. 2019. Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Research 37:215–27. doi: 10.1016/j.algal.2018.11.007.
  • Prato, E., G. Fanelli, A. Angioni, F. Biandolino, I. Parlapiano, L. Papa, G. Denti, M. Secci, M. Chiantore, M. S. Kelly, et al. 2018. Influence of a prepared diet and a macroalga (Ulva sp.) on the growth, nutritional and sensory qualities of gonads of the sea urchin Paracentrotus lividus. Aquaculture 493 (August):240–50. doi: 10.1016/j.aquaculture.2018.05.010.
  • Qi, H., T. Zhao, Q. Zhang, Z. Li, Z. Zhao, and R. Xing. 2005. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology 17 (6):527–34. doi: 10.1007/s10811-005-9003-9.
  • Qiu, S., S. Ge, P. Champagne, and R. M. Robertson. 2017. Potential of Ulva lactuca for municipal wastewater bioremediation and fly food. Desalination and Water Treatment 91:23–30. doi: 10.5004/dwt.2017.20767.
  • Qiu, X., A. Neori, J. K. Kim, C. Yarish, M. Shpigel, L. Guttman, D. Ben Ezra, V. Odintsov, and D. A. Davis. 2017. Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei. Journal of Applied Phycology 30 (2):1305–16. doi: 10.1007/s10811-017-1278-0.
  • Queirós, A. S., A. R. Circuncisão, E. Pereira, M. Válega, M. H. Abreu, A. M. S. Silva, and S. M. Cardoso. 2021. Valuable nutrients from Ulva rigida: Modulation by seasonal and cultivation factors. Applied Sciences 11 (13):6137. doi: 10.3390/app11136137.
  • Quero, G. M., L. Fasolato, C. Vignaroli, and G. M. Luna. 2015. Understanding the association of Escherichia coli with diverse macroalgae in the Lagoon of Venice. Scientific Reports 5 (1):1–11. doi: 10.1038/srep10969.
  • Radulovich, R., A. Neori, D. Valderrama, C. R. K. Reddy, H. Cronin, and J. Forster. 2015. Farming of seaweeds. Seaweed Sustainability 1:27–59. https://www.sciencedirect.com/science/article/abs/pii/B9780124186972000039.
  • Rajapakse, N., and S. K. Kim. 2011. Nutritional and digestive health benefits of seaweed. Advances in food and nutrition research 64:17–28
  • Rama Nisha, P., A. Elezabeth Mary, M. Uthayasiva, and S. Arularasan. 2014. Seaweed Ulva Reticulata a potential feed supplement for growth, colouration and disease resistance in fresh water ornamental gold fish, Carassius auratus. Journal of Aquaculture Research and Development 5 (5):1000254.
  • Rashad, S., G. El-Chaghaby, E. C. Lima, and G. Simoes dos Reis. 2023. Optimizing the ultrasonic-assisted extraction of antioxidants from Ulva lactuca algal biomass using factorial design. Biomass Conversion and Biorefinery 13 (7):5681–90. doi: 10.1007/s13399-021-01516-8.
  • Ratana-Arporn, P., and A. Chirapart. 2006. Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Agriculture and Natural Resources 40 (6):75–83. https://li01.tci-thaijo.org/index.php/anres/article/view/244017.
  • Reboleira, J., S. Silva, A. Chatzifragkou, K. Niranjan, and M. F. L. Lemos. 2021. Seaweed fermentation within the fields of food and natural products. Trends in Food Science & Technology 116 (October):1056–73. doi: 10.1016/j.tifs.2021.08.018.
  • Rey-Crespo, F., M. López-Alonso, and M. Miranda. 2014. The use of seaweed from the Galician Coast as a mineral supplement in organic dairy cattle. Animal 8 (4):580–6. https://www.cambridge.org/core/product/BC62F1F0022E5EB29716B5CD5D721F3D. doi: 10.1017/S1751731113002474.
  • Ribeiro, D. M., D. Coelho, M. Costa, D. F. P. Carvalho, C. C. Leclercq, J. Renaut, J. P. B. Freire, A. M. Almeida, and J. A. Mestre Prates. 2024. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Scientific Reports 14 (1):4589. doi: 10.1038/s41598-024-55462-2.
  • Rieve, K. 2023. Are investors in the seaweed sector looking in the wrong place? The Fish Site. https://thefishsite.com/articles/are-investors-in-the-seaweed-sector-looking-in-the-wrong-place-hatch-seaweed-insights#:∼:text=Our%20extensive%20research%20suggests%20that,growth%20of%20the%20seaweed%20sector.
