0
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Revisiting the role of phospholipases in alzheimer’s: crosstalk with processed food

, , &

References

  • Abdur-Rahman, M., and E. Shams-Eldin. 2022. Modeling with biomarkers: Nitrosamines and phytochemical protection, ed. J. Biomark, 1–22. Cham: Springer International Publishing doi: 10.1007/978-3-030-87225-0_61-1.
  • Ahmad, W., B. Ijaz, K. Shabbiri, F. Ahmed, and S. Rehman. 2017. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/RNS generation. Journal of Biomedical Science 24 (1):76. doi: 10.1186/s12929-017-0379-z.
  • Akhtar, A., M. Bishnoi, and S. P. Sah. 2020. Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotoc in rat model of Alzheimer’s disease through modulation of brain insulin resistance induced tau pathology. Brain Research Bulletin 164:83–97. doi: 10.1016/j.brainresbull.2020.08.001.
  • Akinkuolie, A. O., P. R. Lawler, A. Y. Chu, M. Caulfield, J. Mu, B. Ding, F. Nyberg, R. J. Glynn, P. M. Ridker, E. Hurt-Camejo, et al. 2019. Group IIA secretory phospholipase A2, vascular inflammation, and incident cardiovascular disease: An analysis from the Jupiter trial. Arteriosclerosis, Thrombosis, and Vascular Biology 39 (6):1182–90. doi: 10.1161/ATVBAHA.118.311894.
  • Aloisi, F. 2001. Immune function of microglia. Glia 36 (2):165–79. doi: 10.1002/glia.1106.
  • Andersen, J. V., A. Schousboe, and A. Verkhratsky. 2022. Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Progress in Neurobiology 217:102331. doi: 10.1016/j.pneurobio.2022.102331.
  • Arhab, Y., K. Bessaa, H. Abla, M. Aydin, R. Rahier, A. Comte, L. Brizuela, S. Mebarek, F. Perret, M. V. Cherrier, et al. 2021. Phospholipase D inhibitors screening: Probing and evaluation of ancient and novel molecules. International Journal of Biological Macromolecules 166:1131–40. doi: 10.1016/j.ijbiomac.2020.10.268.
  • Aweya, J. J., X. Zheng, Z. Zheng, W. Wang, J. Fan, D. Yao, S. Li, and Y. Zhang. 2020. The sterol regulatory element binding protein homolog of Penaeus vannamei modulates fatty acid metabolism and immune response. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (9):158757. doi: 10.1016/j.bbalip.2020.158757.
  • Ballatore, C., V. M. Y. Lee, and J. Q. Trojanowski. 2007. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews. Neuroscience 8 (9):663–72. doi: 10.1038/nrn2194.
  • Bardehle, S., M. Krüger, F. Buggenthin, J. Schwausch, J. Ninkovic, H. Clevers, H. J. Snippert, F. J. Theis, M. Meyer-Luehmann, I. Bechmann, et al. 2013. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience 16 (5):580–6. doi: 10.1038/nn.3371.
  • Beard, J. C., and T. M. Swager. 2021. An organic chemist’s guide to N-nitrosamines: Their structure, reactivity, and role as contaminants. The Journal of Organic Chemistry 86 (3):2037–57. doi: 10.1021/acs.joc.0c02774.
  • Bernfeld, E., D. Menon, V. Vaghela, I. Zerin, P. Faruque, M. A. Frias, and D. A. Foster. 2018. Phospholipase D–dependent mTOR complex 1 (mTORC1) activation by glutamine. The Journal of Biological Chemistry 293 (42):16390–401. doi: 10.1074/jbc.RA118.004972.
  • Bhatti, G. K., A. P. Reddy, P. H. Reddy, and J. S. Bhatti. 2019. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Frontiers in Aging Neuroscience 11:369. doi: 10.3389/fnagi.2019.00369.
  • Bill, C. A., and C. M. Vines. 2020. Phospholipase C. Calcium Signaling 1131: 215–242. doi: 10.1007/978-3-030-12457-1
  • Bond, P. 2017. Phosphatidic acid: Biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutrition & Metabolism 14 (1):12. doi: 10.1186/s12986-017-0166-6.
  • Bowling, F. Z., M. A. Frohman, and M. V. Airola. 2021. Structure and regulation of human phospholipase D. Advances in Biological Regulation 79:100783. doi: 10.1016/j.jbior.2020.100783.
  • Brion, J. P. 1998. Neurofibrillary tangles and Alzheimer’s disease. European Neurology 40 (3):130–40. doi: 10.1159/000007969.
  • Brown, H. A., P. G. Thomas, and C. W. Lindsley. 2017. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nature Reviews. Drug Discovery 16 (5):351–67. doi: 10.1038/nrd.2016.252.
  • Cai, D., W. J. Netzer, M. Zhong, Y. Lin, G. Du, M. Frohman, D. A. Foster, S. S. Sisodia, H. Xu, F. S. Gorelick, et al. 2006. Presenilin-1 uses phospholipase D1 as a negative regulator of β-amyloid formation. Proceedings of the National Academy of Sciences of the United States of America 103 (6):1941–6. doi: 10.1073/pnas.0510708103.
  • Carrero, I., M. R. Gonzalo, B. Martin, J. M. Sanz-Anquela, J. Arévalo-Serrano, and A. Gonzalo-Ruiz. 2012. Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Experimental Neurology 236 (2):215–27. doi: 10.1016/j.expneurol.2012.05.004.
