0
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease

, , , , , & show all

References

  • Abdelmegid, S., J. Murugaiyan, M. Abo-Ismail, J. L. Caswell, D. Kelton, and G. M. Kirby. 2018. Identification of host defense-related proteins using label-free quantitative proteomic analysis of milk whey from cows with staphylococcus aureus subclinical mastitis. International Journal of Molecular Sciences 19 (1):78. doi: 10.3390/ijms19010078.
  • Affolter, M., L. Grass, F. Vanrobaeys, B. Casado, and M. Kussmann. 2010. Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. Journal of Proteomics 73 (6):1079–88. doi: 10.1016/j.jprot.2009.11.008.
  • Agyare, A. N., and Q. Liang. 2021. Nutrition of yak milk fat-Focusing on milk fat globule membrane and fatty acids. Journal of Functional Foods 83:104404. doi: 10.1016/j.jff.2021.104404.
  • Ajetunmobi, O. M., B. Whyte, J. Chalmers, D. M. Tappin, L. Wolfson, M. Fleming, A. MacDonald, R. Wood, D. L. Stockton, P. Glasgow Ctr, et al. 2015. Breastfeeding is associated with reduced childhood hospitalization: Evidence from a Scottish Birth Cohort (1997-2009). The Journal of Pediatrics 166 (3):620–5.e4. doi: 10.1016/j.jpeds.2014.11.013.
  • Al Haj, O. A., and H. A. Al Kanhal. 2010. Compositional, technological and nutritional aspects of dromedary camel milk. International Dairy Journal 20 (12):811–21. doi: 10.1016/j.idairyj.2010.04.003.
  • Al-Bataineh, M. M., C. L. Kinlough, P. A. Poland, N. M. Pastor-Soler, T. A. Sutton, H. E. Mang, S. I. Bastacky, S. J. Gendler, C. S. Madsen, S. Singh, et al. 2016. Muc1 enhances the β-catenin protective pathway during ischemia-reperfusion injury. American Journal of Physiology. Renal Physiology 310 (6):F569–F579. doi: 10.1152/ajprenal.00520.2015.
  • Argov-Argaman, N. 2019. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. Journal of Dairy Science 102 (3):2783–95. doi: 10.3168/jds.2018-15240.
  • Arnett, H. A., and J. L. Viney. 2014. Immune modulation by butyrophilins. Nature Reviews. Immunology 14 (8):559–69. doi: 10.1038/nri3715.
  • Arranz, E., and M. Corredig. 2017. Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. Journal of Dairy Science 100 (6):4213–22. doi: 10.3168/jds.2016-12236.
  • Baars, A., A. Oosting, E. Engels, D. Kegler, A. Kodde, L. Schipper, H. J. Verkade, and E. M. van der Beek. 2016. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. The British Journal of Nutrition 115 (11):1930–7. doi: 10.1017/S0007114516001082.
  • Baliyan, S., M. V. Calvo, D. Piquera, O. Montero, F. Visioli, C. Venero, and J. Fontecha. 2023. Milk fat globule membrane concentrate as a nutritional supplement prevents age-related cognitive decline in old rats: A lipidomic study of synaptosomes. Food Research International (Ottawa, ON) 163:112163. doi: 10.1016/j.foodres.2022.112163.
  • Balthazar, C. F., T. C. Pimentel, L. L. Ferrão, C. N. Almada, A. Santillo, M. Albenzio, N. Mollakhalili, A. M. Mortazavian, J. S. Nascimento, M. C. Silva, et al. 2017. Sheep milk: Physicochemical characteristics and relevance for functional food development. Comprehensive Reviews in Food Science and Food Safety 16 (2):247–62. doi: 10.1111/1541-4337.12250.
  • Bansal, M. P., and D. Medina. 1993. Expression of fatty acid-binding proteins in the developing mouse mammary gland. Biochemical and Biophysical Research Communications 191 (1):61–9. doi: 10.1006/bbrc.1993.1184.
  • Batrakou, D. G., J. I. D. Heras, R. Czapiewski, R. Mouras, and E. C. Schirmer. 2015. TMEM120A and B: Nuclear envelope transmembrane proteins important for adipocyte differentiation. PloS One 10 (5):e0127712. doi: 10.1371/journal.pone.0127712.
  • Beller, M., A. V. Bulankina, H.-H. Hsiao, H. Urlaub, H. Jäckle, and R. P. Kühnlein. 2010. PERILIPIN-dependent control of lipid droplet structure and fat storage in drosophila. Cell Metabolism 12 (5):521–32. doi: 10.1016/j.cmet.2010.10.001.
  • Bernard, L., M. Bonnet, C. Delavaud, M. Delosière, A. Ferlay, H. Fougère, and B. Graulet. 2018. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. European Journal of Lipid Science and Technology 120 (5):1700039. doi: 10.1002/ejlt.201700039.
  • Bhinder, G., J. M. Allaire, C. Garcia, J. T. Lau, J. M. Chan, N. R. Ryz, E. S. Bosman, F. A. Graef, S. M. Crowley, L. S. Celiberto, et al. 2017. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Scientific Reports 7 (1):45274. doi: 10.1038/srep45274.
  • Bianchi, L., M. Puglia, C. Landi, S. Matteoni, D. Perini, A. Armini, M. Verani, C. Trombetta, P. Soldani, P. Roncada, et al. 2009. Solubilization methods and reference 2-DE map of cow milk fat globules. Journal of Proteomics 72 (5):853–64. doi: 10.1016/j.jprot.2008.11.020.
  • Billeaud, C., G. Puccio, E. Saliba, B. Guillois, C. Vaysse, S. Pecquet, and P. Steenhout. 2014. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: A randomized controlled multicenter non-inferiority trial in healthy term infants. Clinical Medicine Insights. Pediatrics 8:51–60. doi: 10.4137/CMPed.S16962.
  • Bourlieu, C., and M. C. Michalski. 2015. Structure-function relationship of the milk fat globule. Current Opinion in Clinical Nutrition and Metabolic Care 18 (2):118–27. doi: 10.1097/MCO.0000000000000138.
  • Breij, L. M., M. Abrahamse-Berkeveld, Y. Vandenplas, S. N. J. Jespers, A. C. de Mol, P. C. Khoo, M. Kalenga, S. Peeters, R. H. T. van Beek, O. F. Norbruis, Mercurius Study, G. Mil, G., et al. 2019. An infant formula with large, milk phospholipid-coated lipid droplets containing a mixture of dairy and vegetable lipids supports adequate growth and is well tolerated in healthy, term infants. The American Journal of Clinical Nutrition 109 (3):586–96. doi: 10.1093/ajcn/nqy322.
  • Brink, L. R., A. W. Herren, S. McMillen, K. Fraser, M. Agnew, N. Roy, and B. Lönnerdal. 2020. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. Journal of Dairy Science 103 (4):3002–16. doi: 10.3168/jds.2019-17179.
  • Brink, L. R., and B. Lönnerdal. 2018. The role of milk fat globule membranes in behavior and cognitive function using a suckling rat pup supplementation model. The Journal of Nutritional Biochemistry 58:131–7. doi: 10.1016/j.jnutbio.2018.05.004.
