99
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Compatibility of pulse protein in the formulation of plant based yogurt: a review of nutri-functional properties and processing impact

, , , , , , & show all

References

  • Acquah, C., G. Ohemeng-Boahen, K. A. Power, and S. M. Tosh. 2021. The effect of processing on bioactive compounds and nutritional qualities of pulses in meeting the sustainable development goal 2. Frontiers in Sustainable Food Systems 5:681662. doi: 10.3389/fsufs.2021.681662.
  • Aggarwal, R., and K. Bains. 2022. Protein, lysine and vitamin D: Critical role in muscle and bone health. Critical Reviews in Food Science and Nutrition 62 (9):2548–59. doi: 10.1080/10408398.2020.1855101.
  • Agriculture News. 2024. European plant-based consumption grows by 49% in two years (openaccessgovernment.org)
  • Aguilar-Raymundo, V. G., and J. F. Vélez-Ruiz. 2019. Yoghurt‐type beverage with partial substitution of milk by a chickpea extract: Effect on physicochemical and flow properties. International Journal of Dairy Technology 72 (2):266–74. doi: 10.1111/1471-0307.12581.
  • Akalın, A., G. Unal, N. Dinkci, and A. Hayaloglu. 2012. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. Journal of Dairy Science 95 (7):3617–28. doi: 10.3168/jds.2011-5297.
  • Akharume, F. U., R. E. Aluko, and A. A. Adedeji. 2021. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):198–224. doi: 10.1111/1541-4337.12688.
  • Alhejaili, M., D. Olson, and K. Aryana. 2019. Effect of antimicrobial Myrrh on the color and viscosity of plain yogurt over its shelf life. Food and Nutrition Sciences 10 (10):1236–42. doi: 10.4236/fns.2019.1010089.
  • Alonso-Miravalles, L., E. Zannini, J. Bez, E. K. Arendt, and J. A. O’Mahony. 2020. Thermal and mineral sensitivity of oil-in-water emulsions stabilised using lentil proteins. Foods (Basel, Switzerland) 9 (4):453. doi: 10.3390/foods9040453.
  • Ambigaipalan, P., R. Hoover, E. Donner, Q. Liu, S. Jaiswal, R. Chibbar, K. Nantanga, and K. Seetharaman. 2011. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Research International 44 (9):2962–74. doi: 10.1016/j.foodres.2011.07.006.
  • Anwar, F., S. Latif, R. Przybylski, B. Sultana, and M. Ashraf. 2007. Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of Food Science 72 (7):S503–S510. doi: 10.1111/j.1750-3841.2007.00462.x.
  • Arab, M., M. Yousefi, E. Khanniri, M. Azari, V. Ghasemzadeh-Mohammadi, and N. Mollakhalili-Meybodi. 2023. A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. Journal of Food Science and Technology 60 (6):1656–65. doi: 10.1007/s13197-022-05403-6.
  • Arteaga, V. G., M. A. Guardia, I. Muranyi, P. Eisner, and U. Schweiggert-Weisz. 2020. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science & Emerging Technologies 65:102449. doi: 10.1016/j.ifset.2020.102449.
  • Avelar, Z., A. A. Vicente, J. A. Saraiva, and R. M. Rodrigues. 2021. The role of emergent processing technologies in tailoring plant protein functionality: New insights. Trends in Food Science & Technology 113:219–31. doi: 10.1016/j.tifs.2021.05.004.
  • Avilés-Gaxiola, S., C. Chuck-Hernández, and S. O. Serna Saldívar. 2018. Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science 83 (1):17–29. doi: 10.1111/1750-3841.13985.
  • Avramenko, N. A., N. H. Low, and M. T. Nickerson. 2013. The effects of limited enzymatic hydrolysis on the physicochemical and emulsifying properties of a lentil protein isolate. Food Research International 51 (1):162–9. doi: 10.1016/j.foodres.2012.11.020.
  • Aydar, E. F., S. Tutuncu, and B. Ozcelik. 2020. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods 70:103975. doi: 10.1016/j.jff.2020.103975.
  • Barac, M., S. Cabrilo, S. Stanojevic, M. Pesic, M. Pavlicevic, B. Zlatkovic, and M. Jankovic. 2012. Functional properties of protein hydrolysates from pea (Pisum sativum, L) seeds. International Journal of Food Science & Technology 47 (7):1457–67. doi: 10.1111/j.1365-2621.2012.02993.x.
  • Berghout, J., R. Boom, and A. Van der Goot. 2015. Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocolloids 43:465–72. doi: 10.1016/j.foodhyd.2014.07.003.
  • Bessada, S. M., J. C. Barreira, and M. B. P. Oliveira. 2019. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science & Technology 93:53–68. doi: 10.1016/j.tifs.2019.08.022.
  • Betancur-Ancona, D., R. Martínez-Rosado, A. Corona-Cruz, A. Castellanos-Ruelas, M. E. Jaramillo-Flores, and L. Chel-Guerrero. 2009. Functional properties of hydrolysates from Phaseolus lunatus seeds. International Journal of Food Science & Technology 44 (1):128–37. doi: 10.1111/j.1365-2621.2007.01690.x.