  • Chalbot, S., H. Zetterberg, K. Blennow, T. Fladby, I. Grundke-Iqbal, and K. Iqbal. 2009. Cerebrospinal fluid secretory Ca2+-dependent phospholipase A2 activity is increased in Alzheimer disease. Clinical Chemistry 55 (12):2171–9. doi: 10.1373/clinchem.2009.130286.
  • Chen, Y., Y. Zhang, H. Yang, H. Li, L. Zhou, M. Zhang, and Y. Wang. 2024. Associations of sugar-sweetened, artificially sweetened, and naturally sweet juices with Alzheimer’s disease: A prospective cohort study. GeroScience 46 (1):1229–40. doi: 10.1007/s11357-023-00889-0.
  • Chuang, D. Y., A. Simonyi, P. T. Kotzbauer, Z. Gu, and G. Y. Sun. 2015. Cytosolic phospholipase A 2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation 12 (1):199. doi: 10.1186/s12974-015-0419-0.
  • Chun, H., and C. J. Lee. 2018. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neuroscience Research 126:44–52. doi: 10.1016/j.neures.2017.11.012.
  • Clemens, J. A., D. T. Stephenson, E. B. Smalstig, E. F. Roberts, E. M. Johnstone, J. D. Sharp, S. P. Little, and R. M. Kramer. 1996. Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke 27 (3):527–35. doi: 10.1161/01.STR.27.3.527.
  • Cunningham, T. J., J. Maciejewski, and L. Yao. 2006. Inhibition of secreted phospholipase A2 by neuron survival and anti-inflammatory peptide CHEC-9. Journal of Neuroinflammation 3:25. doi: 10.1186/1742-2094-3-25.
  • Davalos, D., J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung, D. R. Littman, M. L. Dustin, and W.-B. Gan. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience 8 (6):752–8. doi: 10.1038/nn1472.
  • De la Monte, S. M., and M. Tong. 2009. Mechanisms of nitrosamine-mediated neurodegeneration: Potential relevance to sporadic Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 17 (4):817–25. doi: 10.3233/JAD-2009-1098.
  • Dokholyan, N. V., R. C. Mohs, and R. J. Bateman. 2022. Challenges and progress in research, diagnostics, and therapeutics in Alzheimer’s disease and related dementias. Alzheimer’s & Dementia (New York, NY) 8 (1):e12330. doi: 10.1002/trc2.12330.
  • Deng, X., J. Zhu, J. Liang, W. Chang, X. Lv, and R. Lai. 2024. Causal association between plant foods intake and Alzheimer’s disease: A Mendelian randomization study. Nutritional Neuroscience:1–6. doi: 10.1080/1028415X.2024.2312685.
  • Dissanayaka, D. M. S., V. Jayasena, S. R. Rainey-Smith, R. N. Martins, and W. Fernando. 2024. The role of diet and gut microbiota in alzheimer’s disease. Nutrients 16 (3):412. doi: 10.3390/nu16030412.
  • Engel, K. M., J. Schiller, C. E. Galuska, and B. Fuchs. 2021. Phospholipases and reactive oxygen species derived lipid biomarkers in healthy and diseased humans and animals–a focus on lysophosphatidylcholine. Frontiers in Physiology 12:732319. doi: 10.3389/fphys.2021.732319.
  • Exton, J. H. 2004. Phospholipase D. In Lipases and phospholipases in drug development: From biochemistry to molecular pharmacology, 55–78. Wiley online library. doi: 10.1002/3527601910#page=70.
  • Farooqui, A. A., H. C. Yang, T. A. Rosenberger, and L. A. Horrocks. 1997. Phospholipase A2 and its role in brain tissue. Journal of Neurochemistry 69 (3):889–901. doi: 10.1046/j.1471-4159.1997.69030889.x.
  • Fattahi, M. J., and A. Mirshafiey. 2014. Positive and negative effects of prostaglandins in A lzheimer’s disease. Psychiatry and Clinical Neurosciences 68 (1):50–60. doi: 10.1111/pcn.12092.
  • Firestein, G. S., R. C. Budd, S. E. Gabriel, I. B. McInnes, and J. R. O’Dell. 2020. Firestein & Kelley’s textbook of rheumatology-E-book. Elsevier Health Sciences.
  • Fleeman, R. M., and E. A. Proctor. 2021. Astrocytic propagation of tau in the context of Alzheimer’s disease. Frontiers in Cellular Neuroscience 15:63. doi: 10.3389/fncel.2021.645233.
  • Flores-Díaz, M., L. Monturiol-Gross, and A. Alape-Girón. 2015. Membrane-damaging and cytotoxic sphingomyelinases and phospholipases. In The comprehensive sourcebook of bacterial protein toxins ed. J. Alouf, D. Ladant, and M.R. Popoff, 627–76. Elsevier.
  • Friedman, L. G., N. McKeehan, Y. Hara, J. L. Cummings, D. C. Matthews, J. Zhu, R. C. Mohs, D. Wang, S. B. Hendrix, M. Quintana, et al. 2021. Value-generating exploratory trials in neurodegenerative dementias. Neurology 96 (20):944–54. doi: 10.1212/WNL.0000000000011774.
  • Fujii, Y., S. Maekawa, and M. Morita. 2017. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels. Scientific Reports 7 (1):13115. doi: 10.1038/s41598-017-13243-0.