  • Brink, L. R., and B. Lönnerdal. 2020. Milk fat globule membrane: The role of its various components in infant health and development. The Journal of Nutritional Biochemistry 85:108465. doi: 10.1016/j.jnutbio.2020.108465.
  • Bu, H.-F., X.-L. Zuo, X. Wang, M. A. Ensslin, V. Koti, W. Hsueh, A. S. Raymond, B. D. Shur, and X.-D. Tan. 2007. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. The Journal of Clinical Investigation 117 (12):3673–83. doi: 10.1172/JCI31841.
  • Cao, X. Y., S. M. Kang, M. Yang, W. X. Li, S. Y. Wu, H. J. Han, L. H. Meng, R. Wu, and X. Q. Yue. 2018. Quantitative N-glycoproteomics of milk fat globule membrane in human colostrum and mature milk reveals changes in protein glycosylation during lactation. Food & Function 9 (2):1163–72. doi: 10.1039/c7fo01796k.
  • Cavaletto, M., M. G. Giuffrida, and A. Conti. 2004. The proteomic approach to analysis of human milk fat globule membrane. Clinica Chimica Acta; International Journal of Clinical Chemistry 347 (1–2):41–8. doi: 10.1016/j.cccn.2004.04.026.
  • Cavaletto, M., M. G. Giuffrida, and A. Conti. 2008. Milk fat globule membrane components–a proteomic approach. Advances in Experimental Medicine and Biology 606:129–41. doi: 10.1007/978-0-387-74087-4_4.
  • Cavaletto, M., A. Givonetti, and C. Cattaneo. 2022. The immunological role of milk fat globule membrane. Nutrients 14 (21):4574. doi: 10.3390/nu14214574.
  • Cebo, C., H. Caillat, F. Bouvier, and P. Martin. 2010. Major proteins of the goat milk fat globule membrane. Journal of Dairy Science 93 (3):868–76. doi: 10.3168/jds.2009-2638.
  • Cebo, C., C. Lopez, C. Henry, C. Beauvallet, O. Ménard, C. Bevilacqua, F. Bouvier, H. Caillat, and P. Martin. 2012. Goat alpha(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane. Journal of Dairy Science 95 (11):6215–29. doi: 10.3168/jds.2011-5233.
  • Cebo, C., and P. Martin. 2012. Inter-species comparison of milk fat globule membrane proteins highlights the molecular diversity of lactadherin. International Dairy Journal 24 (2):70–7. doi: 10.1016/j.idairyj.2011.09.017.
  • Cebo, C., E. Rebours, C. Henry, S. Makhzami, P. Cosette, and P. Martin. 2012. Identification of major milk fat globule membrane proteins from pony mare milk highlights the molecular diversity of lactadherin across species. Journal of Dairy Science 95 (3):1085–98. doi: 10.3168/jds.2011-4455.
  • Chatterton, D. E. W., D. N. Nguyen, S. B. Bering, and P. T. Sangild. 2013. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. The International Journal of Biochemistry & Cell Biology 45 (8):1730–47. doi: 10.1016/j.biocel.2013.04.028.
  • Chen, L., T. N. Hong, Z. Q. Li, G. H. Shen, Y. T. Gu, and J. Han. 2023. A comparison of milk fat globule membranes and whey proteomes: New insight into variation nutrient differences between Buffalo, Cow, Goat, and Yak. Food Chemistry 429:136845. doi: 10.1016/j.foodchem.2023.136845.
  • Chen, R., Y. G. Sun, Y. Z. Wu, Y. J. Qiao, Q. Zhang, Q. Li, X. W. Wang, Y. Pan, S. Y. Li, Y. N. Liu, et al. 2024. Common proteins analysis of different mammals’ mature milk by 4D-Label-Free. Food Chemistry: X 22:101263. doi: 10.1016/j.fochx.2024.101263.
  • Cheyuo, C., M. Aziz, and P. Wang. 2019. Neurogenesis in neurodegenerative diseases: Role of MFG-E8. Frontiers in Neuroscience 13:569. doi: 10.3389/fnins.2019.00569.
  • Chong, B. M., T. D. Russell, J. Schaack, D. J. Orlicky, P. Reigan, M. Ladinsky, and J. L. McManaman. 2011. The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. The Journal of Biological Chemistry 286 (26):23254–65. doi: 10.1074/jbc.M110.217091.
  • Civra, A., M. G. Giuffrida, M. Donalisio, L. Napolitano, Y. Takada, B. S. Coulson, A. Conti, and D. Lembo. 2015. Identification of equine lactadherin-derived peptides that inhibit rotavirus infection via integrin receptor competition. The Journal of Biological Chemistry 290 (19):12403–14. doi: 10.1074/jbc.M114.620500.
  • Claeys, W. L., C. Verraes, S. Cardoen, J. De Block, A. Huyghebaert, K. Raes, K. Dewettinck, and L. Herman. 2014. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 42:188–201. doi: 10.1016/j.foodcont.2014.01.045.
  • Clark, S., and M. B. Mora García. 2017. A 100-year review: Advances in goat milk research. Journal of Dairy Science 100 (12):10026–44. doi: 10.3168/jds.2017-13287.
  • Cresi, F., E. Maggiora, A. Pirra, P. Tonetto, C. Rubino, L. Cavallarin, M. Giribaldi, G. E. Moro, C. Peila, and A. Coscia. 2020. Effects on gastroesophageal reflux of donkey milk-derived human milk fortifier versus standard fortifier in preterm newborns: additional data from the fortilat study. Nutrients 12 (7):2142. doi: 10.3390/nu12072142.
  • D’Ambrosio, C., S. Arena, A. M. Salzano, G. Renzone, L. Ledda, and A. Scaloni. 2008. A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics 8 (17):3657–66. doi: 10.1002/pmic.200701148.
  • Daniels, M. J., Y. Wang, M. Lee, and A. R. Venkitaraman. 2004. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science (New York, NY) 306 (5697):876–9. doi: 10.1126/science.1102574.
  • Davies, N., C. Frampton, M. Fuad, and R. Slykerman. 2023. The effect of supplementation with milk fat globule membranes on psychological health: A randomized clinical trial in healthy adults with moderate stress. Journal of Functional Foods 105:105585. doi: 10.1016/j.jff.2023.105585.
  • Demmelmair, H., C. Prell, N. Timby, and B. Lönnerdal. 2017. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients 9 (8):817. doi: 10.3390/nu9080817.
  • Dewettinck, K., R. Rombaut, N. Thienpont, T. T. Le, K. Messens, and J. Van Camp. 2008. Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal 18 (5):436–57. doi: 10.1016/j.idairyj.2007.10.014.
  • Fink, I. R., E. L. Benard, T. Hermsen, A. H. Meijer, M. Forlenza, and G. F. Wiegertjes. 2015. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Molecular Immunology 63 (2):381–93. doi: 10.1016/j.molimm.2014.09.010.
  • Fong, B. Y., and C. S. Norris. 2009. Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. Journal of Agricultural and Food Chemistry 57 (14):6021–8. doi: 10.1021/jf900511t.
