0
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Efficacy of oral nicotinamide mononucleotide supplementation on glucose and lipid metabolism for adults: a systematic review with meta-analysis on randomized controlled trials

, &

References

  • Akasaka, H., H. Nakagami, K. Sugimoto, Y. Yasunobe, T. Minami, T. Fujimoto, M. Kanou, K. Yamana, S. I. Imai, and H. Rakugi. 2022. Impact of nicotinamide mononucleotide (NMN) for older diabetic patients with impaired physical performance: A prospective, placebo-controlled, doubleblind study. European Geriatric Medicine 13 (Supplement 1):S271. doi: 10.1007/s41999-022-00711-8.
  • Akasaka, H., H. Nakagami, K. Sugimoto, Y. Yasunobe, T. Minami, T. Fujimoto, K. Yamamoto, C. Hara, A. Shiraki, K. Nishida, et al. 2023. Effects of nicotinamide mononucleotide on older patients with diabetes and impaired physical performance: A prospective, placebo-controlled, double-blind study. Geriatrics & Gerontology International 23 (1):38–43. doi: 10.1111/ggi.14513.
  • Allida, S. M., C. F. Hsieh, K. L. Cox, K. Patel, A. Rouncefield-Swales, C. E. Lightbody, A. House, and M. L. Hackett. 2023. Pharmacological, non‐invasive brain stimulation and psychological interventions, and their combination, for treating depression after stroke. The Cochrane Database of Systematic Reviews 7 (7):CD003437. doi: 10.1002/14651858.CD003437.pub5.
  • Amati, F., J. J. Dubé, P. M. Coen, M. Stefanovic-Racic, F. G. S. Toledo, and B. H. Goodpaster. 2009. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care 32 (8):1547–9. doi: 10.2337/dc09-0267.
  • Anderson, R. M., K. J. Bitterman, J. G. Wood, O. Medvedik, and D. A. Sinclair. 2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423 (6936):181–5. doi: 10.1038/nature01578.
  • Anitschkow, N. 1913. Ueber experimentelle Cholesterinsteatose und ihre Bedeutehung einiger pathologischer Prozesse. Centrbl Allg Pathol Pathol Anat 24:1–9.
  • Ansari, H. R., and G. P. S. Raghava. 2010. Identification of NAD interacting residues in proteins. BMC Bioinformatics 11 (1):160. doi: 10.1186/1471-2105-11-160.
  • Araki, T., Y. Sasaki, and J. Milbrandt. 2004. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305 (5686):1010–3. doi: 10.1126/science.1098014.
  • Barker, F., A. Hart, A. Sayer, and M. Witham. 2022. Effects of nicotinamide adenine dinucleotide precursors on physical function and frailty: A systematic review. European Geriatric Medicine 13 (Supplement 1):S89. doi: 10.1007/s41999-022-00711-8.
  • Barzilai, N., and L. Ferrucci. 2012. Insulin resistance and aging: A cause or a protective response? The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 67 (12):1329–31. doi: 10.1093/gerona/gls145.
  • Blagosklonny, M. V. 2008. Aging: ROS or TOR. Cell Cycle 7 (21):3344–54. doi: 10.4161/cc.7.21.6965.
  • Bogan, K. L., and C. Brenner. 2008. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD + precursor vitamins in human nutrition. Annual Review of Nutrition 28 (1):115–30. doi: 10.1146/annurev.nutr.28.061807.155443.
  • Bonkowski, M. S., and D. A. Sinclair. 2016. Slowing ageing by design: The rise of NAD(+) and sirtuin-activating compounds. Nature Reviews-Molecular Cell Biology 17 (11):679–90. doi: 10.1038/nrm.2016.93.
  • Bordone, L., D. Cohen, A. Robinson, M. C. Motta, E. van Veen, A. Czopik, A. D. Steele, H. Crowe, S. Marmor, J. Luo, et al. 2007. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6 (6):759–67. doi: 10.1111/j.1474-9726.2007.00335.x.
  • Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2011. Introduction to meta-analysis. New Jersey: Wiley.
  • Cantó, C., Z. Gerhart-Hines, J. N. Feige, M. Lagouge, L. Noriega, J. C. Milne, P. J. Elliott, P. Puigserver, and J. Auwerx. 2009. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature 458 (7241):1056–60. doi: 10.1038/nature07813.
  • Cantó, C., R. H. Houtkooper, E. Pirinen, D. Y. Youn, M. H. Oosterveer, Y. Cen, P. J. Fernandez-Marcos, H. Yamamoto, P. A. Andreux, P. Cettour-Rose, et al. 2012. The NAD + precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism 15 (6):838–47. doi: 10.1016/j.cmet.2012.04.022.
  • Chambon, P., J. Weill, and P. Mandel. 1963. Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochemical and Biophysical Research Communications 11 (1):39–43. doi: 10.1016/0006-291x(63)90024-x.
  • Chia, C. W., J. M. Egan, and L. Ferrucci. 2018. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circulation Research 123 (7):886–904. doi: 10.1161/circresaha.118.312806.
  • Covarrubias, A. J., R. Perrone, A. Grozio, and E. Verdin. 2021. NAD + metabolism and its roles in cellular processes during ageing. Nature Reviews-Molecular Cell Biology 22 (2):119–41. doi: 10.1038/s41580-020-00313-x.
  • Damgaard, M. V., and J. T. Treebak. 2023. What is really known about the effects of nicotinamide riboside supplementation in humans. Science Advances 9 (29):eadi4862. doi: 10.1126/sciadv.adi4862.
  • de Picciotto, N. E., L. B. Gano, L. C. Johnson, C. R. Martens, A. L. Sindler, K. F. Mills, S. i Imai, and D. R. Seals. 2016. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15 (3):522–30. doi: 10.1111/acel.12461.
  • Distefano, G., R. A. Standley, X. Zhang, E. A. Carnero, F. Yi, H. H. Cornnell, and P. M. Coen. 2018. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. Journal of Cachexia, Sarcopenia and Muscle 9 (2):279–94. doi: 10.1002/jcsm.12272.
  • Ekmekcioglu, C. 2020. Nutrition and longevity – from mechanisms to uncertainties. Critical Reviews in Food Science and Nutrition 60 (18):3063–82. doi: 10.1080/10408398.2019.1676698.
  • Fang, E. F., H. Kassahun, D. L. Croteau, M. Scheibye-Knudsen, K. Marosi, H. Lu, R. A. Shamanna, S. Kalyanasundaram, R. C. Bollineni, M. A. Wilson, et al. 2016. NAD + replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metabolism 24 (4):566–81. doi: 10.1016/j.cmet.2016.09.004.
  • Fried, L. P., C. M. Tangen, J. Walston, A. B. Newman, C. Hirsch, J. Gottdiener, T. Seeman, R. Tracy, W. J. Kop, G. Burke, et al. 2001. Frailty in older adults: Evidence for a phenotype. The Journals of Gerontology-Series A, Biological Sciences and Medical Sciences 56 (3):M146–M156. doi: 10.1093/gerona/56.3.M146.
  • Fukamizu, Y., Y. Uchida, A. Shigekawa, T. Sato, H. Kosaka, and T. Sakurai. 2022. Safety evaluation of beta-nicotinamide mononucleotide oral administration in healthy adult men and women. Scientific Reports 12 (1):14442. doi: 10.1038/s41598-022-18272-y.
  • Gindri, I. M., G. Ferrari, L. P. S. Pinto, J. Bicca, I. K. Dos Santos, D. Dallacosta, and C. R. M. Roesler. 2023. Evaluation of safety and effectiveness of NAD in different clinical conditions: A systematic review. American Journal of Physiology-Endocrinology and Metabolism 326 (4):E417–E427. doi: 10.1152/ajpendo.00242.2023.