  • Ghomashchi, F., A. Stewart, Y. Hefner, S. Ramanadham, J. Turk, C. C. Leslie, and M. H. Gelb. 2001. A pyrrolidine-based specific inhibitor of cytosolic phospholipase A2α blocks arachidonic acid release in a variety of mammalian cells. Biochimica et Biophysica Acta 1513 (2):160–6. doi: 10.1016/S0005-2736(01)00349-2.
  • Giresha, A. S., D. Urs, S. Pundalik, R. S. Meti, S. N. Pramod, B. H. Supreetha, M. Somegowda, K. K. Dharmappa, A. M. El-Shehawi, S. Albogami, et al. 2022. Sinapicacid inhibits group IIA secretory phospholipase A2 and its inflammatory response in mice. Antioxidants 11 (7):1251. doi: 10.3390/antiox11071251.
  • Gralle, M., and S. T. Ferreira. 2007. Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts. Progress in Neurobiology 82 (1):11–32. doi: 10.1016/j.pneurobio.2007.02.001.
  • Gu, L., and Z. Guo. 2013. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. Journal of Neurochemistry 126 (3):305–11. doi: 10.1111/jnc.12202.
  • Gupta, A. K., S. Tulsyan, M. Bharadwaj, and R. Mehrotra. 2019. Grass roots approach to control levels of carcinogenic nitrosamines, NNN and NNK in smokeless tobacco products. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 124:359–66. doi: 10.1016/j.fct.2018.12.011.
  • Hajdusianek, W., A. Żórawik, M. Waliszewska-Prosół, et al. 2021. Tobacco and nervous system development and function—new findings 2015–2020. Brain Science 11 (6):797. doi: 10.3390/brainsci11060797.
  • Hamed, M. F., G. R. d. S. Araújo, M. E. Munzen, M. Reguera-Gomez, C. Epstein, H. H. Lee, S. Frases, and L. R. Martinez. 2023. Phospholipase B is critical for Cryptococcus neoformans survival in the central nervous system. mBio 14 (2):e02640–22. doi: 10.1128/mbio.02640-22.
  • Harden, T. K., S. N. Hicks, and J. Sondek. 2009. Phospholipase C isozymes as effectors of Ras superfamily GTPases. Journal of Lipid Research 50 Suppl (Suppl):S243–S248. doi: 10.1194/jlr.R800045-JLR200.
  • Haynes, S. E., G. Hollopeter, G. Yang, D. Kurpius, M. E. Dailey, W.-B. Gan, and D. Julius. 2006. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neuroscience 9 (12):1512–9. doi: 10.1038/nn1805.
  • Haytowitz, D., J. Ahuja, X. Wu, et al. 2018. USDA National Nutrient Database for standard reference, legacy. In USDA national nutrient database for standard reference. reference. https://www.ars.usda.gov/research/publications/publication/?seqno115=349687
  • Hoozemans, J. J. M., J. M. Rozemuller, E. S. van Haastert, R. Veerhuis, and P. Eikelenboom. 2008. Cyclooxygenase-1 and-2 in the different stages of Alzheimer’s disease pathology. Current Pharmaceutical Design 14 (14):1419–27. doi: 10.2174/138161208784480171.
  • Hu, K., Y. Jin, Z. Chroneos, X. Han, H. Liu, and L. Lin. 2018. Macrophage functions and regulation: Roles in diseases and implications in therapeutics. Journal of Immunology Research 2018:7590350–2. doi: 10.1155/2018/7590350.
  • Huang, Z., L.-W. Wong, Y. Su, X. Huang, N. Wang, H. Chen, and C. Yi. 2020. Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease. Frontiers in Neuroendocrinology 59:100857. doi: 10.1016/j.yfrne.2020.100857.
  • Hurt-Camejo, E., G. Camejo, H. Peilot, K. Oörni, and P. Kovanen. 2001. Phospholipase A2 in vascular disease. Circulation Research 89 (4):298–304. doi: 10.1161/hh1601.095598.
  • Iqbal, K., F. Liu, C.-X. Gong, and I. Grundke-Iqbal. 2010. Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research 7 (8):656–64. doi: 10.2174/156720510793611592.
  • Ivanušec, A., J. Šribar, A. Leonardi, M. Zorović, M. Živin, and I. Križaj. 2022. Rat group IIA secreted phospholipase A2 binds to cytochrome C oxidase and inhibits its activity: A possible episode in the development of alzheimer’s disease. International Journal of Molecular Sciences 23 (20):12368. doi: 10.3390/ijms232012368.
  • Jang, H.-J., Y. R. Yang, J. K. Kim, J. H. Choi, Y.-K. Seo, Y. H. Lee, J. E. Lee, S. H. Ryu, and P.-G. Suh. 2013. Phospholipase C-γ1 involved in brain disorders. Advances in Biological Regulation 53 (1):51–62. doi: 10.1016/j.jbior.2012.09.008.
  • Jin, J.-K., N.-H. Kim, Y.-J. Lee, Y.-S. Kim, E.-K. Choi, P. B. Kozlowski, M. H. Park, H.-S. Kim, and D. S. Min. 2006. Phospholipase D1 is up-regulated in the mitochondrial fraction from the brains of Alzheimer’s disease patients. Neuroscience Letters 407 (3):263–7. doi: 10.1016/j.neulet.2006.08.062.
  • Kadamur, G., and E. M. Ross. 2013. Mammalian phospholipase C. Annual Review of Physiology 75 (1):127–54. doi: 10.1146/annurev-physiol-030212-183750.