  • Boeck, T., A. W. Sahin, E. Zannini, and E. K. Arendt. 2021. Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives. Comprehensive Reviews in Food Science and Food Safety 20 (4):3858–80. doi: 10.1111/1541-4337.12778.
  • Boeck, T., E. Zannini, A. W. Sahin, J. Bez, and E. K. Arendt. 2021. Nutritional and rheological features of lentil protein isolate for yoghurt-like application. Foods (Basel, Switzerland) 10 (8):1692. doi: 10.3390/foods10081692.
  • Bogahawaththa, D., N. H. B. Chau, J. Trivedi, M. Dissanayake, and T. Vasiljevic. 2019. Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT 102:246–53. doi: 10.1016/j.lwt.2018.12.034.
  • Boye, J., F. Zare, and A. Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43 (2):414–31. doi: 10.1016/j.foodres.2009.09.003.
  • Brishti, F. H., M. Zarei, S. K. S. Muhammad, I. F. M. Rashedi, R. Shukri, and N. Saari. 2017. Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. International Food Research Journal 24:1595–605.
  • Brummer, Y., M. Kaviani, and S. M. Tosh. 2015. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International 67:117–25. doi: 10.1016/j.foodres.2014.11.009.
  • Burger, T. G., and Y. Zhang. 2019. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science & Technology 86:25–33. doi: 10.1016/j.tifs.2019.02.007.
  • Çabuk, B., M. G. Nosworthy, A. K. Stone, D. R. Korber, T. Tanaka, J. D. House, and M. T. Nickerson. 2018. Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technology and Biotechnology 56 (2):257–64. doi: 10.17113/ftb.56.02.18.5450.
  • Caprioli, G., F. Giusti, R. Ballini, G. Sagratini, P. Vila-Donat, S. Vittori, and D. Fiorini. 2016. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition. Food Chemistry 192:965–71. doi: 10.1016/j.foodchem.2015.07.102.
  • Cardador-Martínez, A., K. Maya-Ocaña, A. Ortiz-Moreno, B. E. Herrera-Cabrera, G. Dávila-Ortiz, M. Múzquiz, M. Martín-Pedrosa, C. Burbano, C. Cuadrado, and C. Jiménez-Martínez. 2012. Effect of Roasting and Boiling on the Content of Vicine, Convicine and L‐3, 4‐dihydroxyphenylalanine in V icia faba L. Journal of Food Quality 35 (6):419–28. doi: 10.1111/jfq.12006.
  • Carlsson Kanyama, A., B. Hedin, and C. Katzeff. 2021. Differences in environmental impact between plant-based alternatives to dairy and dairy products: A systematic literature review. Sustainability 13 (22):12599. doi: 10.3390/su132212599.
  • Cazcarro, I., C. A. López-Morales, and F. Duchin. 2019. The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy. Journal of Industrial Ecology 23 (5):1159–71. doi: 10.1111/jiec.12856.
  • Chandra-Hioe, M. V., C. H. Wong, and J. Arcot. 2016. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (1):90–5. doi: 10.1007/s11130-016-0532-y.
  • Chen, M.-X., S.-X. Zheng, Y.-N. Yang, C. Xu, J.-S. Liu, W.-D. Yang, M.-L. Chye, and H.-Y. Li. 2014. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds. Journal of Biotechnology 174:49–56. doi: 10.1016/j.jbiotec.2014.01.027.
  • Cichońska, P., and M. Ziarno. 2021. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 10 (1):91. doi: 10.3390/microorganisms10010091.
  • Craig, W. J., and C. J. Brothers. 2021. Nutritional content and health profile of non-dairy plant-based yogurt alternatives. Nutrients 13 (11):4069. doi: 10.3390/nu13114069.
  • Curiel, J. A., R. Coda, I. Centomani, C. Summo, M. Gobbetti, and C. G. Rizzello. 2015. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. International Journal of Food Microbiology 196:51–61. doi: 10.1016/j.ijfoodmicro.2014.11.032.
  • Damodaran, S. 2006. Protein stabilization of emulsions and foams. Journal of Food Science 70 (3):R54–R66. doi: 10.1111/j.1365-2621.2005.tb07150.x.
  • Day, L. 2013. Proteins from land plants–potential resources for human nutrition and food security. Trends in Food Science & Technology 32 (1):25–42. doi: 10.1016/j.tifs.2013.05.005.
  • del Mar Yust, M., J. Pedroche, M. del Carmen Millán-Linares, J. M. Alcaide-Hidalgo, and F. Millán. 2010. Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase. Food Chemistry 122 (4):1212–7. doi: 10.1016/j.foodchem.2010.03.121.
  • Delikanli, B., and T. Ozcan. 2017. Improving the textural properties of yogurt fortified with milk proteins. Journal of Food Processing and Preservation 41 (5):e13101. doi: 10.1111/jfpp.13101.
  • Dhull, S. B., M. K. Kidwai, R. Noor, P. Chawla, and P. K. Rose. 2022. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science 4 (3):e129. doi: 10.1002/leg3.129.