  • Gomes, A. P., N. L. Price, A. J. Y. Ling, J. J. Moslehi, M. K. Montgomery, L. Rajman, J. P. White, J. S. Teodoro, C. D. Wrann, B. P. Hubbard, et al. 2013. Declining NAD + induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155 (7):1624–38. doi: 10.1016/j.cell.2013.11.037.
  • Gong, B., Y. Pan, P. Vempati, W. Zhao, L. Knable, L. Ho, J. Wang, M. Sastre, K. Ono, A. A. Sauve, et al. 2013. Nicotinamide riboside ­restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiology of Aging 34 (6):1581–8. doi: 10.1016/j.neurobiolaging.2012.12.005.
  • Grevendonk, L., N. J. Connell, C. McCrum, C. E. Fealy, L. Bilet, Y. M. H. Bruls, J. Mevenkamp, V. B. Schrauwen-Hinderling, J. A. Jörgensen, E. Moonen-Kornips, et al. 2021. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nature Communications 12 (1):4773. doi: 10.1038/s41467-021-24956-2.
  • Grozio, A., K. F. Mills, J. Yoshino, S. Bruzzone, G. Sociali, K. Tokizane, H. C. Lei, R. Cunningham, Y. Sasaki, M. E. Migaud, et al. 2019. Slc12a8 is a nicotinamide mononucleotide transporter. Nature Metabolism 1 (1):47–57. doi: 10.1038/s42255-018-0009-4.
  • Harden, A., and W. J. Young. 1906. The alcoholic ferment of yeast-juice. Part II.–the conferment of yeast-juice. Proceedings of the Royal Society of London Series B, 78: 369–75. https://ui.adsabs.harvard.edu/abs/1906RSPSB.78.369H.
  • Harrer, M., P. Cuijpers, T. A. Furukawa, and D. D. Ebert. 2021. Doing meta-analysis with R: A hands-on guide. 1st ed. Boca Raton, FL and London: Chapman & Hall/CRC Press.
  • Hasegawa, K., S. Wakino, P. Simic, Y. Sakamaki, H. Minakuchi, K. Fujimura, K. Hosoya, M. Komatsu, Y. Kaneko, T. Kanda, et al. 2013. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nature Medicine 19 (11):1496–504. doi: 10.1038/nm.3363.
  • Higgins J. P. T., J. Thomas, J., Chandler, M. Cumpston, T. Li, Page M. J., and V. A. Welch (editors). Cochrane handbook for systematic ­reviews of interventions version 6.4 (updated August 2023). Cochrane, 2023. www.training.cochrane.org/handbook.
  • Hokanson, J. E., and M. A. Austin. 1996. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: A meta-analysis of population-based prospective studies. Journal of Cardiovascular Risk 3 (2):213–9. doi: 10.1097/00043798-199604000-00014.
  • Hou, Y., S. Lautrup, S. Cordonnier, Y. Wang, D. L. Croteau, E. Zavala, Y. Zhang, K. Moritoh, J. F. O’Connell, B. A. Baptiste, et al. 2018. NAD + supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proceedings of the National Academy of Sciences of the United States of America 115 (8):E1876–E1885. doi: 10.1073/pnas.1718819115.
  • Huang, H. 2022. A multicentre, randomised, double blind, parallel ­design, placebo controlled study to evaluate the efficacy and safety of Uthever (NMN supplement), an orally administered supplementation in middle aged and older adults. Frontiers in Aging 3:851698. doi: 10.3389/fragi.2022.851698.
  • Hung, C.-W., Y.-C. Chen, W.-L. Hsieh, S.-H. Chiou, and C.-L. Kao. 2010. Ageing and neurodegenerative diseases. Ageing Research Reviews 9 (Suppl 1):S36–S46. doi: 10.1016/j.arr.2010.08.006.