  • Roberts, D. A., and R. de Nys. 2016. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva. Journal of Environmental Management 169:253–60. doi: 10.1016/j.jenvman.2015.12.023.
  • Robic, A., C. Rondeau-Mouro, J.-F. Sassi, Y. Lerat, and M. Lahaye. 2009. Structure and interactions of Ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydrate Polymers 77 (2):206–16. doi: 10.1016/j.carbpol.2008.12.023.
  • Robin, A., P. Chavel, A. Chemodanov, A. Israel, and A. Golberg. 2017. Diversity of monosaccharides in marine macroalgae from the Eastern Mediterranean Sea. Algal Research 28 (December):118–27. doi: 10.1016/j.algal.2017.10.005.
  • Robin, A., M. Kazir, M. Sack, A. Israel, W. Frey, G. Mueller, Y. D. Livney, and A. Golberg. 2018. Functional protein concentrates extracted from the green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustainable Chemistry & Engineering 6 (11):13696–705. doi: 10.1021/acssuschemeng.8b01089.
  • Rodríguez-Bernaldo de Quirós, A., and J. López-Hernández. 2021. An overview on effects of processing on the nutritional content and bioactive compounds in seaweeds. Foods 10 (9):2168. doi: 10.3390/foods10092168.
  • Roleda, M. Y., and S. Heesch. 2021. Chemical profiling of Ulva species for food applications: What is in a name? Food Chemistry 361:130084. doi: 10.1016/j.foodchem.2021.130084.
  • Roleda, M. Y., S. Lage, D. F. Aluwini, C. Rebours, M. B. Brurberg, U. Nitschke, and F. G. Gentili. 2021. Chemical profiling of the Arctic Sea lettuce Ulva lactuca (Chlorophyta) mass-cultivated on land under controlled conditions for food applications. Food Chemistry 341:127999.
  • Roohinejad, S., M. Koubaa, F. J. Barba, S. Saljoughian, M. Amid, and R. Greiner. 2017. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International 99:1066–83. doi: 10.1016/j.foodres.2016.08.016.
  • Rosa, J., M. F. L. Lemos, D. Crespo, M. Nunes, A. Freitas, F. Ramos, M. Â. Pardal, and S. Leston. 2020. Integrated multitrophic aquaculture systems – potential risks for food safety. Trends in Food Science & Technology 96:79–90. doi: 10.1016/j.tifs.2019.12.008.
  • Rosa, J., S. Leston, A. Freitas, A. S. Vila Pouca, J. Barbosa, M. F. L. Lemos, M. A. Pardal, and F. Ramos. 2019. Oxytetracycline accumulation in the macroalgae Ulva: Potential risks for IMTA systems. Chemosphere 226 (July):60–6. doi: 10.1016/j.chemosphere.2019.03.112.
  • Rothman, M. D., R. J. Anderson, L. Kandjengo, and J. J. Bolton. 2020. Trends in seaweed resource use and aquaculture in South Africa and Namibia over the last 30 years. Botanica Marina 63 (4):315–25. doi: 10.1515/bot-2019-0074.
  • Rouphael, Y., and G. Colla. 2018. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9:1655. https://www.frontiersin.org/article/10.3389/fpls.2018.01655/full. doi: 10.3389/fpls.2018.01655.
  • Ruangrit, K., S. Chaipoot, R. Phongphisutthinant, K. Duangjan, K. Phinyo, I. Jeerapan, J. Pekkoh, and S. Srinuanpan. 2023. A successful biorefinery approach of macroalgal biomass as a promising sustainable source to produce bioactive nutraceutical and biodiesel. Biomass Conversion and Biorefinery 13 (2):1089–99. doi: 10.1007/s13399-021-01310-6.
  • Saadaoui, I., R. Rasheed, A. Aguilar, M. Cherif, H. Al Jabri, S. Sayadi, and S. R. Manning. 2021. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. Journal of Animal Science and Biotechnology 12 (1):76. doi: 10.1186/s40104-021-00593-z.
  • Sáez, M. I., A. Vizcaíno, A. Galafat, V. Anguís, C. Fernández-Díaz, M. C. Balebona, F. J. Alarcón, and T. F. Martínez. 2020. Assessment of long-term effects of the macroalgae Ulva ohnoi included in diets on Senegalese Sole (Solea senegalensis) fillet quality. Algal Research 47:101885. doi: 10.1016/j.algal.2020.101885.
  • Sahana, B. N., M. K. PrasannaKumar, H. B. Mahesh, P. Buela Parivallal, M. E. Puneeth, C. Gautam, T. R. Girish, S. Nori, and S. Suryanarayan. 2022. Biostimulants derived from red seaweed stimulate the plant defence mechanism in rice against Magnaporthe oryzae. Journal of Applied Phycology 34 (1):659–65. doi: 10.1007/s10811-021-02627-5.