  • Diftis, N., and V. Kiosseoglou. 2006. Stability against heat-induced aggregation of emulsions prepared with a dry-heated soy protein isolate–dextran mixture. Food Hydrocolloids. 20 (6):787–92. doi: 10.1016/j.foodhyd.2005.07.010.
  • Eckert, E., J. Han, K. Swallow, Z. Tian, M. Jarpa-Parra, and L. Chen. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry 96 (4):725–41. doi: 10.1002/cche.10169.
  • El-Adawy, T., E. Rahma, A. El-Bedawey, and A. El-Beltagy. 2003. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods for Human Nutrition 58 (3):1–13. doi: 10.1023/B:QUAL.0000040339.48521.75.
  • El-Adawy, T. A. 2002. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 57 (1):83–97. doi: 10.1023/a:1013189620528.
  • Falade, K. O., O. M. Ogundele, A. O. Ogunshe, O. E. Fayemi, and F. C. Ocloo. 2015. Physico-chemical, sensory and microbiological characteristics of plain yoghurt from bambara groundnut (Vigna subterranea) and soybeans (Glycine max). Journal of Food Science and Technology 52 (9):5858–65. doi: 10.1007/s13197-014-1657-3.
  • Felix, M., V. Perez-Puyana, A. Romero, and A. Guerrero. 2017. Development of thermally processed bioactive pea protein gels: Evaluation of mechanical and antioxidant properties. Food and Bioproducts Processing 101:74–83. doi: 10.1016/j.fbp.2016.10.013.
  • Filannino, P., R. Di Cagno, and M. Gobbetti. 2018. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Current Opinion in Biotechnology 49:64–72. doi: 10.1016/j.copbio.2017.07.016.
  • Foegeding, E. A., and J. P. Davis. 2011. Food protein functionality: A comprehensive approach. Food Hydrocolloids. 25 (8):1853–64. doi: 10.1016/j.foodhyd.2011.05.008.
  • Galili, G., and R. Amir. 2013. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnology Journal 11 (2):211–22. doi: 10.1111/pbi.12025.
  • Gan, R. Y., N. P. Shah, M. F. Wang, W. Y. Lui, and H. Corke. 2016. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. International Journal of Food Science & Technology 51 (4):875–84. doi: 10.1111/ijfs.13062.
  • Gan, R. Y., N. P. Shah, M. F. Wang, W. Y. Lui, and H. Corke. 2017. Lactobacillus plantarum WCFS1 fermentation differentially affects antioxidant capacity and polyphenol content in mung bean (Vigna radiata) and soya bean (Glycine max) milks. Journal of Food Processing and Preservation 41 (1):e12944. doi: 10.1111/jfpp.12944.
  • Gharibzahedi, S. M. T., and B. Smith. 2021. Effects of high hydrostatic pressure on the quality and functionality of protein isolates, concentrates, and hydrolysates derived from pulse legumes: A review. Trends in Food Science & Technology 107:466–79. doi: 10.1016/j.tifs.2020.11.016.
  • Ghribi, A. M., I. M. Gafsi, A. Sila, C. Blecker, S. Danthine, H. Attia, A. Bougatef, and S. Besbes. 2015. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry 187:322–30. doi: 10.1016/j.foodchem.2015.04.109.
  • Ghumman, A., A. Kaur, and N. Singh. 2016. Functionality and digestibility of albumins and globulins from lentil and horse gram and their effect on starch rheology. Food Hydrocolloids. 61:843–50. doi: 10.1016/j.foodhyd.2016.07.013.
  • Gilani, G. S., C. W. Xiao, and K. A. Cockell. 2012. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. The British Journal of Nutrition 108 Suppl 2 (S2):S315–S332. doi: 10.1017/S0007114512002371.
  • Guldiken, B., J. Stobbs, and M. Nickerson. 2021. Heat induced gelation of pulse protein networks. Food Chemistry 350:129158. doi: 10.1016/j.foodchem.2021.129158.
  • Gumus, C. E., E. A. Decker, and D. J. McClements. 2017. Formation and stability of ω-3 oil emulsion-based delivery systems using plant proteins as emulsifiers: Lentil, pea, and faba bean proteins. Food Biophysics 12 (2):186–97. doi: 10.1007/s11483-017-9475-6.
  • Gunathilake, K., T. Herath, and J. Wansapala. 2016. Comparison of physicochemical properties of selected locally available legumes varieties (Mung bean, Cowpea and Soybean).
  • Haines, A., and K. Ebi. 2019. The imperative for climate action to protect health. The New England Journal of Medicine 380 (3):263–73. doi: 10.1056/NEJMra1807873.
  • Hall, C., C. Hillen, and J. Garden Robinson. 2017. Composition, nutritional value, and health benefits of pulses. Cereal Chemistry 94 (1):11–31. doi: 10.1094/CCHEM-03-16-0069-FI.
  • Heng, L., J. P. Vincken, G. van Koningsveld, A. Legger, H. Gruppen, T. van Boekel, J. Roozen, and F. Voragen. 2006. Bitterness of saponins and their content in dry peas. Journal of the Science of Food and Agriculture 86 (8):1225–31. doi: 10.1002/jsfa.2473.