  • Igarashi, M., Y. Nakagawa-Nagahama, M. Miura, K. Kashiwabara, K. Yaku, M. Sawada, R. Sekine, Y. Fukamizu, T. Sato, T. Sakurai, et al. 2022. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. NPJ Aging 8 (1):5. doi: 10.1038/s41514-022-00084-z.
  • Ikeda, M., H. Tsuji, S. Nakamura, A. Ichiyama, Y. Nishizuka, and O. Hayaishi. 1965. Studies on the biosynthesis of nicotinamide adenine dinucleotide: II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. Journal of Biological Chemistry 240 (3):1395–401. doi: 10.1016/S0021-9258(18)97589-7.
  • Janssens, G. E., L. Grevendonk, R. Z. Perez, B. V. Schomakers, J. de Vogel-van den Bosch, J. M. W. Geurts, M. van Weeghel, P. Schrauwen, R. H. Houtkooper, and J. Hoeks. 2022. Healthy aging and muscle function are positively associated with NAD + abundance in humans. Nature Aging 2 (3):254–63. doi: 10.1038/s43587-022-00174-3.
  • Kaneko, S., J. Wang, M. Kaneko, G. Yiu, J. M. Hurrell, T. Chitnis, S. J. Khoury, and Z. He. 2006. Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. The Journal of Neuroscience 26 (38):9794–804. doi: 10.1523/JNEUROSCI.2116-06.2006.
  • Kannel, W. B., T. R. Dawber, A. Kagan, N. Revotskie, and J. Stokes, III, 1961. Factors of risk in the development of coronary heart disease—six-year follow-up experience: The Framingham Study. Annals of Internal Medicine 55 (1):33–50. doi: 10.7326/0003-4819-55-1-33.
  • Katayoshi, T., S. Uehata, N. Nakashima, T. Nakajo, N. Kitajima, M. Kageyama, and K. Tsuji-Naito. 2023. Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: A randomized, double-blind, placebo-controlled trial. Scientific Reports 13 (1):2786. doi: 10.1038/s41598-023-29787-3.
  • Keys, A., A. Menotti, M. J. Karvonen, C. Aravanis, H. Blackburn, R. Buzina, B. S. Djordjevic, A. S. Dontas, F. Fidanza, and M. H. Keys. 1986. The diet and 15-year death rate in the seven countries study. American Journal of Epidemiology 124 (6):903–15. doi: 10.1093/oxfordjournals.aje.a114480.
  • Kim, M., J. Seol, T. Sato, Y. Fukamizu, T. Sakurai, and T. Okura. 2022. Effect of 12-week intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical performance in older japanese adults: A randomized, double-blind placebo-controlled study. Nutrients 14 (4):755. doi: 10.3390/nu14040755.
  • Kimura, S., M. Ichikawa, S. Sugawara, T. Katagiri, Y. Hirasawa, T. Ishikawa, W. Matsunaga, and A. Gotoh. 2022. Nicotinamide mononucleotide is safely metabolized and significantly reduces blood triglyceride levels in healthy individuals. Cureus 14 (9):e28812. doi: 10.7759/cureus.28812.
  • Knapp, G., and J. Hartung. 2003. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 22 (17):2693–710. doi: 10.1002/sim.1482.
  • Kuerec, A. H., W. Wang, L. Yi, R. Tao, Z. Lin, A. Vaidya, S. Pendse, S. Thasma, N. Andhalkar, G. Avhad, et al. 2024. Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mechanisms of Ageing and Development 218:111917. doi: 10.1016/j.mad.2024.111917.
  • Li, J., M. S. Bonkowski, S. Moniot, D. Zhang, B. P. Hubbard, A. J. Y. Ling, L. A. Rajman, B. Qin, Z. Lou, V. Gorbunova, et al. 2017. A conserved NAD + binding pocket that regulates protein-protein interactions during aging. Science 355 (6331):1312–7. doi: 10.1126/science.aad8242.