  • Fong, B. Y., C. S. Norris, and A. K. H. MacGibbon. 2007. Protein and lipid composition of bovine milk-fat-globule membrane. International Dairy Journal 17 (4):275–88. doi: 10.1016/j.idairyj.2006.05.004.
  • Franke, T. F., D. R. Kaplan, L. C. Cantley, and A. Toker. 1997. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science (New York, NY) 275 (5300):665–8. doi: 10.1126/science.275.5300.665.
  • Gaudet, D., J. P. Drouin-Chartier, and P. Couture. 2017. Lipid metabolism and emerging targets for lipid-lowering therapy. The Canadian Journal of Cardiology 33 (7):872–82. doi: 10.1016/j.cjca.2016.12.019.
  • Giansanti, F., G. Panella, L. Leboffe, and G. Antonini. 2016. Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals (Basel, Switzerland) 9 (4): 61. doi: 10.3390/ph9040061.
  • Gong, H., T. E. Li, D. Liang, J. X. Gao, X. H. Liu, and X. Y. Mao. 2024. Milk fat globule membrane supplementation protects against β-lactoglobulin- induced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner. Food Science and Human Wellness 13 (1):124–36. doi: 10.26599/FSHW.2022.9250010.
  • Gong, H., Q. C. Yuan, J. Z. Pang, T. G. Li, J. F. Li, B. Y. Zhan, R. Chang, and X. Y. Mao. 2020. Dietary milk fat globule membrane restores decreased intestinal mucosal barrier development and alterations of intestinal flora in infant-formula-fed rat pups. Molecular Nutrition & Food Research 64 (21):e2000232. doi: 10.1002/mnfr.202000232.
  • Guan, B. Y., Y. X. Chai, X. Amantai, X. Y. Liu, X. P. Chen, X. Y. Cao, X. Q. Yue, and B. Liu. 2023. Glycoproteomics analysis reveals differential site-specific N-glycosylation of donkey milk fat globule membrane protein during lactation. Food Chemistry 402:134266. doi: 10.1016/j.foodchem.2022.134266.
  • Guan, J., A. MacGibbon, B. Fong, R. Zhang, K. Liu, A. Rowan, and P. McJarrow. 2015. Long-term supplementation with Beta Serum Concentrate (BSC), a complex of milk lipids, during post-natal brain development improves memory in rats. Nutrients 7 (6):4526–41. doi: 10.3390/nu7064526.
  • Guan, B. Y., Z. H. Zhang, X. Y. Cao, M. Yang, Y. X. Chai, X. Amantai, X. Luo, D. G. Feng, Y. M. Liu, X. Q. Yue, et al. 2023. Characterization and comparison site-specific N-glycosylation profiling of milk fat globule membrane proteome in donkey and human colostrum and mature milk. Food Chemistry 419:136081. doi: 10.1016/j.foodchem.2023.136081.
  • Guerin, J., C. Soligot, J. Burgain, M. Huguet, G. Francius, S. El-Kirat-Chatel, F. Gomand, S. Lebeer, Y. Le Roux, F. Borges, et al. 2018. Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Colloids and Surfaces. B, Biointerfaces 167:44–53. doi: 10.1016/j.colsurfb.2018.03.044.
  • Hansen, L. W., A. Khader, W. L. Yang, A. Jacob, T. Chen, J. M. Nicastro, G. F. Coppa, J. M. Prince, and P. Wang. 2017. Deficiency in milk fat globule-epidermal growth factor-factor 8 exacerbates organ injury and mortality in neonatal sepsis. Journal of Pediatric Surgery 52 (9):1520–7. doi: 10.1016/j.jpedsurg.2016.12.022.
  • Han, B. S., L. N. Zhang, B. L. Luo, Y. Q. Ni, N. Bansal, and P. Zhou. 2022. Comparison of milk fat globule membrane and whey proteome between Dromedary and Bactrian camel. Food Chemistry 367:130658. doi: 10.1016/j.foodchem.2021.130658.
  • Han, L. Q., M. L. Zhang, Z. Y. Xing, D. N. Coleman, Y. S. Liang, J. J. Loor, and G. Y. Yang. 2020. Knockout of butyrophilin subfamily 1 member A1 (BTN1A1) alters lipid droplet formation and phospholipid composition in bovine mammary epithelial cells. Journal of Animal Science and Biotechnology 11 (1):72. doi: 10.1186/s40104-020-00479-6.
  • Haramizu, S., N. Ota, A. Otsuka, K. Hashizume, S. Sugita, T. Hase, T. Murase, and A. Shimotoyodome. 2014. Dietary milk fat globule membrane improves endurance capacity in mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 307 (8):R1009–R1017. doi: 10.1152/ajpregu.00004.2014.
  • Hari, S., R. Ochiai, Y. Shioya, and Y. Katsuragi. 2015. Safety evaluation of the consumption of high dose milk fat globule membrane in healthy adults: A double-blind, randomized controlled trial with parallel group design. Bioscience, Biotechnology, and Biochemistry 79 (7):1172–7. doi: 10.1080/09168451.2015.1012150.
  • He, X., M. Parenti, T. Grip, B. Lönnerdal, N. Timby, M. Domellöf, O. Hernell, and C. M. Slupsky. 2019. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: A randomized controlled trial. Scientific Reports 9 (1):11589. doi: 10.1038/s41598-019-47953-4.
  • Heid, H. W., and T. W. Keenan. 2005. Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology 84 (2–3):245–58. doi: 10.1016/j.ejcb.2004.12.002.
  • Hernell, O., N. Timby, M. Domellöf, and B. Lönnerdal. 2016. Clinical benefits of milk fat globule membranes for infants and children. The Journal of Pediatrics 173 Suppl:S60–S65. doi: 10.1016/j.jpeds.2016.02.077.
  • Hettinga, K., H. van Valenberg, S. de Vries, S. Boeren, T. van Hooijdonk, J. van Arendonk, and J. Vervoort. 2011. The host defense proteome of human and bovine milk. PloS One 6 (4):e19433. doi: 10.1371/journal.pone.0019433.
  • Hodgkinson, A. J., N. A. McDonald, L. J. Kivits, D. R. Hurford, S. Fahey, and C. Prosser. 2012. Allergic responses induced by goat milk α S1-casein in a murine model of gastrointestinal atopy. Journal of Dairy Science 95 (1):83–90. doi: 10.3168/jds.2011-4829.
  • Hoebe, K., P. Georgel, S. Rutschmann, X. Du, S. Mudd, K. Crozat, S. Sovath, L. Shamel, T. Hartung, U. Zähringer, et al. 2005. CD36 is a sensor of diacylglycerides. Nature 433 (7025):523–7. doi: 10.1038/nature03253.
  • Hotamisligil, G. S., and D. A. Bernlohr. 2015. Metabolic functions of FABPs-mechanisms and therapeutic implications. Nature Reviews. Endocrinology 11 (10):592–605. doi: 10.1038/nrendo.2015.122.