  • Kamyabi, A. 2022. Contribution of phospholipase C-delta 4 to calcium signaling in astrocytes. Doctoral diss., University of British Columbia. doi: 10.14288/1.0412930.
  • Kang, M.-J., N. Jin, S.-Y. Park, and J.-S. Han. 2022. Phospholipase D1 promotes astrocytic differentiation through the FAK/AURKA/STAT3 signaling pathway in hippocampal neural stem/progenitor cells. Biochimica et Biophysica Acta. Molecular Cell Research 1869 (12):119361. doi: 10.1016/j.bbamcr.2022.119361.
  • Kapalka, G. M. 2010. Substances involved in neurotransmission. In Nutritional and herbal therapies for children and adolescents, 71–99. doi: 10.1016/B978-0-12-374927-7.00004-2.
  • Karwowska, M., and A. Kononiuk. 2020. Nitrates/nitrites in food—Risk for nitrosative stress and benefits. Antioxidants 9 (3):241. doi: 10.3390/antiox9030241.
  • Katan, M., and S. Cockcroft. 2020. Phospholipase C families: Common themes and versatility in physiology and pathology. Progress in Lipid Research 80:101065. doi: 10.1016/j.plipres.2020.101065.
  • Kimelberg, H. K., and M. D. Norenberg. 1989. Astrocytes. Scientific American 260 (4):66–72, 74, 76. doi: 10.1016/j.fsi.2022.10.013.
  • Kinney, J. W., S. M. Bemiller, A. S. Murtishaw, A. M. Leisgang, A. M. Salazar, and B. T. Lamb. 2018. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia (New York, NY) 4 (1):575–90. doi: 10.1016/j.trci.2018.06.014.
  • Klein, J. 2005. Functions and pathophysiological roles of phospholipase D in the brain. Journal of Neurochemistry 94 (6):1473–87. doi: 10.1111/j.1471-4159.2005.03315.x.
  • Kobayashi, J. 2018. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: A review. Nitric Oxide: Biology and Chemistry 73:66–73. doi: 10.1016/j.niox.2017.06.001.
  • Kofuji, P., and A. Araque. 2021. Astrocytes and behavior. Annual Review of Neuroscience 44 (1):49–67. doi: 10.1146/annurev-neuro-101920-112225.
  • Kok, J. R., N. M. Palminha, C. Dos Santos Souza, S. F. El-Khamisy, and L. Ferraiuolo. 2021. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cellular and Molecular Life Sciences: CMLS 78 (15):5707–29. doi: 10.1007/s00018-021-03872-0.
  • Kulkarni, A., A. Dong, V. V. Kulkarni, J. Chen, O. Laxton, A. Anand, and S. Maday. 2020. Differential regulation of autophagy during metabolic stress in astrocytes and neurons. Autophagy 16 (9):1651–67. doi: 10.1080/15548627.2019.1703354.
  • Lai, A. Y., and J. McLaurin. 2011. Mechanisms of amyloid-Beta Peptide uptake by neurons: The role of lipid rafts and lipid raft-associated proteins. International Journal of Alzheimer’s Disease 2011:548380. doi: 10.4061/2011/548380.
  • Lauritzen, L., P. Brambilla, A. Mazzocchi, L. B. Harsløf, V. Ciappolino, and C. Agostoni. 2016. DHA effects in brain development and function. Nutrients 8 (1):6. doi: 10.3390/nu8010006.
  • Lee, J. C.-M., A. Simonyi, A. Y. Sun, and G. Y. Sun. 2011. Phospholipases A2 and neural membrane dynamics: Implications for Alzheimer’s disease. Journal of Neurochemistry 116 (5):813–9. doi: 10.1111/j.1471-4159.2010.07033.x.
  • Li, K., J. Li, J. Zheng, and S. Qin. 2019. Reactive astrocytes in neurodegenerative diseases. Aging and Disease 10 (3):664–75. doi: 10.14336/AD.2018.0720.
  • Li, Y., and S. S. Hecht. 2022. Carcinogenic components of tobacco and tobacco smoke: A 2022 update. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 165:113179. doi: 10.1016/j.fct.2022.113179.
  • Lin, T.-N., Q. Wang, A. Simonyi, J.-J. Chen, W.-M. Cheung, Y. Y. He, J. Xu, A. Y. Sun, C. Y. Hsu, and G. Y. Sun. 2004. Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. Journal of Neurochemistry 90 (3):637–45. doi: 10.1111/j.1471-4159.2004.02540.x.
  • Lim, H.-K., Y.-A. Choi, W. Park, T. Lee, S. H. Ryu, S.-Y. Kim, J.-R. Kim, J.-H. Kim, and S.-H. Baek. 2003. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. The Journal of Biological Chemistry 278 (46):45117–27. doi: 10.1074/jbc.M303789200.
  • Liu, J., J. Tan, B. Tang, and J. Guo. 2024. Unveiling the role of iPLA2β in neurodegeneration: from molecular mechanisms to advanced therapies. Pharmacological Research 202:107114. doi: 10.1016/j.phrs.2024.107114.
  • Liu, Y., Y. Su, and X. Wang. 2013. Phosphatidic acid-mediated signaling. Advances in Experimental Medicine and Biology 991:159–76. doi: 10.1007/978-94-007-6331-9_9.
  • Luo, F., X.-J. Yan, X.-F. Hu, L.-J. Yan, M.-Y. Cao, and W.-J. Zhang. 2022. Nitrate quantification in fresh vegetables in Shanghai: Its dietary risks and preventive measures. International Journal of Environmental Research and Public Health 19 (21):14487. doi: 10.3390/ijerph192114487.