  • Samara, E. M., A. B. Okab, K. A. Abdoun, A. M. El-Waziry, and A. A. Al-Haidary. 2013. Subsequent influences of feeding intact green seaweed Ulva lactuca to growing lambs on the seminal and testicular characteristics in rams. Journal of Animal Science 91 (12):5654–67. doi: 10.2527/jas.2013-6719.
  • Santiago, A., and R. Moreira. 2020. Drying of edible seaweeds. In Sustainable seaweed technologies, 131–54. Amsterdam: Elsevier.
  • Santizo-Taan, R., M. Bautista-Teruel, and J. R. H. Maquirang. 2020. Enriched Ulva Pertusa as partial replacement of the combined fish and soybean meals in juvenile abalone Haliotis asinina (Linnaeus) diet. Journal of Applied Phycology 32 (1):741–9. doi: 10.1007/s10811-019-01977-5.
  • Sauvageau, C. 1920. Utilisation des algues marines. Encyclopédie scientifique. Paris, France: Librairie Octave Doin.
  • Sebök, S., W. B. Herppich, and D. Hanelt. 2019. Outdoor cultivation of Ulva lactuca in a recently developed ring-shaped photobioreactor: Effects of elevated CO2 concentration on growth and photosynthetic performance. Botanica Marina 62 (2):179–90. http://www.degruyter.com/view/j/botm.2019.62.issue-2/bot-2018-0016/bot-2018-0016.xml. doi: 10.1515/bot-2018-0016.
  • Shahar, B., and L. Guttman. 2020. An integrated, two-step biofiltration system with Ulva fasciata for sequenced removal of ammonia and nitrate in mariculture effluents. Algal Research 52:102120. doi: 10.1016/j.algal.2020.102120.
  • Shahar, B., M. Shpigel, R. Barkan, M. Masasa, A. Neori, H. Chernov, E. Salomon, M. Kiflawi, and L. Guttman. 2020. Changes in metabolism, growth and nutrient uptake of Ulva fasciata (Chlorophyta) in response to nitrogen source. Algal Research 46:101781. doi: 10.1016/j.algal.2019.101781.
  • Shannon, E., and N. Abu-Ghannam. 2019. Seaweeds as nutraceuticals for health and nutrition. Phycologia 58 (5):563–77. doi: 10.1080/00318884.2019.1640533.
  • Sharmiladevi, N., A. Swetha, and K. P. Gopinath. 2023. Processing of Gracilaria edulis and Ulva lactuca for bioethanol and bio-oil production: An integrated approach via fermentation and hydrothermal liquefaction. Biomass Conversion and Biorefinery 13 (12):11099–107. doi: 10.1007/s13399-021-01925-9.
  • Shefer, S., M. Lebendiker, A. Finkelshtein, D. A. Chamovitz, and A. Golberg. 2022. Ulvan crude extract’s chemical and biophysical profile and its effect as a biostimulant on Arabidopsis thaliana. Algal Research 62:102609. https://www.sciencedirect.com/science/article/abs/pii/S2211926421004288. doi: 10.1016/j.algal.2021.102609.
  • Shpigel, M., L. Guttman, L. Shauli, V. Odintsov, D. Ben-Ezra, and S. Harpaz. 2017. Ulva lactuca from an integrated multi-trophic aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet. Aquaculture 481:112–8. doi: 10.1016/j.aquaculture.2017.08.006.
  • Shpigel, M., L. Shauli, V. Odintsov, N. Ashkenazi, and D. Ben-Ezra. 2018. Ulva lactuca biofilter from a land-based integrated multi trophic aquaculture (IMTA) system as a sole food source for the tropical sea urchin Tripneustes gratilla elatensis. Aquaculture 496:221–31. doi: 10.1016/j.aquaculture.2018.06.038.
  • Shukla, P. S., E. G. Mantin, M. Adil, S. Bajpai, A. T. Critchley, and B. Prithiviraj. 2019. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science 10:655. https://www.frontiersin.org/article/10.3389/fpls.2019.00655/full. doi: 10.3389/fpls.2019.00655.
  • Shuuluka, D., J. J. Bolton, and R. J. Anderson. 2013. Protein content, amino acid composition and nitrogen-to-protein conversion factors of Ulva rigida and Ulva capensis from natural populations and Ulva lactuca from an aquaculture system, in South Africa. Journal of Applied Phycology 25 (2):677–85. doi: 10.1007/s10811-012-9902-5.