  • Huang, X. J., G. H. Liu, J. Guo, and Z. Q. Su. 2018. The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences 14 (11):1483–96. doi: 10.7150/ijbs.27173.
  • Huber, M. D., P. W. Vesely, K. Datta, and L. Gerace. 2013. Erlins restrict SREBP activation in the ER and regulate cellular cholesterol homeostasis. The Journal of Cell Biology 203 (3):427–36. doi: 10.1083/jcb.201305076.
  • Huerou-Luron, I. L., M. Lemaire, and S. Blat. 2019. Health benefits of dairy lipids and MFGM in infant formula. Cahiers de Nutrition et de Dietetique 54:52–60. doi: 10.1051/ocl/2018019.
  • Hvarregaard, J., M. H. Andersen, L. Berglund, J. T. Rasmussen, and T. E. Petersen. 1996. Characterization of glycoprotein PAS-6/7 from membranes of bovine milk fat globules. European Journal of Biochemistry 240 (3):628–36. doi: 10.1111/j.1432-1033.1996.0628h.x.
  • Ito, O., S. Kamata, M. Hayashi, and K. Ushiyama. 1993. Milk fat globule membrane substances inhibit mouse intestinal β-glucuronidase. Journal of Food Science 58 (4):753–5. doi: 10.1111/j.1365-2621.1993.tb09351.x.
  • Jaramillo-Ospina, A. M., M. F. Mujica-Coopman, T. Murguia-Peniche, J. L. Wampler, S. S. Wu, C. L. Berseth, S. G. Weisstaub, and R. Uauy. 2023. Micronutrient, metabolic, and inflammatory biomarkers through 24 months of age in infants receiving formula with added bovine milk fat globule membrane through the first year of life: A randomized controlled trial. The Journal of Nutrition 153 (2):511–22. doi: 10.1016/j.tjnut.2022.12.006.
  • Jeong, Y. J., Y. Choi, J. M. Shin, H. J. Cho, J. H. Kang, K. K. Park, J. Y. Choe, Y. S. Bae, S. M. Han, C. H. Kim, et al. 2014. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 68:218–25. doi: 10.1016/j.fct.2014.03.022.
  • Jiang, R., X. Du, L. Brink, and B. Lönnerdal. 2022. The role of orally ingested milk fat globule membrane on intestinal barrier functions evaluated with a suckling rat pup supplementation model and a human enterocyte model. The Journal of Nutritional Biochemistry 108:109084. doi: 10.1016/j.jnutbio.2022.109084.
  • Jiang, H., H. Gong, Q. Li, L. L. Zhao, B. Liu, J. X. Gao, and X. Y. Mao. 2024. Differences in proteomic profiles and immunomodulatory activity of goat and cow milk fat globule membrane. Food Chemistry 455:139885. doi: 10.1016/j.foodchem.2024.139885.
  • Ji, X. X., X. S. Li, Y. Ma, and D. Li. 2017. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chemistry 221:1822–7. doi: 10.1016/j.foodchem.2016.10.097.
  • Jiménez-Flores, R., and G. Brisson. 2008. The milk fat globule membrane as an ingredient: Why, how, when? Dairy Science and Technology 88 (1):5–18. doi: 10.1051/dst:2007005.
  • Jin, Y., and A. T. Blikslager. 2020. The regulation of intestinal mucosal barrier by myosin light chain kinase/rho kinases. International Journal of Molecular Sciences 21 (10):3550. doi: 10.3390/ijms21103550.
  • Jing, Y. Y., X. C. Cai, Y. Q. Xu, C. J. Zhu, L. N. Wang, S. B. Wang, X. T. Zhu, P. Gao, Y. L. Zhang, Q. Y. Jiang, et al. 2016. Alpha-lipoic acids promote the protein synthesis of C2C12 myotubes by the TLR2/PI3K signaling pathway. Journal of Agricultural and Food Chemistry 64 (8):1720–9. doi: 10.1021/acs.jafc.5b05952.
  • Ji, X. X., W. L. Xu, J. Cui, Y. Ma, and S. B. Zhou. 2019. Goat and buffalo milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT-29 cells. Scientific Reports 9 (1):2577. doi: 10.1038/s41598-019-39546-y.
  • Kamińska, A., F. J. Enguita, and E. Ł. Stępień. 2018. Lactadherin: An unappreciated haemostasis regulator and potential therapeutic agent. Vascular Pharmacology 101:21–8. doi: 10.1016/j.vph.2017.11.006.
  • Kelly, C. J., L. Zheng, E. L. Campbell, B. Saeedi, C. C. Scholz, A. J. Bayless, K. E. Wilson, L. E. Glover, D. J. Kominsky, A. Magnuson, et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe 17 (5):662–71. doi: 10.1016/j.chom.2015.03.005.
  • Khalesi, M., M. Salami, M. Moslehishad, J. Winterburn, and A. A. Moosavi-Movahedi. 2017. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends in Food Science & Technology 62:49–58. doi: 10.1016/j.tifs.2017.02.004.
  • Khalid, N., D. N. Abdelrahim, N. Hanach, R. Alkurd, M. Khan, L. Mahrous, H. Radwan, F. Naja, M. Madkour, K. Obaideen, et al. 2023. Effect of camel milk on lipid profile among patients with diabetes: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. BMC Complementary Medicine and Therapies 23 (1):438. doi: 10.1186/s12906-023-04257-5.
  • Korish, A. A., A. Gader, and A. A. Alhaider. 2020. Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats. Journal of Dairy Science 103 (1):30–41. doi: 10.3168/jds.2019-16606.
  • Kørvel-Hanquist, A., B. D. Djurhuus, and P. Homøe. 2017. The effect of breastfeeding on childhood otitis media. Current Allergy and Asthma Reports 17 (7):45. doi: 10.1007/s11882-017-0712-3.
  • Kvistgaard, A. S., L. T. Pallesen, C. F. Arias, S. López, T. E. Petersen, C. W. Heegaard, and J. T. Rasmussen. 2004. Inhibitory effects of human and bovine milk constituents on rotavirus infections. Journal of Dairy Science 87 (12):4088–96. doi: 10.3168/jds.S0022-0302(04)73551-1.
  • Larocca, D., J. A. Peterson, R. Urrea, J. Kuniyoshi, A. M. Bistrain, and R. L. Ceriani. 1991. A Mr 46,000 human milk fat globule protein that is highly expressed in human breast tumors contains factor VIII-like domains. Cancer Research 51 (18):4994–8. doi: 10.1002/1097-0142(19910915)68:6+<1460::AID-CNCR2820681410>3.0.CO.
  • Le, A., L. D. Barton, J. T. Sanders, and Q. A. Zhang. 2011. Exploration of bovine milk proteome in colostral and mature whey using an ion-exchange approach. Journal of Proteome Research 10 (2):692–704. doi: 10.1021/pr100884z.
  • Leclercq, I. A., G. C. Farrell, C. Sempoux, A. Dela Peña, and Y. Horsmans. 2004. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. Journal of Hepatology 41 (6):926–34. doi: 10.1016/j.jhep.2004.08.010.