  • Luo, M., R.-Y. Gan, B.-Y. Li, Q.-Q. Mao, A. Shang, X.-Y. Xu, H.-Y. Li, and H.-B. Li. 2023. Effects and mechanisms of tea on Parkinson’s disease, Alzheimer’s disease and depression. Food Reviews International 39 (1):278–306. doi: 10.1080/87559129.2021.1904413.
  • MacLeod, R., E.K. Hillert, R. T. Cameron, and G. S. Baillie. 2015. The role and therapeutic targeting of α-, β-and γ-secretase in Alzheimer’s disease. Future Science OA 1 (3). doi: 10.4155/fso.15.9.
  • McDermott, M. I., Y. Wang, M. J. O. Wakelam, and V. A. Bankaitis. 2020. Mammalian phospholipase D: Function, and therapeutics. Progress in Lipid Research 78:101018. doi: 10.1016/j.plipres.2019.101018.
  • McGrattan, A. M., B. McGuinness, M. C. McKinley, F. Kee, P. Passmore, J. V. Woodside, and C. T. McEvoy. 2019. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Current Nutrition Reports 8 (2):53–65. doi: 10.1007/s13668-019-0271-4.
  • Merighi, S., T. E. Poloni, A. Terrazzan, E. Moretti, S. Gessi, and D. Ferrari. 2021. Alzheimer and purinergic signaling: Just a matter of inflammation? Cells 10 (5):1267. doi: 10.3390/cells10051267.
  • Metri-Ojeda, J., M. Ramírez-Rodrigues, L. Rosas-Ordoñez, and D. Baigts-Allende. 2022. Development and characterization of a low-fat mayonnaise salad dressing based on arthrospira platensis protein concentrate and sodium alginate. Applied Sciences 12 (15):7456. doi: 10.3390/app12157456.
  • Mitchell, R. W., and G. M. Hatch. 2011. Fatty acid transport into the brain: Of fatty acid fables and lipid tails. Prostaglandins, Leukotrienes, and Essential Fatty Acids 85 (5):293–302. doi: 10.1016/j.plefa.2011.04.007.
  • Molinari, G., and E. Nervo. 2021. Role of protons in calcium signaling. The Biochemical Journal 478 (4):895–910. doi: 10.1042/BCJ20200971.
  • Montesano, R. 1981. Alkylation of DNA and tissue specificity in nitrosamine carcinogenesis. Journal of Supramolecular Structure and Cellular Biochemistry 17 (3):259–73. doi: 10.1002/jsscb.380170307.
  • Moreno-Gonzalez, I., L. D. Estrada, E. Sanchez-Mejias, and C. Soto. 2013. Smoking exacerbates amyloid pathology in a mouse model of Alzheimer’s disease. Nature Communications 4 (1):1495. doi: 10.1038/ncomms2494.
  • Mueed, Z., P. Tandon, S. K. Maurya, R. Deval, M. A. Kamal, and N. K. Poddar. 2018. Tau and mTOR: The hotspots for multifarious diseases in Alzheimer’s development. Frontiers in Neuroscience 12:1017. doi: 10.1038/ncomms2494.
  • Murdock, M. H., and L. H. Tsai. 2023. Insights into Alzheimer’s disease from single-cell genomic approaches. Nature Neuroscience 26 (2):181–95. doi: 10.1038/s41593-022-01222-2.
  • Nackenoff, A., T. J. Hohman, S. M. Neuner, C. Akers, N. Weitzel, A. Shostak, S. M. Ferguson, D. A. Bennett, J. A. Schneider, A. L. Jefferson, et al. 2020. PLD3 is a neuronal lysosomal phospholipase D associated with β-amyloid plaques and cognitive function in Alzheimer’s disease: Molecular and cell biology/enzyme activities. Alzheimer’s & Dementia 16 (S2):e043301. doi: 10.1371/journal.pgen.1009406.
  • Navarro, V., E. Sanchez-Mejias, S. Jimenez, C. Muñoz-Castro, R. Sanchez-Varo, J. C. Davila, M. Vizuete, A. Gutierrez, and J. Vitorica. 2018. Microglia in Alzheimer’s disease: Activated, dysfunctional or degenerative. Frontiers in Aging Neuroscience 10:140. doi: 10.3389/fnagi.2018.00140.
  • Nelson, R. K., and M. A. Frohman. 2015. Physiological and pathophysiological roles for phospholipase D. Journal of Lipid Research 56 (12):2229–37. doi: 10.1194/jlr.R059220.
  • Nwokwu, C. D., A. Y. Xiao, L. Harrison, and G. G. Nestorova. 2022. Identification of microRNA-mRNA regulatory network associated with oxidative DNA damage in human astrocytes. ASN Neuro 14:17590914221101704. doi: 10.1177/17590914221101704.
  • Odinga, E. S., M. G. Waigi, F. O. Gudda, J. Wang, B. Yang, X. Hu, S. Li, and Y. Gao. 2020. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environment International 134:105172. doi: 10.1016/j.envint.2019.105172.
  • Oliveira, T. G., and G. Di Paolo. 2010. Phospholipase D in brain function and Alzheimer’s disease. Biochimica et Biophysica Acta 1801 (8):799–805. doi: 10.1016/j.bbalip.2010.04.004.