  • Hickisch, A., R. Beer, R. F. Vogel, and S. Toelstede. 2016. Influence of lupin-based milk alternative heat treatment and exopolysaccharide-producing lactic acid bacteria on the physical characteristics of lupin-based yogurt alternatives. Food Research International 84:180–8. doi: 10.1016/j.foodres.2016.03.037.
  • Hoover, R., T. Hughes, H. Chung, and Q. Liu. 2010. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International 43 (2):399–413. doi: 10.1016/j.foodres.2009.09.001.
  • Ibrahim, S., R. Habiba, A. Shatta, and H. Embaby. 2002. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Nahrung/Food 46 (2):92–5. doi: 10.1002/1521-3803(20020301)46:2<92::AID-FOOD92>3.0.CO;2-P.
  • Jeske, S., J. Bez, E. K. Arendt, and E. Zannini. 2019. Formation, stability, and sensory characteristics of a lentil-based milk substitute as affected by homogenisation and pasteurisation. European Food Research and Technology 245 (7):1519–31. doi: 10.1007/s00217-019-03286-0.
  • Jeske, S., E. Zannini, and E. K. Arendt. 2017. Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (1):26–33. doi: 10.1007/s11130-016-0583-0.
  • Jiménez-Martínez, C., H. Hernández-Sánchez, and G. Dávila-Ortiz. 2003. Production of a yogurt‐like product from Lupinus campestris seeds. Journal of the Science of Food and Agriculture 83 (6):515–22. doi: 10.1002/jsfa.1385.
  • Kalogeropoulos, N., A. Chiou, M. Ioannou, V. T. Karathanos, M. Hassapidou, and N. K. Andrikopoulos. 2010. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry 121 (3):682–90. doi: 10.1016/j.foodchem.2010.01.005.
  • Khalil, A., and E. Mansour. 1995. The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chemistry 54 (2):177–82. doi: 10.1016/0308-8146(95)00024-D.
  • Khazaei, H., R. W. Purves, J. Hughes, W. Link, D. M. O’Sullivan, A. H. Schulman, E. Björnsdotter, F. Geu-Flores, M. Nadzieja, and S. U. Andersen. 2019. Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends in Food Science & Technology 91:549–56. doi: 10.1016/j.tifs.2019.07.051.
  • Klost, M., and S. Drusch. 2019. Structure formation and rheological properties of pea protein-based gels. Food Hydrocolloids. 94:622–30. doi: 10.1016/j.foodhyd.2019.03.030.
  • Klost, M., G. Giménez-Ribes, and S. Drusch. 2020. Enzymatic hydrolysis of pea protein: Interactions and protein fractions involved in fermentation induced gels and their influence on rheological properties. Food Hydrocolloids. 105:105793. doi: 10.1016/j.foodhyd.2020.105793.
  • Konieczny, D., A. K. Stone, D. R. Korber, M. T. Nickerson, and T. Tanaka. 2020. Physicochemical properties of enzymatically modified pea protein‐enriched flour treated by different enzymes to varying levels of hydrolysis. Cereal Chemistry 97 (2):326–38. doi: 10.1002/cche.10248.
  • Kumar, Y., S. Basu, D. Goswami, M. Devi, U. S. Shivhare, and R. K. Vishwakarma. 2022. Anti‐nutritional compounds in pulses: Implications and alleviation methods. Legume Science 4 (2):e111. doi: 10.1002/leg3.111.
  • Lagarda-Diaz, I., A. M. Guzman-Partida, and L. Vazquez-Moreno. 2017. Legume lectins: Proteins with diverse applications. International Journal of Molecular Sciences 18 (6):1242. doi: 10.3390/ijms18061242.
  • Lajnaf, R., S. Feki, S. B. Ameur, H. Attia, T. Kammoun, M. A. Ayadi, and H. Masmoudi. 2023. Cow’s milk alternatives for children with cow’s milk protein allergy-Review of health benefits and risks of allergic reaction. International Dairy Journal 141:105624. doi: 10.1016/j.idairyj.2023.105624.
  • Leinonen, I., P. P. Iannetta, R. M. Rees, W. Russell, C. Watson, and A. P. Barnes. 2019. Lysine supply is a critical factor in achieving sustainable global protein economy. Frontiers in Sustainable Food Systems 3 doi: 10.3389/fsufs.2019.00027.
  • Lesme, H., C. Rannou, M. H. Famelart, S. Bouhallab, and C. Prost. 2020. Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends in Food Science & Technology 98:140–9. doi: 10.1016/j.tifs.2020.02.006.
  • Li, A., J. Zheng, X. Han, S. Yang, S. Cheng, J. Zhao, W. Zhou, and Y. Lu. 2023. Advances in Low-Lactose/Lactose-Free Dairy Products and Their Production. Foods (Basel, Switzerland) 12 (13):2553. doi: 10.3390/foods12132553.