  • Lee, H., E. Padhi, Y. Hasegawa, J. Larke, M. Parenti, A. Wang, O. Hernell, B. Lönnerdal, and C. Slupsky. 2018. Compositional dynamics of the milk fat globule and its role in infant development. Frontiers in Pediatrics 6:313. doi: 10.3389/fped.2018.00313.
  • Lee, H., N. Zavaleta, S.-Y. Chen, B. Lönnerdal, and C. Slupsky. 2018. Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. NPJ Science of Food 2 (1):6. doi: 10.1038/s41538-018-0014-8.
  • Liao, Y., R. Alvarado, B. Phinney, and B. Lönnerdal. 2011. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. Journal of Proteome Research 10 (8):3530–41. doi: 10.1021/pr200149t.
  • Li, T. E., J. Gao, M. Du, and X. Y. Mao. 2018. Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. Journal of Functional Foods 47:56–65. doi: 10.1016/j.jff.2018.05.038.
  • Li, H., K. F. Guan, X. Li, Y. Ma, and S. B. Zhou. 2019. MFG-E8 induced differences in proteomic profiles in mouse C2C12 cells and its effect on PI3K/Akt and ERK signal pathways. International Journal of Biological Macromolecules 124:681–8. doi: 10.1016/j.ijbiomac.2018.11.265.
  • Li, W. X., M. H. Li, X. Y. Cao, M. Yang, H. J. Han, F. H. Kong, and X. Q. Yue. 2019. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins from donkey colostrum and mature milk. Food & Function 10 (7):4256–68. doi: 10.1039/c9fo00386j.
  • Li, H., L. Li, H. R. Chen, R. C. Wang, and Y. Ma. 2021. The structure and properties of MFG-E8 and the In vitro assessment of its toxic effects on myoblast cells. Protein Expression and Purification 178:105720. doi: 10.1016/j.pep.2020.105720.
  • Li, M. H., Q. L. Li, S. M. Kang, X. Y. Cao, Y. Zheng, J. R. Wu, R. N. Wu, J. H. Shao, M. Yang, and X. Q. Yue. 2020. Characterization and comparison of lipids in bovine colostrum and mature milk based on UHPLC-QTOF-MS lipidomics. Food Research International (Ottawa, ON) 136:109490. doi: 10.1016/j.foodres.2020.109490.
  • Li, Z., A. Liu, Y. Cao, H. Zhou, Q. Shen, S. Wu, and J. Luo. 2024. Milk fat globule membrane proteins are crucial in regulating lipid digestion during simulated in vitro infant gastrointestinal digestion. Journal of Dairy Science. doi: 10.3168/jds.2024-24707.
  • Li, Q. L., M. H. Li, J. Zhang, X. Y. Shi, M. Yang, Y. Zheng, X. Y. Cao, X. Q. Yue, and S. L. Ma. 2020. Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression. Food & Function 11 (4):3053–65. doi: 10.1039/c9fo02934f.
  • Li, M., Q. L. Li, Y. Zheng, X. Y. Shi, J. Zhang, C. Ma, B. Y. Guan, Y. Q. Peng, M. Yang, and X. Q. Yue. 2020. New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics. European Food Research and Technology 246 (5):1119–28. doi: 10.1007/s00217-020-03470-7.
  • Li, H., Y. Ma, W. L. Xu, H. R. Chen, and L. Day. 2017. MFG-E8 protein promotes C2C12 myogenic differentiation by enhancing PI3K/Akt signaling. New Journal of Chemistry 41 (20):12061–70. doi: 10.1016/j.pep.2020.105720.
  • Li, X., Y. Peng, Z. Li, B. Christensen, A. B. Heckmann, C. Lagerqvist, H. Stenlund, B. Lönnerdal, O. Hernell, and C. E. West. 2021. Serum cytokine patterns are modulated in infants fed formula with probiotics or milk fat globule membranes: A randomized controlled trial. PloS One 16 (5):e0251293. doi: 10.1371/journal.pone.0251293.
  • Li, H., R. C. Wang, L. F. Wang, L. Li, Y. Ma, and S. B. Zhou. 2021. Bovine milk fat globule epidermal growth factor VIII activates PI3K/Akt signaling pathway and attenuates sarcopenia in rat model induced by D-galactose. Food Bioscience 40:100847. doi: 10.1016/j.fbio.2020.100847.
  • Li, Y., J. Wu, Y. Niu, H. H. Chen, Q. Y. Tang, Y. Zhong, T. T. Lambers, and W. Cai. 2019. Milk fat globule membrane inhibits NLRP3 inflammasome activation and enhances intestinal barrier function in a rat model of short bowel. JPEN. Journal of Parenteral and Enteral Nutrition 43 (5):677–85. doi: 10.1002/jpen.1435.
  • Li, H., W. L. Xu, Y. Ma, S. B. Zhou, and R. Xiao. 2018. Milk fat globule membrane protein promotes C2C12 cell proliferation through the PI3K/Akt signaling pathway. International Journal of Biological Macromolecules 114:1305–14. doi: 10.1016/j.ijbiomac.2018.04.026.
  • Li, S. S., Y. X. Yang, C. Chen, L. Li, T. G. Valencak, and D. X. Ren. 2021. Differences in milk fat globule membrane proteins among Murrah, Nili-Ravi and Mediterranean buffaloes revealed by a TMT proteomic approach. Food Research International (Ottawa, ON) 139:109847. doi: 10.1016/j.foodres.2020.109847.
  • Li, M. H., K. X. Zheng, W. Y. Song, H. K. Yu, X. M. Zhang, X. Q. Yue, and Q. L. Li. 2021. Quantitative analysis of differentially expressed milk fat globule membrane proteins between donkey and bovine colostrum based on high-performance liquid chromatography with tandem mass spectrometry proteomics. Journal of Dairy Science 104 (12):12207–15. doi: 10.3168/jds.2021-20471.
  • Lopez, C., V. Briard-Bion, O. Menard, F. Rousseau, P. Pradel, and J.-M. Besle. 2008. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. Journal of Agricultural and Food Chemistry 56 (13):5226–36. doi: 10.1021/jf7036104.
  • Lu, J., N. Argov-Argaman, J. Anggrek, S. Boeren, T. van Hooijdonk, J. Vervoort, and K. A. Hettinga. 2016. The protein and lipid composition of the membrane of milk fat globules depends on their size. Journal of Dairy Science 99 (6):4726–38. doi: 10.3168/jds.2015-10375.
  • Lu, J., S. Boeren, S. C. de Vries, H. J. F. van Valenberg, J. Vervoort, and K. Hettinga. 2011. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. Journal of Proteomics 75 (1):34–43. doi: 10.1016/j.jprot.2011.07.031.
  • Lu, J., E. A. Fernandes, A. E. P. Cano, J. Vinitwatanakhun, S. Boeren, T. van Hooijdonk, A. van Knegsel, J. Vervoort, and K. A. Hettinga. 2013. Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. Journal of Proteome Research 12 (7):3288–96. doi: 10.1021/pr4001306.
  • Lu, J., L. Liu, X. Y. Pang, S. W. Zhang, Z. H. Jia, C. L. Ma, L. L. Zhao, and J. P. Lv. 2016. Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk. Food Chemistry 209:10–6. doi: 10.1016/j.foodchem.2016.04.020.