  • Ong, W.-Y., T. Farooqui, G. Kokotos, and A. A. Farooqui. 2015. Synthetic and natural inhibitors of phospholipases A2: Their importance for understanding and treatment of neurological disorders. ACS Chemical Neuroscience 6 (6):814–31. doi: 10.1021/acschemneuro.5b00073.
  • O’Reilly, M. C., S. A. Scott, K. A. Brown, T. H. Oguin, P. G. Thomas, J. S. Daniels, R. Morrison, H. A. Brown, and C. W. Lindsley. 2013. Development of dual PLD1/2 and PLD2 selective inhibitors from a common 1, 3, 8-Triazaspiro [4.5] decane Core: Discovery of Ml298 and Ml299 that decrease invasive migration in U87-MG glioblastoma cells. Journal of Medicinal Chemistry 56 (6):2695–9. doi: 10.1021/jm301782e.
  • Owen, J. B., F. Di Domenico, R. Sultana, M. Perluigi, C. Cini, W. M. Pierce, and D. A. Butterfield. 2009. Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer’s disease and mild cognitive impairment: Implications for progression of AD. Journal of Proteome Research 8 (2):471–82. doi: 10.1021/pr800667a.
  • Owusu Obeng, E., I. Rusciano, M. V. Marvi, A. Fazio, S. Ratti, M. Y. Follo, J. Xian, L. Manzoli, A. M. Billi, S. Mongiorgi, et al. 2020. Phosphoinositide-dependent signaling in cancer: A focus on phospholipase C isozymes. International Journal of Molecular Sciences 21 (7):2581. doi: 10.3390/ijms21072581.
  • Pantazi, D., C. Tellis, and A. D. Tselepis. 2022. Oxidized phospholipids and lipoprotein-associated phospholipase A2 (Lp-PLA2) in atherosclerotic cardiovascular disease: An update. BioFactors (Oxford, England) 48 (6):1257–70. doi: 10.1002/biof.1890.
  • Paris, D., T. Town, and M. Mullan. 2000. Novel strategies for opposing murine microglial activation. Neuroscience Letters 278 (1–2):5–8. doi: 10.1016/S0304-3940(99)00901-5.
  • Park, H., J. H. Kang, and S. Lee. 2020. Autophagy in neurodegenerative diseases: A hunter for aggregates. International Journal of Molecular Sciences 21 (9):3369. doi: 10.3390/ijms21093369.
  • Patterson, E., R. Wall, G. F. Fitzgerald, R. P. Ross, and C. Stanton. 2012. Health implications of high dietary omega-6 polyunsaturated fatty acids. Journal of Nutrition and Metabolism 2012:539426–16. doi: 10.1155/2012/539426.
  • Peng, X., and M. A. Frohman. 2012. Mammalian phospholipase D physiological and pathological roles. Acta Physiologica (Oxford, England) 204 (2):219–26. doi: 10.1111/j.1748-1716.2011.02298.x.
  • Peng, Z., Y. Chang, J. Fan, W. Ji, and C. Su. 2021. Phospholipase A2 superfamily in cancer. Cancer Letters 497:165–77. doi: 10.1016/j.canlet.2020.10.021.
  • Perea, J. R., M. Bolós, and J. Avila. 2020. Microglia in Alzheimer’s disease in the context of tau pathology. Biomolecules 10 (10):1439. doi: 10.3390/biom10101439.
  • Pettegrew, J. W., K. Panchalingam, R. L. Hamilton, and R. J. McClure. 2001. Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochemical Research 26 (7):771–82. doi: 10.1023/A:1011603916962.
  • Podlecka-Piętowska, A., A. Kacka, B. Zakrzewska-Pniewska, M. Nojszewska, E. Zieminska, M. Chalimoniuk, and B. Toczylowska. 2019. Altered cerebrospinal fluid concentrations of hydrophobic and hydrophilic compounds in early stages of multiple sclerosis—Metabolic profile analyses. Journal of Molecular Neuroscience: MN 69 (1):94–105. doi: 10.1007/s12031-019-01336-6.
  • Qi, H.-Y., M. P. Daniels, Y. Liu, L.-Y. Chen, S. Alsaaty, S. J. Levine, and J. H. Shelhamer. 2011. A cytosolic phospholipase A2-initiated lipid mediator pathway induces autophagy in macrophages. Journal of Immunology (Baltimore, MD: 1950) 187 (10):5286–92. doi: 10.4049/jimmunol.1004004.
  • Rapoport, S. I. 2008. Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins, Leukotrienes, and Essential Fatty Acids 79 (3–5):153–6. doi: 10.1016/j.plefa.2008.09.010.
  • Robles, H. 2014. Nitrosamines. In Encyclopedia of toxicology, Vol. 3, ed. R. H, 584–5. New York, NY: Elsevier Science. doi: 10.1002/em.22446.
  • Rusek, M., R. Pluta, M. Ułamek-Kozioł, and S. J. Czuczwar. 2019. Ketogenic diet in Alzheimer’s disease. International Journal of Molecular Sciences 20 (16):3892. doi: 10.3390/ijms20163892.
  • Ryu, J. C., E. R. Zimmer, P. Rosa-Neto, and S. O. Yoon. 2019. Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 16 (3):600–10. doi: 10.1007/s13311-019-00755-y.
  • Saini, R. K., and Y. S. Keum. 2018. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sciences 203:255–67. doi: 10.1016/j.lfs.2018.04.049.