  • Siddik, M. A. B., and N. T. N. Anh. 2015. Preliminary assessment of the gut weed Ulva intestinalis as food for herbivorous fish. International Aquatic Research 7 (1):41–6. doi: 10.1007/s40071-014-0091-5.
  • Silva, A. F. R., H. Abreu, A. M. S. Silva, and S. M. Cardoso. 2019. Effect of oven-drying on the recovery of valuable compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus. Marine Drugs 17 (2):90. doi: 10.3390/md17020090.
  • Silva, D. M., L. M. P. Valente, I. Sousa-Pinto, R. Pereira, M. A. Pires, F. Seixas, and P. Rema. 2015. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile Tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. Journal of Applied Phycology 27 (4):1671–80. doi: 10.1007/s10811-014-0453-9.
  • Simon, C., M. McHale, and R. Sulpice. 2022. Applications of Ulva biomass and strategies to improve its yield and composition: A perspective for Ulva aquaculture. Biology 11 (11):1593. https://pubmed.ncbi.nlm.nih.gov/36358294. doi: 10.3390/biology11111593.
  • Smetacek, V., and A. Zingone. 2013. Green and golden seaweed tides on the rise. Nature 504 (7478):84–8. doi: 10.1038/nature12860.
  • Stedt, K., O. Gustavsson, B. Kollander, I. Undeland, G. B. Toth, and H. Pavia. 2022. Cultivation of Ulva fenestrata using herring production process waters increases biomass yield and protein content. Frontiers in Marine Science 9:988523. doi: 10.3389/fmars.2022.988523.
  • Stedt, K., G. B. Toth, J. Davegård, H. Pavia, and S. Steinhagen. 2022. Determination of nitrogen content in Ulva fenestrata by color image analysis – a rapid and cost-efficient method to estimate nitrogen content in seaweeds. Frontiers in Marine Science 9:2510. https://www.frontiersin.org/articles/10.3389/fmars.2022.1081870/full. doi: 10.3389/fmars.2022.1081870.
  • Stedt, K., J. P. Trigo, S. Steinhagen, G. M. Nylund, B. Forghani, H. Pavia, and I. Undeland. 2022. Cultivation of seaweeds in food production process waters: Evaluation of growth and crude protein content. Algal Research 63:102647. doi: 10.1016/j.algal.2022.102647.
  • Steinbruch, E., D. Drabik, M. Epstein, S. Ghosh, M. S. Prabhu, M. Gozin, A. Kribus, and A. Golberg. 2020. Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar. Bioresource Technology 318 (December):124263. doi: 10.1016/j.biortech.2020.124263.
  • Steinhagen, S., F. Weinberger, and R. Karez. 2019. Molecular analysis of Ulva compressa (Chlorophyta, Ulvales) reveals its morphological plasticity, distribution and potential invasiveness on German North Sea and Baltic Sea Coasts. European Journal of Phycology 54 (1):102–14. doi: 10.1080/09670262.2018.1513167.
  • Steinhagen, S., S. Enge, G. Cervin, K. Larsson, U. Edlund, A. E. M. Schmidt, N. Wahlström, B. Kollander, H. Pavia, I. Undeland, et al. 2022. harvest time can affect the optimal yield and quality of sea lettuce (Ulva fenestrata) in a sustainable sea-based cultivation. Frontiers in Marine Science 9:816890. doi: 10.3389/fmars.2022.816890.
  • Steinhagen, S., S. Enge, K. Larsson, J. Olsson, G. M. Nylund, E. Albers, H. Pavia, I. Undeland, and G. B. Toth. 2021. Sustainable large-scale aquaculture of the northern hemisphere sea lettuce, Ulva fenestrata, in an off-shore seafarm. Journal of Marine Science and Engineering 9 (6):615. doi: 10.3390/jmse9060615.
  • Steinhagen, S., S. Hoffmann, H. Pavia, and G. B. Toth. 2023. Molecular identification of the ubiquitous green algae Ulva Reveals high biodiversity, crypticity, and invasive species in the Atlantic-Baltic sea region. Algal Research 73:103132. https://www.sciencedirect.com/science/article/pii/S2211926423001650. doi: 10.1016/j.algal.2023.103132.
  • Steinhagen, S., L. Kramár, and G. B. Toth. 2022. The unheeded existence of the tubular greens: Molecular analyses reveal the distribution of a new Ulva species (Ulvophyceae, Chlorophyta), Ulva Capillata sp. Nov. in the Atlantic-Baltic Sea transect. Journal of Applied Phycology 35 (1):509–22. doi: 10.1007/s10811-022-02886-w.