  • Liao, B., Y. Zhao, D. Wang, X. Zhang, X. Hao, and M. Hu. 2021. Nicotinamide mononucleotide supplementation enhances aerobic ­capacity in amateur runners: A randomized, double-blind study. Journal of the International Society of Sports Nutrition 18 (1):54. doi: 10.1186/s12970-021-00442-4.
  • Long, A. N., K. Owens, A. E. Schlappal, T. Kristian, P. S. Fishman, and R. A. Schuh. 2015. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurology 15 (1):19. doi: 10.1186/s12883-015-0272-x.
  • López-Otín, C., M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153 (6):1194–217. doi: 10.1016/j.cell.2013.05.039.
  • Magni, G., A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli, and S. Ruggieri. 2004. Enzymology of NAD + homeostasis in man. Cellular and Molecular Life Sciences 61 (1):19–34. doi: 10.1007/s00018-003-3161-1.
  • Magni, G., A. Amici, M. Emanuelli, N. Raffaelli, and S. Ruggieri. 1999. Enzymology of NAD + synthesis. Advances in Enzymology and Related Areas of Molecular Biology 73:135–82, xi. doi: 10.1002/9780470123195.ch5.
  • Majamaa, K., H. Rusanen, A. M. Remes, J. Pyhtinen, and I. E. Hassinen. 1996. Increase of blood NAD + and attenuation of lactacidemia during nicotinamide treatment of a patient with the MELAS syndrome. Life Sciences 58 (8):691–9. doi: 10.1016/s0024-3205(96)80008-7.
  • Mills, K. F., S. Yoshida, L. R. Stein, A. Grozio, S. Kubota, Y. Sasaki, P. Redpath, M. E. Migaud, R. S. Apte, K. Uchida, et al. 2016. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism 24 (6):795–806. doi: 10.1016/j.cmet.2016.09.013.
  • Nagahisa, T., S. Yamaguchi, S. Kosugi, K. Homma, K. Miyashita, J. Irie, J. Yoshino, and H. Itoh. 2022. Intestinal epithelial NAD + biosynthesis regulates GLP-1 production and postprandial glucose metabolism in mice. Endocrinology 163 (4):bqac023. doi: 10.1210/endocr/bqac023.
  • Naito, K., T. Katayoshi, S. Uehata, N. Nakashima, T. Nakajo, N. Kitajima, and M. Kageyama. 2023. A randomized controlled trial of long-term nicotinamide mononucleotide supplementation in healthy adults. Annals of Nutrition and Metabolism 79 (Supplement 1):493. doi: 10.1159/000530786.
  • Okabe, K., K. Yaku, Y. Uchida, Y. Fukamizu, T. Sato, T. Sakurai, K. Tobe, and T. Nakagawa. 2022. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Frontiers in Nutrition 9:868640. doi: 10.3389/fnut.2022.868640.
  • Palliyaguru, D. L., E. J. Shiroma, J. K. Nam, E. Duregon, C. Vieira Ligo Teixeira, N. L. Price, M. Bernier, S. Camandola, K. L. Vaughan, R. J. Colman, et al. 2021. Fasting blood glucose as a predictor of mortality: Lost in translation. Cell Metabolism 33 (11):2189–200.e2183. doi: 10.1016/j.cmet.2021.08.013.
  • Pencina, K. M., S. Lavu, M. Dos Santos, Y. M. Beleva, M. Cheng, D. Livingston, and S. Bhasin. 2023. MIB-626, an oral formulation of a microcrystalline unique polymorph of beta-nicotinamide mononucleotide, increases circulating nicotinamide adenine dinucleotide and its metabolome in middle-aged and older adults. The Journals of Gerontology: Series A 78 (1):90–6. doi: 10.1093/gerona/glac049.
  • Pencina, K. M., R. Valderrabano, B. Wipper, A. R. Orkaby, K. F. Reid, T. Storer, A. P. Lin, S. Merugumala, L. Wilson, N. Latham, et al. 2023. Nicotinamide adenine dinucleotide augmentation in overweight or obese middle-aged and older adults: A physiologic study. The Journal of Clinical Endocrinology and Metabolism 108 (8):1968–80. doi: 10.1210/clinem/dgad027.