  • Salles, D., R. S. Samartini, M. T. d S. Alves, A. C. d M. Malinverni, and J. N. Stávale. 2022. Functions of astrocytes in multiple sclerosis: A review. Multiple Sclerosis and Related Disorders 60:103749. doi: 10.1016/j.msard.2022.103749.
  • Sanchez-Mejia, R. O., and L. Mucke. 2010. Phospholipase A2 and arachidonic acid in Alzheimer’s disease. Biochimica et Biophysica Acta 1801 (8):784–90. doi: 10.1016/j.bbalip.2010.05.013.
  • Sasso, A., and G. Latella. 2018. Role of heme iron in the association between red meat consumption and colorectal cancer. Nutrition and Cancer 70 (8):1173–83. doi: 10.1080/01635581.2018.1521441.
  • Sanchez-Mejia, R. O., J. W. Newman, S. Toh, G.-Q. Yu, Y. Zhou, B. Halabisky, M. Cissé, K. Scearce-Levie, I. H. Cheng, L. Gan, et al. 2008. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nature Neuroscience 11 (11):1311–8. doi: 10.1038/nn.2213.
  • Schafer, D. P., E. K. Lehrman, A. G. Kautzman, R. Koyama, A. R. Mardinly, R. Yamasaki, R. M. Ransohoff, M. E. Greenberg, B. A. Barres, B. Stevens, et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74 (4):691–705. doi: 10.1016/j.neuron.2012.03.026.
  • Schmitz, G., and J. Ecker. 2008. The opposing effects of n− 3 and n− 6 fatty acids. Progress in Lipid Research 47 (2):147–55. doi: 10.1016/j.plipres.2007.12.004.
  • Seki, T., M. Kanagawa, K. Kobayashi, H. Kowa, N. Yahata, K. Maruyama, N. Iwata, H. Inoue, and T. Toda. 2020. Galectin 3–binding protein suppresses amyloid-β production by modulating β-cleavage of amyloid precursor protein. The Journal of Biological Chemistry 295 (11):3678–91. doi: 10.1074/jbc.RA119.008703.
  • Seno, K., T. Okuno, K. Nishi, Y. Murakami, F. Watanabe, T. Matsuura, M. Wada, Y. Fujii, M. Yamada, T. Ogawa, et al. 2000. Pyrrolidine inhibitors of human cytosolic phospholipase A2. Journal of Medicinal Chemistry 43 (6):1041–4. doi: 10.1038/sj.bjp.0706879.
  • Serrano-Pozo, A., A. Muzikansky, T. Gómez-Isla, J. H. Growdon, R. A. Betensky, M. P. Frosch, and B. T. Hyman. 2013. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. Journal of Neuropathology and Experimental Neurology 72 (6):462–71. doi: 10.1097/NEN.0b013e3182933788.
  • Shibata, N., A. Kakita, H. Takahashi, Y. Ihara, K. Nobukuni, H. Fujimura, S. Sakoda, and M. Kobayashi. 2010. Increased expression and activation of cytosolic phospholipase A 2 in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. Acta Neuropathologica 119 (3):345–54. doi: 10.1007/s00401-009-0636-7.
  • Snider, J. M., J. K. You, X. Wang, A. J. Snider, B. Hallmark, M. M. Zec, M. C. Seeds, S. Sergeant, L. Johnstone, Q. Wang, et al. 2021. Group IIA secreted phospholipase A 2 is associated with the pathobiology leading to COVID-19 mortality. The Journal of Clinical Investigation 131 (19). doi: 10.1172/JCI149236.
  • Sofroniew, M. V., and H. V. Vinters. 2010. Astrocytes: Biology and pathology. Acta Neuropathologica 119 (1):7–35. doi: 10.1007/s00401-009-0619-8.
  • Sokoła-Wysoczańska, E., T. Wysoczański, J. Wagner, K. Czyż, R. Bodkowski, S. Lochyński, and B. Patkowska-Sokoła. 2018. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—a review. Nutrients 10 (10):1561. doi: 10.3390/nu10101561.
  • Sun, G. Y., J. Xu, M. D. Jensen, and A. Simonyi. 2004. Phospholipase A2 in the central nervous system: Implications for neurodegenerative diseases. Journal of Lipid Research 45 (2):205–13. doi: 10.1194/jlr.R300016-JLR200.
  • Sun, G. Y., J. Xu, M. D. Jensen, et al. 2005. Phospholipase A 2 in astrocytes: Responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Molecular Neurobiology. 31:27–41. doi: 10.1007/s12017-009-8092-z.
  • Takahashi, R. H., T. Nagao, and G. K. Gouras. 2017. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathology International 67 (4):185–93. doi: 10.1111/pin.12520.
  • Takechi, R., S. Galloway, M. M. S. Pallebage-Gamarallage, V. Lam, and J. C. L. Mamo. 2010. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Progress in Lipid Research 49 (2):159–70. doi: 10.1016/j.plipres.2009.10.004.
  • Tan, M., J. Li, F. Ma, X. Zhang, Q. Zhao, and X. Cao. 2019. PLD3 rare variants identified in late-onset Alzheimer’s disease affect amyloid-β levels in cellular model. Frontiers in Neuroscience 13:116. doi: 10.3389/fnins.2019.00116.
  • Tan, S. T., T. Ramesh, X. R. Toh, and L. N. Nguyen. 2020. Emerging roles of lysophospholipids in health and disease. Progress in Lipid Research 80:101068. doi: 10.1016/j.plipres.2020.101068.