  • Steinhagen, S., K. Larsson, J. Olsson, E. Albers, I. Undeland, H. Pavia, and G. B. Toth. 2022. Closed life-cycle aquaculture of sea lettuce (Ulva fenestrata): Performance and biochemical profile differ in early developmental stages. Frontiers in Marine Science 9:942679. doi: 10.3389/fmars.2022.942679.
  • Stengel, D. B., S. Connan, and Z. A. Popper. 2011. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances 29 (5):483–501. https://linkinghub.elsevier.com/retrieve/pii/S0734975011000711. doi: 10.1016/j.biotechadv.2011.05.016.
  • Stévant, P., H. Marfaing, A. Duinker, J. Fleurence, T. Rustad, I. Sandbakken, and A. Chapman. 2018. Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. Journal of Applied Phycology 30 (3):2047–60. doi: 10.1007/s10811-017-1343-8.
  • Stévant, P., A. Ólafsdóttir, P. Déléris, J. Dumay, J. Fleurence, B. Ingadóttir, R. Jónsdóttir, É. Ragueneau, C. Rebours, and T. Rustad. 2020. Semi-dry storage as a maturation process for improving the sensory characteristics of the edible red seaweed dulse (Palmaria palmata). Algal Research 51 (October):102048. https://linkinghub.elsevier.com/retrieve/pii/S2211926419310938. doi: 10.1016/j.algal.2020.102048.
  • Stévant, P., C. Rebours, and A. Chapman. 2017. Seaweed aquaculture in Norway: Recent industrial developments and future perspectives. Aquaculture International 25 (4):1373–90. doi: 10.1007/s10499-017-0120-7.
  • Stokvis, L., M. M. van Krimpen, R. P. Kwakkel, and P. Bikker. 2021. Evaluation of the nutritional value of seaweed products for broiler chickens’ nutrition. Animal Feed Science and Technology 280 (October):115061. doi: 10.1016/j.anifeedsci.2021.115061.
  • Stokvis, L., C. Rayner, M. M. van Krimpen, J. Kals, W. H. Hendriks, and R. P. Kwakkel. 2022. A proteolytic enzyme treatment to improve Ulva laetevirens and Solieria chordalis seaweed co-product digestibility, performance, and health in broilers. Poultry Science 101 (5):101777. doi: 10.1016/j.psj.2022.101777.
  • Strauss, S. 2023. Seaweed fermentation. In Functional ingredients from algae for foods and nutraceuticals. Cambridge: Elsevier.
  • Suarez, M. G., and M. Gallissot. 2016. Effects of an algae-clay based biocatalyst on ileal digestibility performance of growing pigs, 15. Vienna: BOKU-Symposium Tierernährung.
  • Suckling, C. C., M. D. Zavell, A. L. Byczynski, and B. T. Takeda. 2022. Assessing the potential of the unexploited Atlantic Purple sea urchin, Arbacia punctulata, for the edible market. Frontiers in Marine Science 9:895061. doi: 10.3389/fmars.2022.895061.
  • Sudhakar, K., R. Mamat, M. Samykano, W. H. Azmi, W. F. W. Ishak, and T. Yusaf. 2018. An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews 91:165–79. doi: 10.1016/j.rser.2018.03.100.
  • Sudhakar, M. P., B. R. Kumar, T. Mathimani, and K. Arunkumar. 2019. a review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production 228:1320–33. doi: 10.1016/j.jclepro.2019.04.287.
  • Tabarsa, M., M. Rezaei, Z. Ramezanpour, and J. R. Waaland. 2012. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food and Agriculture 92 (12):2500–6. doi: 10.1002/jsfa.5659.
  • Taboada, C., R. Millán, and I. MÃguez. 2009. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. Journal of the Science of Food and Agriculture 90 (3):445–449. doi: 10.1002/jsfa.3836.
  • Tayyab, U., M. Novoa-Garrido, M. Y. Roleda, V. Lind, and M. R. Weisbjerg. 2016. Ruminal and intestinal protein degradability of various seaweed species measured in situ in dairy cows. Animal Feed Science and Technology 213:44–54. doi: 10.1016/j.anifeedsci.2016.01.003.
  • Thavasi Alagan, V., R. Nakulan Vatsala, I. Sagadevan, V. Subbiah, and V. Ragothaman. 2020. Effect of dietary supplementation of seaweed (Ulva lactuca) and azolla on growth performance, haematological and serum biochemical parameters of aseel chicken. Beni-Suef University Journal of Basic and Applied Sciences 9 (1):58. doi: 10.1186/s43088-020-00087-3.