  • Rajman, L., K. Chwalek, and D. A. Sinclair. 2018. Therapeutic potential of NAD-boosting molecules: The in vivo evidence. Cell Metabolism 27 (3):529–47. doi: 10.1016/j.cmet.2018.02.011.
  • Ratajczak, J., M. Joffraud, S. A. J. Trammell, R. Ras, N. Canela, M. Boutant, S. S. Kulkarni, M. Rodrigues, P. Redpath, M. E. Migaud, et al. 2016. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nature Communications 7 (1):13103. doi: 10.1038/ncomms13103.
  • Riera, C. E., and A. Dillin. 2015. Tipping the metabolic scales towards increased longevity in mammals. Nature Cell Biology 17 (3):196–203. doi: 10.1038/ncb3107.
  • Rohatgi, A. 2017. WebPlotDigitizer. https://apps.automeris.io/wpd/.
  • Romani, M., V. Sorrentino, C.-M. Oh, H. Li, T. I. de Lima, H. Zhang, M. Shong, and J. Auwerx. 2021. NAD + boosting reduces age-associated amyloidosis and restores mitochondrial homeostasis in muscle. Cell Reports 34 (3):108660. doi: 10.1016/j.celrep.2020.108660.
  • Savji, N., C. B. Rockman, A. H. Skolnick, Y. Guo, M. A. Adelman, T. Riles, and J. S. Berger. 2013. Association between advanced age and vascular disease in different arterial territories: A population database of over 3.6 million subjects. Journal of the American College of Cardiology 61 (16):1736–43. doi: 10.1016/j.jacc.2013.01.054.
  • Smoliga, J. M., O. Vang, and J. A. Baur. 2012. Challenges of translating basic research into therapeutics: Resveratrol as an example. The Journals of Gerontology-Series A, Biological Sciences and Medical Sciences 67 (2):158–67. doi: 10.1093/gerona/glr062.
  • Sorrentino, V., M. Romani, L. Mouchiroud, J. S. Beck, H. Zhang, D. D’Amico, N. Moullan, F. Potenza, A. W. Schmid, S. Rietsch, et al. 2017. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552 (7684):187–93. doi: 10.1038/nature25143.
  • Sterne, J. A. C., J. Savović, M. J. Page, R. G. Elbers, N. S. Blencowe, I. Boutron, C. J. Cates, H.-Y. Cheng, M. S. Corbett, S. M. Eldridge, et al. 2019. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 366: L 4898. doi: 10.1136/bmj.l4898.
  • Stromsdorfer, K. L., S. Yamaguchi, M. J. Yoon, A. C. Moseley, M. P. Franczyk, S. C. Kelly, N. Qi, S-i Imai, and J. Yoshino. 2016. NAMPT-mediated NAD + biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Reports 16 (7):1851–60. doi: 10.1016/j.celrep.2016.07.027.
  • Tarantini, S., M. N. Valcarcel-Ares, P. Toth, A. Yabluchanskiy, Z. Tucsek, T. Kiss, P. Hertelendy, M. Kinter, P. Ballabh, Z. Süle, et al. 2019. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biology 24:101192. doi: 10.1016/j.redox.2019.101192.
  • Trammell, S. A., L. Yu, P. Redpath, M. E. Migaud, and C. Brenner. 2016. Nicotinamide riboside is a major NAD + precursor vitamin in cow milk. The Journal of Nutrition 146 (5):957–63. doi: 10.3945/jn.116.230078.
  • Trammell, S. A. J., M. S. Schmidt, B. J. Weidemann, P. Redpath, F. Jaksch, R. W. Dellinger, Z. Li, E. D. Abel, M. E. Migaud, and C. Brenner. 2016. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature Communications 7 (1):12948. doi: 10.1038/ncomms12948.