  • Tanaka, T., A. Kassai, M. Ohmoto, K. Morito, Y. Kashiwada, Y. Takaishi, M. Urikura, J-i Morishige, K. Satouchi, A. Tokumura, et al. 2012. Quantification of phosphatidic acid in foodstuffs using a thin-layer-chromatography-imaging technique. Journal of Agricultural and Food Chemistry 60 (16):4156–61. doi: 10.1021/jf300147y.
  • Tang, Y., and W. Le. 2016. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology 53 (2):1181–94. doi: 10.1007/s12035-014-9070-5.
  • Tanguy, E., Q. Wang, H. Moine, and N. Vitale. 2019. Phosphatidic acid: From pleiotropic functions to neuronal pathology. Frontiers in Cellular Neuroscience 13:2. doi: 10.3389/fncel.2019.00002.
  • Tarasov, V. V., A. A. Svistunov, V. N. Chubarev, S. S. Sologova, P. Mukhortova, D. Levushkin, S. G. Somasundaram, C. E. Kirkland, S. O. Bachurin, G. Aliev, et al. 2019. Alterations of astrocytes in the context of schizophrenic dementia. Frontiers in Pharmacology 10:1612. doi: 10.3389/fphar.2019.01612.
  • Thawkar, B. S., and G. Kaur. 2019. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. Journal of Neuroimmunology 326:62–74. doi: 10.1016/j.jneuroim.2018.
  • Tong, M., A. Neusner, L. Longato, M. Lawton, J. R. Wands, and S. M. de la Monte. 2009. Nitrosamine exposure causes insulin resistance diseases: Relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 17 (4):827–44.
  • Tyagi, A., M. A. Kamal, and N. K. Poddar. 2020. Integrated pathways of COX-2 and mTOR: Roles in cell sensing and Alzheimer’s disease. Frontiers in Neuroscience 14:693. doi: 10.3389/fnins.2020.00693.
  • Valentin-Escalera, J., M. Leclerc, and F. Calon. 2024. High-fat diets in animal models of alzheimer’s disease: How can eating too much fat increase alzheimer’s disease risk? Journal of Alzheimer’s Disease 97 (3):977–1005. doi: 10.3233/JAD-230118.
  • Verma, V., and N. Yadav. 2020. Genotoxicity of heat induced contaminants in food. Plant Archives 20:36–41. doi: 10.1016/j.crfs.2022.01.010.
  • Vijayaraj, P., S. Jayaraja, and V. Nachiappan. 2009. In vitro characterization of phospholipase A2 (PLA2) by tobacco specific nitrosamines. Conference: 78th annual meeting - Society of Biological chemist (India), held at NCCS, Pune, India. doi: 10.13140/RG.2.2.13903.74405.
  • Vijayaraj, P., C. Sivaprakasam, L. V. Varthini, M. Sarkar, and V. Nachiappan. 2014. In vitro exposure of tobacco specific nitrosamines decreases the rat lung phospholipids by enhanced phospholipase A2 activity. Toxicology in Vitro: An International Journal Published in Association with BIBRA 28 (6):1097–105. doi: 10.1016/j.tiv.2014.05.001.
  • Wang, H., J. A. Kulas, C. Wang, D. M. Holtzman, H. A. Ferris, and S. B. Hansen. 2021. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proceedings of the National Academy of Sciences 118 (33):2102191118. doi: 10.1073/pnas.2102191118.
  • Wang, Q., A. Y. Sun, J. Pardeike, R. H. Müller, A. Simonyi, and G. Y. Sun. 2009. Neuroprotective effects of a nanocrystal formulation of sPLA2 inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Research 1285:188–95. doi: 10.1016/j.brainres.2009.06.022.
  • Wang, T., X. Wang, H. Zhou, H. Jiang, K. Mai, and G. He. 2018. The mitotic and metabolic effects of phosphatidic acid in the primary muscle cells of turbot (Scophthalmus maximus). Frontiers in Endocrinology 9:221. doi: 10.3389/fendo.2018.00221.
  • Wilton, D. C. 2008. Phospholipases. In Biochemistry of lipids, lipoproteins and membranes, 305–29. Elsevier doi: 10.1021/bc100271v.
  • Xue, J., S. Yang, and S. Seng. 2014. Mechanisms of cancer induction by tobacco-specific NNK and NNN. Cancers 6 (2):1138–56. doi: 10.3390/cancers6021138.
  • Yang, Z., D.-D. Zhou, S.-Y. Huang, A.-P. Fang, H.-B. Li, and H.-L. Zhu. 2023. Effects and mechanisms of natural products on Alzheimer’s disease. Critical Reviews in Food Science and Nutrition 63 (18):3168–88. doi: 10.1080/10408398.2021.1985428.
  • Zárate, J., E. Goicoechea, J. Pascual, E. Echevarría, and M. D. Guillén. 2009. A study of the toxic effect of oxidized sunflower oil containing 4-hydroperoxy-2-nonenal and 4-hydroxy-2-nonenal on cortical TrkA receptor expression in rats. Nutritional Neuroscience 12 (6):249–59. doi: 10.1179/147683009X423391.
  • Żelasko, J., and A. Czogalla. 2021. Selectivity of mTOR-phosphatidic acid interactions is driven by acyl chain structure and cholesterol. Cells 11 (1):119. doi: 10.3390/cells11010119.
  • Zhu, L., C. Jones, and G. Zhang. 2018. The role of phospholipase C signaling in macrophage-mediated inflammatory response. Journal of Immunology Research 2018:5201759. doi: 10.1155/2018/5201759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.