  • Luo, J., Z. Y. Huang, H. N. Liu, Y. Zhang, and F. Z. Ren. 2018. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties. Food Chemistry 245:731–7. doi: 10.1016/j.foodchem.2017.12.001.
  • Lu, J., X. Y. Wang, W. Q. Zhang, L. Liu, X. Y. Pang, S. W. Zhang, and J. P. Lv. 2016. Comparative proteomics of milk fat globule membrane in different species reveals variations in lactation and nutrition. Food Chemistry 196:665–72. doi: 10.1016/j.foodchem.2015.10.005.
  • Lu, J., S. W. Zhang, L. Liu, X. Y. Pang, C. L. Ma, S. L. Jiang, and J. P. Lv. 2018. Comparative proteomics analysis of human and ruminant milk serum reveals variation in protection and nutrition. Food Chemistry 261:274–82. doi: 10.1016/j.foodchem.2018.04.065.
  • Lv, K., Y. Yang, Q. Li, R. Chen, L. Deng, Y. Zhang, and N. Jiang. 2024. Identification and comparison of milk fat globule membrane and whey proteins from Selle Francais, Welsh pony, and Tieling Draft horse mare’s milk. Food Chemistry 437 (Pt 2):137915. doi: 10.1016/j.foodchem.2023.137915.
  • Ma, Y., L. N. Zhang, Y. Y. Wu, and P. Zhou. 2019. Changes in milk fat globule membrane proteome after pasteurization in human, bovine and caprine species. Food Chemistry 279:209–15. doi: 10.1016/j.foodchem.2018.12.015.
  • Maity, S., A. H. Bhat, K. Giri, and K. Ambatipudi. 2020. BoMiProt: A database of bovine milk proteins. Journal of Proteomics 215:103648. doi: 10.1016/j.jprot.2020.103648.
  • Malik, A., A. Al-Senaidy, E. Skrzypczak-Jankun, and J. Jankun. 2012. A study of the anti-diabetic agents of camel milk. International Journal of Molecular Medicine 30 (3):585–92. doi: 10.3892/ijmm.2012.1051.
  • Malosse, D., and H. Perron. 1993. Correlation analysis between bovine populations, other farm animals, house pets, and multiple sclerosis prevalence. Neuroepidemiology 12 (1):15–27. doi: 10.1159/000110295.
  • Manoni, M., C. Di Lorenzo, M. Ottoboni, M. Tretola, and L. Pinotti. 2020. Comparative proteomics of Milk Fat Globule Membrane (MFGM) proteome across species and lactation stages and the potentials of MFGM fractions in infant formula preparation. Foods (Basel, Switzerland) 9 (9):1251. doi: 10.3390/foods9091251.
  • Marques, I. T. O., F. R. Vasconcelos, J. P. M. Alves, A. R. Montenegro, C. C. L. Fernandes, F. B. B. Oliveira, C. P. Silva, C. S. Nagano, F. C. Figueiredo, F. J. Beserra, et al. 2021. Proteome of milk fat globule membrane and mammary gland tissue in goat fed different lipid supplementation. Small Ruminant Research 199:106378. doi: 10.1016/j.smallrumres.2021.106378.
  • Martin, H. M., J. T. Hancock, V. Salisbury, and R. Harrison. 2004. Role of xanthine oxidoreductase as an antimicrobial agent. Infection and Immunity 72 (9):4933–9. doi: 10.1128/IAI.72.9.4933-4939.2004.
  • Martini, M., I. Altomonte, R. Pesi, M. G. Tozzi, and F. Salari. 2013. Fat globule membranes in ewes’ milk: The main enzyme activities during lactation. International Dairy Journal 28 (1):36–9. doi: 10.1016/j.idairyj.2012.07.002.
  • Martini, M., I. Altomonte, D. Tricò, R. Lapenta, and F. Salari. 2021. Current knowledge on functionality and potential therapeutic uses of donkey milk. Animals: An Open Access Journal from MDPI 11 (5):1382. doi: 10.3390/ani11051382.
  • Masuoka, N, andI. Kubo. 2018. Characterization of the xanthine oxidase inhibitory activity of alk(en)yl phenols and related compounds. Phytochemistry 155:100–6. doi: 10.1016/j.phytochem.2018.07.006. 30096514
  • Matheny, R. W., and M. L. Adamo. 2009. Effects of PI3K catalytic subunit and Akt isoform deficiency on mTOR and p70S6K activation in myoblasts. Biochemical and Biophysical Research Communications 390 (2):252–7. doi: 10.1016/j.bbrc.2009.09.100.
  • Mather, I. H. 2000. A review and proposed nomenclature for major proteins of the milk-fat globule membrane. Journal of Dairy Science 83 (2):203–47. doi: 10.3168/jds.S0022-0302(00)74870-3.
  • Mati, A., C. Senoussi-Ghezali, S. S. A. Zennia, D. Almi-Sebbane, H. El-Hatmi, and J. M. Girardet. 2017. Dromedary camel milk proteins, a source of peptides having biological activities - A review. International Dairy Journal 73:25–37. doi: 10.1016/j.idairyj.2016.12.001.
  • McManaman, J. L. 2009. Formation of milk lipids: A molecular perspective. Clinical Lipidology 4 (3):391–401. doi: 10.2217/CLP.09.15.
  • McManaman, J. L. 2012. Milk lipid secretion: Recent biomolecular aspects. Biomolecular Concepts 3 (6):581–91. doi: 10.1515/bmc-2012-0025.
  • McManaman, J. L., T. D. Russell, J. Schaack, D. J. Orlicky, and H. Robenek. 2007. Molecular determinants of milk lipid secretion. Journal of Mammary Gland Biology and Neoplasia 12 (4):259–68. doi: 10.1007/s10911-007-9053-5.
  • Minegishi, Y., N. Ota, S. Soga, and A. Shimotoyodome. 2016. Effects of nutritional supplementation with milk fat globule membrane on physical and muscle function in healthy adults aged 60 and over with semiweekly light exercise: a randomized double-blind, placebo-controlled pilot trial. Journal of Nutritional Science and Vitaminology 62 (6):409–15. doi: 10.3177/jnsv.62.409.
  • Mohapatra, A., A. K. Shinde, and R. Singh. 2019. Sheep milk: A pertinent functional food. Small Ruminant Research 181:6–11. doi: 10.1016/j.smallrumres.2019.10.002.
  • Monaci, L., V. Tregoat, A. J. van Hengel, and E. Anklam. 2006. Milk allergens, their characteristics and their detection in food: A review. European Food Research and Technology 223 (2):149–79. doi: 10.1007/s00217-005-0178-8.
  • Monaco, M. H., G. Gross, and S. M. Donovan. 2021. Whey protein lipid concentrate high in milk fat globule membrane components inhibit porcine and human rotavirus in vitro. Frontiers in Pediatrics 9:731005. doi: 10.3389/fped.2021.731005.