  • Turner, J., A. Licollari, E. Mihalcea, and A. M. Tan. 2021. Safety evaluation for Restorin® NMN, a NAD plus precursor. Frontiers in Pharmacology 12:749727. doi: 10.3389/fphar.2021.749727.
  • Uddin, G. M., N. A. Youngson, D. A. Sinclair, and M. J. Morris. 2016. Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Frontiers in Pharmacology 7:258. doi: 10.3389/fphar.2016.00258.
  • Viechtbauer, W., and M. W. Cheung. 2010. Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods 1 (2):112–25. doi: 10.1002/jrsm.11.
  • Wang, X., X. Hu, Y. Yang, T. Takata, and T. Sakurai. 2016. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Research 1643:1–9. doi: 10.1016/j.brainres.2016.04.060.
  • Warburg, O., and W. Christian. 1936. Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide). Biochemistry Z 287 (1):180–212.
  • Wells, G. A., S. C. Hsieh, J. Peterson, C. Zheng, S. E. Kelly, B. Shea, and P. Tugwell. 2024. Etidronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. The Cochrane Database of Systematic Reviews 4 (4):CD003376. doi: 10.1002/14651858.CD003376.pub4.
  • Windaus, A. 1910. Über den Gehalt normaler und atheromatöser Aorten an Cholesterin und Cholesterinestern. Biological Chemistry 67 (2):174–176. doi: 10.1515/bchm2.1910.67.2.174.
  • Yamaguchi, S., J. Irie, M. Mitsuishi, Y. Uchino, H. Nakaya, R. Takemura, E. Inagaki, S. Kosugi, H. Okano, M. Yasui, et al. 2024. Safety and efficacy of long-term nicotinamide mononucleotide supplementation on metabolism, sleep, and nicotinamide adenine dinucleotide biosynthesis in healthy, middle-aged Japanese men. Endocrine Journal 71 (2):153–69. doi: 10.1507/endocrj.EJ23-0431.
  • Yamane, T., M. Imai, T. Bamba, and S. Uchiyama. 2023. Nicotinamide mononucleotide (NMN) intake increases plasma NMN and insulin levels in healthy subjects. Clinical Nutrition ESPEN 56:83–6. doi: 10.1016/j.clnesp.2023.04.031.
  • Yasuda, I., K. Hasegawa, Y. Sakamaki, H. Muraoka, T. Kawaguchi, E. Kusahana, T. Ono, T. Kanda, H. Tokuyama, S. Wakino, et al. 2021. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. Journal of the American Society of Nephrology 32 (6):1355–70. doi: 10.1681/asn.2020081188.
  • Yi, L., A. B. Maier, R. Tao, Z. Lin, A. Vaidya, S. Pendse, S. Thasma, N. Andhalkar, G. Avhad, and V. Kumbhar. 2023. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: A randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. GeroScience 45 (1):29–43. doi: 10.1007/s11357-022-00705-1.
  • Yoshino, J., K. F. Mills, M. J. Yoon, and S-i Imai. 2011. Nicotinamide mononucleotide, a key NAD + intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metabolism 14 (4):528–36. doi: 10.1016/j.cmet.2011.08.014.
  • Yoshino, M., J. Yoshino, B. D. Kayser, G. J. Patti, M. P. Franczyk, K. F. Mills, M. Sindelar, T. Pietka, B. W. Patterson, S. I. Imai, et al. 2021. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 372 (6547):1224–9. doi: 10.1126/science.abe9985.
  • Zhao, B., C. Liu, L. Qiang, J. Liu, Z. Qiu, Z. Zhang, J. Zhang, Y. Li, and M. Zhang. 2022. Clinical observation of the effect of nicotinamide mononucleotide on the improvement of insomnia in middle-aged and old adults. American Journal of Translational Medicine 6 (4):167–76. https://ajtm.journals.publicknowledgeproject.org/index.php/ajtm/article/view/2535.