  • Li, R., D. Dhankhar, J. Chen, T. C. Cesario, and P. M. Rentzepis. 2019. A tryptophan synchronous and normal fluorescence study on bacteria inactivation mechanism. Proceedings of the National Academy of Sciences of the United States of America 116 (38):18822–6. doi: 10.1073/pnas.1909722116.
  • Li, Y-t., M-s Chen, L-z Deng, Y-z Liang, Y-k Liu, W. Liu, J. Chen, and C-m Liu. 2021. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. Journal of Food Engineering 291:110228. doi: 10.1016/j.jfoodeng.2020.110228.
  • Lim, X., W. Koh, U. Uthumporn, M. Maizura, and W. Wan Rosli. 2019. The development of legume-based yogurt by using water kefir as starter culture. International Food Research Journal 26:1219–28.
  • Liu, C., S. Damodaran, and M. Heinonen. 2019. Effects of microbial transglutaminase treatment on physiochemical properties and emulsifying functionality of faba bean protein isolate. Lwt 99:396–403. doi: 10.1016/j.lwt.2018.10.003.
  • Liu, Y., S. Ragaee, M. F. Marcone, and E. S. M. Abdel-Aal. 2020. Composition of phenolic acids and antioxidant properties of selected pulses cooked with different heating conditions. Foods (Basel, Switzerland) 9 (7):908. doi: 10.3390/foods9070908.
  • Loveday, S. M. 2020. Plant protein ingredients with food functionality potential. Nutrition Bulletin 45 (3):321–7. doi: 10.1111/nbu.12450.
  • Lucey, J. A. 2004. Cultured dairy products: An overview of their gelation and texture properties. International Journal of Dairy Technology 57 (2-3):77–84. doi: 10.1111/j.1471-0307.2004.00142.x.
  • Ma, S., J. Cao, R. Liliu, N. Li, J. Zhao, H. Zhang, W. Chen, and Q. Zhai. 2021. Effects of Bacillus coagulans as an adjunct starter culture on yogurt quality and storage. Journal of Dairy Science 104 (7):7466–79. doi: 10.3168/jds.2020-19876.
  • Ma, Z., J. I. Boye, and B. K. Simpson. 2016. Preparation of salad dressing emulsions using lentil, chickpea and pea protein isolates: A response surface methodology study. Journal of Food Quality 39 (4):274–91. doi: 10.1111/jfq.12190.
  • Mahajan, R., S. P. Malhotra, and R. Singh. 1988. Characterization of seed storage proteins of urdbean (Vigna mungo). Plant Foods for Human Nutrition (Dordrecht, Netherlands) 38 (2):163–73. doi: 10.1007/BF01091721.
  • Mäkinen, O. E., V. Wanhalinna, E. Zannini, and E. K. Arendt. 2016. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition 56 (3):339–49. doi: 10.1080/10408398.2012.761950.
  • Marco, M. L., D. Heeney, S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligné, M. Gänzle, R. Kort, G. Pasin, A. Pihlanto, et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44:94–102. doi: 10.1016/j.copbio.2016.11.010.
  • Martínez-Villaluenga, C., J. Frias, and C. Vidal-Valverde. 2008. Alpha-galactosides: Antinutritional factors or functional ingredients? Critical Reviews in Food Science and Nutrition 48 (4):301–16. doi: 10.1080/10408390701326243.
  • McClements, D. J. 2020. Development of next-generation nutritionally fortified plant-based milk substitutes: Structural design principles. Foods (Basel, Switzerland) 9 (4):421. doi: 10.3390/foods9040421.
  • McClements, D. J., and L. Grossmann. 2021. The science of plant‐based foods: Constructing next‐generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety 20 (4):4049–100. doi: 10.1111/1541-4337.12771.
  • McClements, D. J., L. Bai, and C. Chung. 2017. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology 8 (1):205–36. doi: 10.1146/annurev-food-030216-030154.
  • McClements, D. J., E. Newman, and I. F. McClements. 2019. Plant‐based milks: A review of the science underpinning their design, fabrication, and performance. Comprehensive Reviews in Food Science and Food Safety 18 (6):2047–67. doi: 10.1111/1541-4337.12505.
  • McHugh, T. 2018. How plant-based milks are processed. Food Technol 72:63–4.
  • Munekata, P. E., R. Domínguez, S. Budaraju, E. Roselló-Soto, F. J. Barba, K. Mallikarjunan, S. Roohinejad, and J. M. Lorenzo. 2020. Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods (Basel, Switzerland) 9 (3):288. doi: 10.3390/foods9030288.
  • Muranyi, I. S., C. Otto, C. Pickardt, P. Koehler, and U. Schweiggert-Weisz. 2013. Microscopic characterisation and composition of proteins from lupin seed (Lupinus angustifolius L.) as affected by the isolation procedure. Food Research International 54 (2):1419–29. doi: 10.1016/j.foodres.2013.10.004.
  • Nakatani, A., X. Li, J. Miyamoto, M. Igarashi, H. Watanabe, A. Sutou, K. Watanabe, T. Motoyama, N. Tachibana, M. Kohno, et al. 2018. Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochemical and Biophysical Research Communications 501 (4):955–61. doi: 10.1016/j.bbrc.2018.05.090.