  • Mondy, B. L., and T. W. Keenan. 1993. Butyrophilin and xanthine oxidase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protoplasma 177 (1–2):32–6. doi: 10.1007/BF01403396.
  • Mou, Q., H. S. Yang, Y. L. Yin, and P. F. Huang. 2019. Amino acids influencing intestinal development and health of the piglets. Animals: An Open Access Journal from MDPI 9 (6):302. doi: 10.3390/ani9060302.
  • Murgiano, L., A. D’Alessandro, L. Zolla, A. Valentini, and L. Pariset. 2013. Comparison of Milk Fat Globule Membrane (MFGM) proteins in milk samples of Chianina and Holstein cattle breeds across three lactation phases through 2D IEF SDS PAGE - A preliminary study. Food Research International 54 (1):1280–6. doi: 10.1016/j.foodres.2012.10.035.
  • Naisbitt, D. J., A. Olsson-Brown, A. Gibson, X. L. Meng, M. O. Ogese, A. Tailor, and P. Thomson. 2020. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 75 (4):781–97. doi: 10.1111/all.14127.
  • Newburg, D. S., J. A. Peterson, G. M. Ruiz-Palacios, D. O. Matson, A. L. Morrow, J. Shults, M. L. Guerrero, P. Chaturvedi, S. O. Newburg, C. D. Scallan, et al. 1998. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet (London, England) 351 (9110):1160–4. doi: 10.1016/S0140-6736(97)10322-1.
  • Newman, R. A., M. G. Ormerod, and M. F. Greaves. 1980. The presence of HLA-DR antigens on lactating human breast epithelium and milk fat globule membranes. Clinical and Experimental Immunology 41 (3):478–86. doi: 10.1016/0008-8749(80)90047-7.
  • Nguyen, H. T. H., L. Ong, A. Hoque, S. E. Kentish, N. Williamson, C. S. Ang, and S. L. Gras. 2017. A proteomic characterization shows differences in the milk fat globule membrane of buffalo and bovine milk. Food Bioscience 19:7–16. doi: 10.1016/j.fbio.2017.05.004.
  • Novac, C. S., and S. Andrei. 2020. The impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat’s milk: a review. Pathogens (Basel, Switzerland) 9 (11):882. doi: 10.3390/pathogens9110882.
  • Novakovic, P., Y. Y. Y. Huang, B. Lockerbie, F. Shahriar, J. Kelly, J. R. Gordon, D. M. Middleton, M. E. Loewen, B. A. Kidney, and E. Simko. 2015. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire 79 (2):120–8. doi: 10.1002/chin.199538147.
  • Ortega-Anaya, J., A. Marciniak, and R. Jiménez-Flores. 2021. Milk fat globule membrane phospholipids modify adhesion of Lactobacillus to mucus-producing Caco-2/Goblet cells by altering the cell envelope. Food Research International (Ottawa, ON) 146:110471. doi: 10.1016/j.foodres.2021.110471.
  • Osaki, L. H., and P. Gama. 2013. MAPKs and signal transduction in the control of gastrointestinal epithelial cell proliferation and differentiation. International Journal of Molecular Sciences 14 (5):10143–61. doi: 10.3390/ijms140510143.
  • Ota, N., S. Soga, T. Hase, and A. Shimotoyodome. 2015. Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance in healthy middle-aged adults. SpringerPlus 4 (1):120. doi: 10.1186/s40064-015-0896-8.
  • Pacheco, A. R., D. Barile, M. A. Underwood, and D. A. Mills. 2015. The impact of the milk glycobiome on the neonate gut microbiota. Annual Review of Animal Biosciences 3 (1):419–45. doi: 10.1146/annurev-animal-022114-111112.
  • Palmano, K. P., A. K. H. MacGibbon, C. A. Gunn, and L. M. Schollum. 2020. In vitro and in vivo anti-inflammatory activity of bovine Milkfat Globule (MFGM)-derived complex lipid fractions. Nutrients 12 (7):2089. doi: 10.3390/nu12072089.
  • Pan, Y., L. Liu, S. F. Tian, X. D. Li, M. Hussain, C. M. Li, L. H. Zhang, Q. M. Zhang, Y. B. Leng, S. L. Jiang, et al. 2022. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocolloids 124:107290. doi: 10.1016/j.foodhyd.2021.107290.
  • Pan, Z., A. Q. Ye, K. Fraser, S. Q. Li, A. Dave, and H. Singh. 2024. Comparative lipidomics analysis of different-sized fat globules in sheep and cow milks. Current Research in Food Science 8:100655. doi: 10.1016/j.crfs.2023.100655.
  • Parker, P., L. Sando, R. Pearson, K. Kongsuwan, R. L. Tellam, and S. Smith. 2010. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconjugate Journal 27 (1):89–97. doi: 10.1007/s10719-009-9269-2.
  • Pastuszka, R., J. Barłowska, and Z. Litwińczuk. 2016. Allergenicity of milk of different animal species in relation to human milk. Postepy Higieny i Medycyny Doswiadczalnej (Online) 70:1451–9. doi: 10.5604/17322693.1227842.
  • Pisanu, S., S. Ghisaura, D. Pagnozzi, G. Biosa, A. Tanca, T. Roggio, S. Uzzau, and M. F. Addis. 2011. The sheep milk fat globule membrane proteome. Journal of Proteomics 74 (3):350–8. doi: 10.1016/j.jprot.2010.11.011.
  • Pisanu, S., S. Ghisaura, D. Pagnozzi, G. Falchi, G. Biosa, A. Tanca, T. Roggio, S. Uzzau, and M. F. Addis. 2012. Characterization of sheep milk fat globule proteins by two-dimensional polyacrylamide gel electrophoresis/mass spectrometry and generation of a reference map. International Dairy Journal 24 (2):78–86. doi: 10.1016/j.idairyj.2011.05.009.
  • Pisanu, S., G. Marogna, D. Pagnozzi, M. Piccinini, G. Leo, A. Tanca, A. M. Roggio, T. Roggio, S. Uzzau, and M. F. Addis. 2013. Characterization of size and composition of milk fat globules from Sarda and Saanen dairy goats. Small Ruminant Research 109 (2–3):141–51. doi: 10.1016/j.smallrumres.2012.07.024.
  • Poppitt, S. D., R. A. McGregor, K. R. Wiessing, V. K. Goyal, A. J. Chitkara, S. Gupta, K. Palmano, B. Kuhn-Sherlock, and M. A. McConnell. 2014. Bovine complex milk lipid containing gangliosides for prevention of rotavirus infection and diarrhoea in Northern Indian infants. Journal of Pediatric Gastroenterology and Nutrition 59 (2):167–71. doi: 10.1097/MPG.0000000000000398.
  • Quaranta, S., M. G. Giuffrida, M. Cavaletto, C. Giunta, J. Godovac-Zimmermann, B. Cañas, C. Fabris, E. Bertino, M. Mombrò, and A. Conti. 2001. Human proteome enhancement: High-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis 22 (9):1810–8. doi: 10.1002/1522-2683(200105)22:9<1810::AID-ELPS1810>3.0.CO;2-M.