  • Thompson, S. E., and J. C. Coates. 2017. Surface sensing and stress-signalling in Ulva and fouling diatoms–potential targets for antifouling: A review. Biofouling 33 (5):410–32. doi: 10.1080/08927014.2017.1319473.
  • Thunyawanichnondh, J., N. Suebsiri, S. Leartamonchaikul, W. Pimolsri, W. Jittanit, and S. Charoensiddhi. 2020. Potential of green seaweed Ulva rigida in Thailand for healthy snacks. Journal of Fisheries and Environment 44 (1):29–39.
  • Toth, G. B., H. Harrysson, N. Wahlström, J. Olsson, A. Oerbekke, S. Steinhagen, A. Kinnby, J. White, E. Albers, U. Edlund, et al. 2020. Effects of irradiance, temperature, nutrients, and pco2 on the growth and biochemical composition of cultivated Ulva fenestrata. Journal of Applied Phycology 32 (5):3243–54. doi: 10.1007/s10811-020-02155-8.
  • Tran, L.-A. T., C. Vieira, S. Steinhagen, C. A. Maggs, M. Hiraoka, S. Shimada, T. Van Nguyen, O. De Clerck, and F. Leliaert. 2022. An appraisal of Ulva (Ulvophyceae, Chlorophyta) taxonomy. Journal of Applied Phycology 34 (5):2689–703. doi: 10.1007/s10811-022-02815-x.
  • Trigo, J. P., N. Engström, S. Steinhagen, L. Juul, H. Harrysson, G. B. Toth, H. Pavia, N. Scheers, and I. Undeland. 2021. In vitro digestibility and Caco-2 cell bioavailability of sea lettuce (Ulva fenestrata) proteins extracted using PH-shift processing. Food Chemistry 356:129683. doi: 10.1016/j.foodchem.2021.129683.
  • Trivedi, J., M. Aila, D. P. Bangwal, S. Kaul, and M. O. Garg. 2015. Algae based biorefinery – How to make sense? Renewable and Sustainable Energy Reviews 47:295–307. doi: 10.1016/j.rser.2015.03.052.
  • Troell, M., P. J. G. Henriksson, A. H. Buschmann, T. Chopin, and S. Quahe. 2022. Farming the ocean – seaweeds as a quick fix for the climate? Reviews in Fisheries Science & Aquaculture 31 (3):285–95. doi: 10.1080/23308249.2022.2048792.
  • Turan, G., and S. Cırık. 2018. Sea vegetables. In Vegetables – importance of quality vegetables to human health, ed. Md. Asaduzzaman and T. Asao, 85–102. London: Intechopen.
  • Turland, N., J. Wiersema, F. Barrie, W. Greuter, D. Hawksworth, P. Herendeen, S. Knapp, et al., Eds. 2018. International code of nomenclature for algae, fungi, and plants, vol. 159. Glashütten: Koeltz Botanical Books.
  • Turuk, A. S., and K. Banerjee. 2023. Blending seaweed into bakery products. Journal of Applied Phycology 35 (4):1893–909. doi: 10.1007/s10811-023-02982-5.
  • Uchida, M., and T. Miyoshi. 2013. Algal fermentation – the seed for a new fermentation industry of foods and related products. Japan Agricultural Research Quarterly 47 (1):53–63. doi: 10.6090/jarq.47.53.
  • United Nations. 2015. Transforming our world: The 2030 agenda for sustainable development, A/RES/70/1, 17th Session of the United Nations General Assembly.
  • Uribe, E., A. Vega-Gálvez, V. García, A. Pastén, J. López, and G. Goñi. 2019. Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. Journal of Applied Phycology 31 (3):1967–79. doi: 10.1007/s10811-018-1686-9.
  • Valente, L. M. P., A. Gouveia, P. Rema, J. Matos, E. F. Gomes, and I. S. Pinto. 2006. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European Sea Bass (Dicentrarchus labrax) juveniles. Aquaculture 252 (1):85–91. doi: 10.1016/j.aquaculture.2005.11.052.
  • van Ginneken, V. J. T., J. P. Helsper, W. de Visser, H. van Keulen, and W. A. Brandenburg. 2011. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids in Health and Disease 10 (1):104. doi: 10.1186/1476-511X-10-104.
  • van Tol de Castro, T. A., O. C. H. Tavares, D. F. de Oliveira Torchia, H. F. Oliveira da Silva, O. V. T. de Moura, R. E. Cantarino, S. de Abreu Lopes, C. V. Viêgas, A. L. do Amaral Vendramini, L. A. Santos, et al. 2023. Organic fragments of K-carrageenan, lipids and peptides plus K-rich inorganic fraction in Kappaphycus alvarezii biomass are responsible for growth stimulus in rice plant when applied both foliar and root pathway. Algal Research 71 (April):103040. doi: 10.1016/j.algal.2023.103040.