  • Ndiaye, F., T. Vuong, J. Duarte, R. E. Aluko, and C. Matar. 2012. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. European Journal of Nutrition 51 (1):29–37. doi: 10.1007/s00394-011-0186-3.
  • Nicolai, T., and C. Chassenieux. 2019. Heat-induced gelation of plant globulins. Current Opinion in Food Science 27:18–22. doi: 10.1016/j.cofs.2019.04.005.
  • Njoumi, S., M. Josephe Amiot, I. Rochette, S. Bellagha, and C. Mouquet-Rivier. 2019. Soaking and cooking modify the alpha-galacto-oligosaccharide and dietary fibre content in five Mediterranean legumes. International Journal of Food Sciences and Nutrition 70 (5):551–61. doi: 10.1080/09637486.2018.1544229.
  • Olukomaiya, O. O., O. Q. Adiamo, W. C. Fernando, R. Mereddy, X. Li, and Y. Sultanbawa. 2020. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chemistry 315:126238. doi: 10.1016/j.foodchem.2020.126238.
  • Pachekrepapol, U., Y. Kokhuenkhan, and J. Ongsawat. 2021. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. International Journal of Gastronomy and Food Science 25:100393. doi: 10.1016/j.ijgfs.2021.100393.
  • Pahane, M. M., L. N. Tatsadjieu, C. Bernard, and N. Y. Njintang. 2017. Production, nutritional and biological value of bambara groundnut (Vigna subterranea) milk and yoghurt. Journal of Food Measurement and Characterization 11 (4):1613–22. doi: 10.1007/s11694-017-9541-2.
  • Pandey, S. M., and H. Mishra. 2015. Optimization of the prebiotic & probiotic concentration and incubation temperature for the preparation of synbiotic soy yoghurt using response surface methodology. LWT - Food Science and Technology 62 (1):458–67. doi: 10.1016/j.lwt.2014.12.003.
  • Prakash, S., C. Gaiani, and B. R. Bhandari. 2023. Plant-based food as a sustainable source of food for the future Engineering Plant-Based Food Systems, 1-12): Elsevier.
  • Pulkkinen, M., X. Zhou, A.-M. Lampi, and V. Piironen. 2016. Determination and stability of divicine and isouramil produced by enzymatic hydrolysis of vicine and convicine of faba bean. Food Chemistry 212:10–9. doi: 10.1016/j.foodchem.2016.05.077.
  • Qamar, S., B. Bhandari, and S. Prakash. 2019. Effect of different homogenisation methods and UHT processing on the stability of pea protein emulsion. Food Research International (Ottawa, Ont.) 116:1374–85. doi: 10.1016/j.foodres.2018.10.028.
  • Raikos, V., L. Juskaite, F. Vas, and H. E. Hayes. 2020. Physicochemical properties, texture, and probiotic survivability of oat‐based yogurt using aquafaba as a gelling agent. Food Science & Nutrition 8 (12):6426–32. doi: 10.1002/fsn3.1932.
  • Ramani, A., R. Kushwaha, R. Malaviya, R. Kumar, and N. Yadav. 2021. Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. Journal of Food Measurement and Characterization 15 (3):2352–68. doi: 10.1007/s11694-020-00778-6.
  • Rathnakumar, K., S. Jain, N. Awasti, P. Vashisht, P. Thorakkattu, B. Ramesh, G. Balakrishnan, K. Sajith Babu, S. Ramniwas, and S. Rustagi. 2024. Ultrasonic processing: Effects on the physicochemical and microbiological aspects of dairy products. Critical Reviews in Biotechnology :1–15. doi: 10.1080/07388551.2024.2332941.
  • Roselló-Soto, E., M. M. Poojary, F. J. Barba, M. Koubaa, J. M. Lorenzo, J. Mañes, and J. C. Moltó. 2018. Thermal and non-thermal preservation techniques of tiger nuts’ beverage “horchata de chufa”. Implications for food safety, nutritional and quality properties. Food Research International (Ottawa, Ont.) 105:945–51. doi: 10.1016/j.foodres.2017.12.014.
  • Saricaoglu, F. T. 2020. Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. International Journal of Biological Macromolecules 144:760–9. doi: 10.1016/j.ijbiomac.2019.11.034.
  • Schilling, W., and D. Lesak. 2022. The making of a plant-based beverage, 73-75): INST FOOD TECHNOLOGISTS 525 WEST VAN BUREN, STE 1000, CHICAGO, IL 60607-3814 USA.
  • Schlemmer, U., W. Frølich, R. M. Prieto, and F. Grases. 2009. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research 53 Suppl 2 (S2):S330–S375. doi: 10.1002/mnfr.200900099.
  • Sethi, S., S. K. Tyagi, and R. K. Anurag. 2016. Plant-based milk alternatives an emerging segment of functional beverages: A review. Journal of Food Science and Technology 53 (9):3408–23. doi: 10.1007/s13197-016-2328-3.