  • Vazquez Calderon, F., and J. Sanchez Lopez. 2022. An overview of the algae industry in Europe , eds. J. Guillen Garcia and M. Avraamides, Luxembourg: Publications office of the European Union, JRC130107.
  • Venables, W. R. B. 1997. Modern applied statistics with S-Plus, 2nd ed. New York: Springer-Verlag.
  • Ventura, M. R., and J. I. R. Castañón. 1998. The nutritive value of seaweed (Ulva lactuca) for goats. Small Ruminant Research 29 (3):325–7. https://www.sciencedirect.com/science/article/pii/S092144889700134X. doi: 10.1016/S0921-4488(97)00134-X.
  • Ventura, M. R., J. I. R. Castañon, and J. M. McNab. 1994. Nutritional value of seaweed (Ulva rigida) for poultry. Animal Feed Science and Technology 49 (1–2):87–92. doi: 10.1016/0377-8401(94)90083-3.
  • Viera, M. P., G. C. de Vicose, J. L. Gómez-Pinchetti, A. Bilbao, H. Fernandez-Palacios, and M. S. Izquierdo. 2011. Comparative performances of juvenile abalone (Haliotis tuberculata coccinea Reeve) fed enriched vs. non-enriched macroalgae: Effect on growth and body composition. Aquaculture 319 (3–4):423–429. doi: 10.1016/j.aquaculture.2011.07.024.
  • Vizcaíno, A. J., M. Fumanal, M. I. Sáez, T. F. Martínez, M. A. Moriñigo, C. Fernández-Díaz, V. Anguis, M. C. Balebona, and F. J. Alarcón. 2019. Evaluation of Ulva ohnoi as functional dietary ingredient in juvenile Senegalese Sole (Solea senegalensis): Effects on the structure and functionality of the intestinal mucosa. Algal Research 42:101608. doi: 10.1016/j.algal.2019.101608.
  • Vizcaíno, A. J., A. Galafat, M. I. Sáez, T. F. Martínez, and F. J. Alarcón. 2020. Partial characterization of protease inhibitors of Ulva ohnoi and their effect on digestive proteases of marine fish. Marine Drugs 18 (6):319. https://pubmed.ncbi.nlm.nih.gov/32570719. doi: 10.3390/md18060319.
  • Vizcaíno, A. J., S. I. Mendes, J. L. Varela, I. Ruiz-Jarabo, R. Rico, F. L. Figueroa, R. Abdala, M. Á. Moriñigo, J. M. Mancera, and F. J. Alarcón. 2016. Growth, tissue metabolites and digestive functionality in Sparus aurata juveniles fed different levels of macroalgae, Gracilaria cornea and Ulva rigida. Aquaculture Research 47 (10):3224–38. doi: 10.1111/are.12774.
  • van der Wal, H., B. L. H. M. Sperber, B. Houweling-Tan, R. R. C. Bakker, W. Brandenburg, and A. M. López-Contreras. 2013. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology 128 (January):431–7. doi: 10.1016/j.biortech.2012.10.094.
  • van Ginneken, V. J., J. P. Helsper, W. de Visser, H. van Keulen, and W. A. Brandenburg. 2011. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids in Health and Disease 10 (1):104. doi: 10.1186/1476-511X-10-104.
  • Wan, A. H. L., S. J. Davies, A. Soler-Vila, R. Fitzgerald, and M. P. Johnson. 2019. Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture 11 (3):458–92. doi: 10.1111/raq.12241.
  • Wassef, E. A. 2005. Alternative protein sources for fish feeds in Egypt. In Mediterranean Fish Nutrition, ed. D. Montero, B. Basurco, I. Nengas, M. Alexis, and M. Izquierdo, Zaragoza: CIHEAM.
  • Wassef, E. A., A.-F. M. El-Sayed, and E. M. Sakr. 2013. Pterocladia (Rhodophyta) and Ulva (Chlorophyta) as feed supplements for European Seabass, Dicentrarchus labrax L., fry. Journal of Applied Phycology 25 (5):1369–76. doi: 10.1007/s10811-013-9995-5.
  • Wassef, E. A., M. H. El Masry, and F. R. Mikhail. 2001. Growth enhancement and muscle structure of striped mullet, Mugil cephalus L., fingerlings by feeding algal meal-based diets. Aquaculture Research 32 (1):315–322. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1355-557x.2001.00043.x. doi: 10.1046/j.1355-557x.2001.00043.x.