  • Sharma, A., and S. Sehgal. 1992. Effect of processing and cooking on the antinutritional factors of faba bean (Vicia faba). Food Chemistry 43 (5):383–5. doi: 10.1016/0308-8146(92)90311-O.
  • Shi, L., S. D. Arntfield, and M. Nickerson. 2018. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International (Ottawa, Ont.) 107:660–8. doi: 10.1016/j.foodres.2018.02.056.
  • Shimelis, E. A., and S. K. Rakshit. 2008. Influence of natural and controlled fermentations on α‐galactosides, antinutrients and protein digestibility of beans (Phaseolus vulgaris L. International Journal of Food Science & Technology 43 (4):658–65.) doi: 10.1111/j.1365-2621.2006.01506.x.
  • Silva, A. R., M. M. Silva, and B. D. Ribeiro. 2020. Health issues and technological aspects of plant-based alternative milk. Food Research International (Ottawa, Ont.) 131:108972. doi: 10.1016/j.foodres.2019.108972.
  • Sim, S. Y., X. Y. Hua, and C. J. Henry. 2020. A novel approach to structure plant-based yogurts using high pressure processing. Foods (Basel, Switzerland) 9 (8):1126. doi: 10.3390/foods9081126.
  • Singh, B., J. P. Singh, N. Singh, and A. Kaur. 2017. Saponins in pulses and their health promoting activities: A review. Food Chemistry 233:540–9. doi: 10.1016/j.foodchem.2017.04.161.
  • Singh, N. 2017. Pulses: An overview. Journal of Food Science and Technology 54 (4):853–7. doi: 10.1007/s13197-017-2537-4.
  • Singhal, A., A. C. Karaca, R. Tyler, and M. Nickerson. 2016. Pulse proteins: From processing to structure-function relationships. Grain Legumes 55 :55–78.
  • Sinkovič, L., B. Pipan, F. Šibul, I. Nemeš, A. Tepić Horecki, and V. Meglič. 2022. Nutrients, phytic acid and bioactive compounds in marketable pulses. Plants 12 (1):170. doi: 10.3390/plants12010170.
  • Sirtori, C. R., M. Triolo, R. Bosisio, A. Bondioli, L. Calabresi, V. De Vergori, M. Gomaraschi, G. Mombelli, F. Pazzucconi, C. Zacherl, et al. 2012. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. The British Journal of Nutrition 107 (8):1176–83. doi: 10.1017/S0007114511004120.
  • Slurink, I. A., L. Chen, D. J. Magliano, N. Kupper, T. Smeets, and S. S. Soedamah-Muthu. 2023. Dairy product consumption and incident prediabetes in the australian diabetes, obesity, and lifestyle study with 12 years of follow-up. The Journal of Nutrition 153 (6):1742–52. doi: 10.1016/j.tjnut.2023.03.032.
  • Stantiall, S. E., K. J. Dale, F. S. Calizo, and L. Serventi. 2018. Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. European Food Research and Technology 244 (1):97–104. doi: 10.1007/s00217-017-2943-x.
  • Tabilo-Munizaga, G., R. Villalobos-Carvajal, C. Herrera-Lavados, L. Moreno-Osorio, M. Jarpa-Parra, and M. Pérez-Won. 2019. Physicochemical properties of high-pressure treated lentil protein-based nanoemulsions. Lwt 101:590–8. doi: 10.1016/j.lwt.2018.11.070.
  • Taherian, A. R., M. Mondor, J. Labranche, H. Drolet, D. Ippersiel, and F. Lamarche. 2011. Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International 44 (8):2505–14. doi: 10.1016/j.foodres.2011.01.030.
  • Tang, C.-H., and X. Sun. 2010. Physicochemical and structural properties of 8S and/or 11S globulins from mungbean [Vigna radiata (L.) Wilczek] with various polypeptide constituents. Journal of Agricultural and Food Chemistry 58 (10):6395–402. doi: 10.1021/jf904254f.
  • Tanger, C., M. Müller, D. Andlinger, and U. Kulozik. 2022. Influence of pH and ionic strength on the thermal gelation behaviour of pea protein. Food Hydrocolloids. 123:106903. doi: 10.1016/j.foodhyd.2021.106903.
  • Thompson, H. J. 2019. Improving human dietary choices through understanding of the tolerance and toxicity of pulse crop constituents. Current Opinion in Food Science 30:93–7. doi: 10.1016/j.cofs.2019.01.001.
  • Torio, M. A. O., M. Adachi, R. N. Garcia, K. Prak, N. Maruyama, S. Utsumi, and E. M. Tecson-Mendoza. 2011. Effects of engineered methionine in the 8Sα globulin of mungbean on its physicochemical and functional properties and potential nutritional quality. Food Research International 44 (9):2984–90. doi: 10.1016/j.foodres.2011.07.010.
  • Torio, M. A. O., T. Itoh, R. N. Garcia, N. Maruyama, S. Utsumi, and E. M. Tecson-Mendoza. 2012. Introduction of sulfhydryl groups and disulfide linkage to mungbean 8Sα globulin and effects on physicochemical and functional properties. Food Research International 45 (1):277–82. doi: 10.1016/j.foodres.2011.10.044.
  • Treutter, D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology (Stuttgart, Germany) 7 (6):581–91. doi: 10.1055/s-2005-873009.
  • Vanga, S. K., and V. Raghavan. 2018. How well do plant based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology 55 (1):10–20. doi: 10.1007/s13197-017-2915-y.
  • Villarino, C. B. J., H. M. A. Alikpala, A. F. Begonia, J. D. Cruz, L. A. D. Dolot, D. R. Mayo, T. M. T. Rigor, and E. S. Tan. 2024. Quality and health dimensions of pulse-based dairy alternatives with chickpeas, lupins and mung beans. Critical Reviews in Food Science and Nutrition 64 (8):2375–421. doi: 10.1080/10408398.2022.2123777.
  • Vogelsang-O’Dwyer, M., J. Bez, I. L. Petersen, M. S. Joehnke, A. Detzel, M. Busch, M. Krueger, L. Ispiryan, J. A. O’Mahony, E. K. Arendt, et al. 2020. Techno-functional, nutritional and environmental performance of protein isolates from blue lupin and white lupin. Foods (Basel, Switzerland) 9 (2):230. doi: 10.3390/foods9020230.
  • Vogelsang-O’Dwyer, M., E. Zannini, and E. K. Arendt. 2021. Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends in Food Science & Technology 110:364–74. doi: 10.1016/j.tifs.2021.01.090.
  • Vogelsang-O’Dwyer, M., A. W. Sahin, E. Zannini, and E. K. Arendt. 2022. Physicochemical and nutritional properties of high protein emulsion-type lupin-based model milk alternatives: Effect of protein source and homogenization pressure. Journal of the Science of Food and Agriculture 102 (12):5086–97. doi: 10.1002/jsfa.11230.
  • Wang, S., V. Chelikani, and L. Serventi. 2018. Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. Lwt 97:570–2. doi: 10.1016/j.lwt.2018.07.067.
  • Wintersohle, C., I. Kracke, L. M. Ignatzy, L. Etzbach, and U. Schweiggert-Weisz. 2023. Physicochemical and chemical properties of mung bean protein isolate affected by the isolation procedure. Current Research in Food Science 7:100582. doi: 10.1016/j.crfs.2023.100582.
  • Wouters, A. G., I. Rombouts, E. Fierens, K. Brijs, and J. A. Delcour. 2016. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety 15 (4):786–800. doi: 10.1111/1541-4337.12209.
  • Wu, H., X. Rui, W. Li, X. Chen, M. Jiang, and M. Dong. 2015. Mung bean (Vigna radiata) as probiotic food through fermentation with Lactobacillus plantarum B1-6. LWT - Food Science and Technology 63 (1):445–51. doi: 10.1016/j.lwt.2015.03.011.
  • Xu, Y., M. Obielodan, E. Sismour, A. Arnett, S. Alzahrani, and B. Zhang. 2017. Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. International Journal of Food Science & Technology 52 (5):1147–54. doi: 10.1111/ijfs.13400.
  • Yang, M., N. Li, L. Tong, B. Fan, L. Wang, F. Wang, and L. Liu. 2021. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. Lwt 152:112390. doi: 10.1016/j.lwt.2021.112390.
  • Yilmaz-Ersan, L., and E. Topcuoglu. 2022. Evaluation of instrumental and sensory measurements using multivariate analysis in probiotic yogurt enriched with almond milk. Journal of Food Science and Technology 59 (1):133–43. doi: 10.1007/s13197-021-04994-w.
  • Yin, X., J. Li, L. Zhu, and H. Zhang. 2023. Advances in the formation mechanism of set-type plant-based yogurt gel: A review. Critical Reviews in Food Science and Nutrition :1–20. doi: 10.1080/10408398.2023.2212764.
  • Yi-Shen, Z., S. Shuai, and R. FitzGerald. 2018. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food & Nutrition Research 62.
  • Yousefi, M., and S. M. Jafari. 2019. Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. Trends in Food Science & Technology 88:468–83. doi: 10.1016/j.tifs.2019.04.015.
  • Yu, H.-Y., L. Wang, and K. L. McCarthy. 2016. Characterization of yogurts made with milk solids nonfat by rheological behavior and nuclear magnetic resonance spectroscopy. Journal of Food and Drug Analysis 24 (4):804–12. doi: 10.1016/j.jfda.2016.04.002.
  • Zhang, Y., and H. M. Romero. 2020. Exploring the structure-function relationship of Great Northern and navy bean (Phaseolus vulgaris L.) protein hydrolysates: A study on the effect of enzymatic hydrolysis. International Journal of Biological Macromolecules 162:1516–25. doi: 10.1016/j.ijbiomac.2020.08.019.
  • Zhu, X., X. Li, X. Liu, J. Li, X.-A. Zeng, Y. Li, Y. Yuan, and Y.-X. Teng. 2023. Pulse Protein Isolates as Competitive Food Ingredients: Origin, Composition, Functionalities, and the State-of-the-Art Manufacturing. Foods (Basel, Switzerland) 13 (1):6. doi: 10.3390/foods13010006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.