  • Wichard, T. 2023. From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Seminars in Cell & Developmental Biology 134:69–78. doi: 10.1016/j.semcdb.2022.04.007.
  • Wichard, T., B. Charrier, F. Mineur, J. H. Bothwell, O. De Clerck, and J. C. Coates. 2015. The green seaweed Ulva: A model system to study morphogenesis. Frontiers in Plant Science 6:72. https://pubmed.ncbi.nlm.nih.gov/25745427. doi: 10.3389/fpls.2015.00072.
  • Willett, W., J. Rockström, B. Loken, M. Springmann, T. Lang, S. Vermeulen, T. Garnett, et al. 2019. Food in the anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393 (10170):447–92. doi: 10.1016/s0140-6736. (18)31788-4.
  • Wolf, M. A., K. Sciuto, C. Andreoli, and I. Moro. 2012. Ulva (Chlorophyta, Ulvales) biodiversity in the North Adriatic Sea (Mediterranean, Italy): Cryptic species and new introductions. Journal of Phycology 48 (6):1510–21. doi: 10.1111/jpy.12005.
  • Wu, C., J. Ma, S. Gao, M. Ju, X. Hu, J. Yang, R. Xu, and S. Ye. 2013. Nutrition analysis and food safety evaluation of green tide algae in 2010. Journal of Fisheries of China 37 (1):141. doi: 10.3724/SP.J.1231.2013.38344.
  • Wu, J. 2022. Emerging sources and applications of alternative proteins: An introduction. Advances in Food and Nutrition Research 101:1–15. http://europepmc.org/abstract/MED/35940701.
  • Wu, Z.-Z., D.-Y. Li, and Y.-S. Cheng. 2018. Application of ensilage as a green approach for simultaneous preservation and pretreatment of macroalgae Ulva lactuca for fermentable sugar production. Clean Technologies and Environmental Policy 20 (9):2057–65. doi: 10.1007/s10098-018-1574-7.
  • Yaich, H., H. Garna, S. Besbes, M. Paquot, C. Blecker, and H. Attia. 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chemistry 128 (4):895–901. doi: 10.1016/j.foodchem.2011.03.114.
  • Yesuraj, D., C. Deepika, G. A. Ravishankar, and A. R. Rao. 2022. Seaweed-based recipes for food, health-food applications, and innovative products including meat and meat analogs. In Sustainable global resources of seaweeds, ed. A. R. Rao and G. A. Ravishankar, Vol. 2, 267–92. Cham: Springer International Publishing.
  • Yildirim, Ö., S. Ergün, S. Yaman, and A. Türker. 2009. Effects of two seaweeds (Ulva lactuca and Enteromorpha linza) as a feed additive in diets on growth performance, feed utilization, and body composition of rainbow trout (Oncorhynchus mykiss) | Rasyonlarda Yem Katkı Maddesi Olarak İki Deniz Yosununun. Ulv. Kafkas Universitesi Veteriner Fakultesi Dergisi 15:455–60.
  • Yong, W. T. L., V. Y. Thien, R. Rupert, and K. F. Rodrigues. 2022. Seaweed: A potential climate change solution. Renewable and Sustainable Energy Reviews 159:112222. doi: 10.1016/j.rser.2022.112222.
  • Zertuche-González, J. A., J. M. Sandoval-Gil, L. K. Rangel-Mendoza, A. I. Gálvez-Palazuelos, J. M. Guzmán-Calderón, and C. Yarish. 2021. Seasonal and interannual production of sea lettuce (Ulva sp.) in outdoor cultures based on commercial size ponds. Journal of the World Aquaculture Society 52 (5):1047–58. doi: 10.1111/jwas.12773.
  • Zhu, D., X. Wen, X. Xuan, S. Li, and Y. Li. 2016. The green alga Ulva lactuca as a potential ingredient in diets for juvenile white spotted snapper Lutjanus stellatus akazaki. Journal of Applied Phycology 28 (1):703–11. doi: 10.1007/s10811-015-0545-1.
  • Zhu, X., L. Healy, Z. Zhang, J. Maguire, D. Sun, and B. K. Tiwari. 2021. Novel postharvest processing strategies for value-added applications of marine algae. Journal of the Science of Food and Agriculture 101 (11):4444–55. doi: 10.1002/jsfa.11166.
  • Zollmann, M., A. Robin, M. Prabhu, M. Polikovsky, A. Gillis, S. Greiserman, and A. Golberg. 2019. Green technology in green macroalgal biorefineries. Phycologia 58 (5):516–34. doi: 10.1080/00318884.2019.1640516.