  • Rathe, M., K. Müller, P. T. Sangild, and S. Husby. 2014. Clinical applications of bovine colostrum therapy: A systematic review. Nutrition Reviews 72 (4):237–54. doi: 10.1111/nure.12089.
  • Raymond, A., M. A. Ensslin, and B. D. Shur. 2009. SED1/MFG-E8: A bi-motif protein that orchestrates diverse cellular interactions. Journal of Cellular Biochemistry 106 (6):957–66. doi: 10.1002/jcb.22076.
  • Raza, G. S., K.-H. Herzig, and J. Leppäluoto. 2021. Milk fat globule membrane-A possible panacea for neurodevelopment, infections, cardiometabolic diseases, and frailty. Journal of Dairy Science 104 (7):7345–63. doi: 10.3168/jds.2020-19649.
  • Reinhardt, T. A., and J. D. Lippolis. 2006. Bovine milk fat globule membrane proteome. The Journal of Dairy Research 73 (4):406–16. doi: 10.1017/S0022029906001889.
  • Reinhardt, T. A., and J. D. Lippolis. 2008. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. Journal of Dairy Science 91 (6):2307–18. doi: 10.3168/jds.2007-0952.
  • Reinhardt, T. A., R. E. Sacco, B. J. Nonnecke, and J. D. Lippolis. 2013. Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. Journal of Proteomics 82:141–54. doi: 10.1016/j.jprot.2013.02.013.
  • Riccio, P. 2004. The proteins of the milk fat globule membrane in the balance. Trends in Food Science & Technology 15 (9):458–61. doi: 10.1016/j.tifs.2003.12.005.
  • Rosqvist, F., A. Smedman, H. Lindmark-Månsson, M. Paulsson, P. Petrus, S. Straniero, M. Rudling, I. Dahlman, and U. Risérus. 2015. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: A randomized study. The American Journal of Clinical Nutrition 102 (1):20–30. doi: 10.3945/ajcn.115.107045.
  • Ross, S. A., J. A. Lane, M. Kilcoyne, L. Joshi, and R. M. Hickey. 2016. Defatted bovine milk fat globule membrane inhibits association of enterohaemorrhagic Escherichia coli O157:H7 with human HT-29 cells. International Dairy Journal 59:36–43. doi: 10.1016/j.idairyj.2016.03.001.
  • Saadaoui, B., C. Henry, T. Khorchani, M. Mars, P. Martin, and C. Cebo. 2013. Proteomics of the milk fat globule membrane from Camelus dromedarius. Proteomics 13 (7):1180–4. doi: 10.1002/pmic.201200113.
  • Sabha, B. H., A. Masood, I. O. Alanazi, A. A. Alfadda, H. A. Almehdar, H. Benabdelkamel, and E. M. Redwan. 2020. Comparative analysis of Milk Fat Globular Membrane (MFGM) proteome between Saudi Arabia Camelus dromedary Safra and Wadha Breeds. Molecules (Basel, Switzerland) 25 (9):2146. doi: 10.3390/molecules25092146.
  • Saeland, E., M. de Jong, A. A. Nabatov, H. Kalay, T. B. H. Geijtenbeek, and Y. van Kooyk. 2009. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Molecular Immunology 46 (11–12):2309–16. doi: 10.1016/j.molimm.2009.03.025.
  • Schreiber, F., J. M. Arasteh, and T. D. Lawley. 2015. Pathogen resistance mediated by IL-22 signaling at the epithelial-microbiota interface. Journal of Molecular Biology 427 (23):3676–82. doi: 10.1016/j.jmb.2015.10.013.
  • Scuderi, R. A., Y. W. Lam, D. B. Ebenstein, R. Tacoma, L. M. Cersosimo, J. Kraft, A. F. Brito, and S. L. Greenwood. 2020. Comparative analysis of the skim milk and milk fat globule membrane proteomes produced by Jersey cows grazing pastures with different plant species diversity. Journal of Dairy Science 103 (8):7498–508. doi: 10.3168/jds.2019-17726.
  • Shao, Y. X., P. G. Wolf, S. S. Guo, Y. M. Guo, H. R. Gaskins, and B. K. Zhang. 2017. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. The Journal of Nutritional Biochemistry 43:18–26. doi: 10.1016/j.jnutbio.2017.01.013.
  • Shi, X. L., X. Y. Cai, W. Di, J. Li, X. T. Xu, A. W. Zhang, W. W. Qi, Z. M. Zhou, and Y. N. Fang. 2017. MFG-E8 selectively inhibited A beta-induced microglial M1 polarization via NF-kappa B and PI3K-Akt pathways. Molecular Neurobiology 54 (10):7777–88. doi: 10.1007/s12035-016-0255-y.
  • Singh, H., and S. Gallier. 2017. Nature’s complex emulsion: The fat globules of milk. Food Hydrocolloids 68:81–9. doi: 10.1016/j.foodhyd.2016.10.011.
  • Smith, I. A., B. R. Knezevic, J. U. Ammann, D. A. Rhodes, D. Aw, D. B. Palmer, I. H. Mather, and J. Trowsdale. 2010. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. Journal of Immunology (Baltimore, MD: 1950) 184 (7):3514–25. doi: 10.4049/jimmunol.0900416.
  • Smoczynski, M. 2017. Role of phospholipid flux during milk secretion in the mammary gland. Journal of Mammary Gland Biology and Neoplasia 22 (2):117–29. doi: 10.1007/s10911-017-9376-9.
  • Smolenski, G., S. Haines, F. Y. S. Kwan, J. Bond, V. Farr, S. R. Davis, K. Stelwagen, and T. T. Wheeler. 2007. Characterisation of host defence proteins in milk using a proteomic approach. Journal of Proteome Research 6 (1):207–15. doi: 10.1021/pr0603405.
  • Sovran, B., L. M. P. Loonen, P. Lu, F. Hugenholtz, C. Belzer, E. H. Stolte, M. V. Boekschoten, P. van Baarlen, M. Kleerebezem, P. de Vos, et al. 2015. IL-22-STAT3 pathway plays a key role in the maintenance of ileal homeostasis in mice lacking secreted mucus barrier. Inflammatory Bowel Diseases 21 (3):531–42. doi: 10.1097/MIB.0000000000000319.
  • Spertino, S., V. Cipriani, C. De Angelis, M. G. Giuffrida, F. Marsano, and M. Cavaletto. 2012. Proteome profile and biological activity of caprine, bovine and human milk fat globules. Molecular bioSystems 8 (4):967–74. doi: 10.1039/c2mb05400k.
  • Spitsberg, V. L. 2005. Invited review: Bovine milk fat globule membrane as a potential nutraceutical. Journal of Dairy Science 88 (7):2289–94. doi: 10.3168/jds.S0022-0302(05)72906-4.
  • Spitsberg, V. L., and R. C. Gorewit. 2013. Isolation, purification and characterization of fatty-acid-binding protein from milk fat globule membrane: Effect of bovine growth hormone treatment. Pakistan Journal of Nutrition 1 (1):43–8. doi: 10.3923/pjn.2002.43.48.
  • Struijs, K., T. Van de Wiele, T. T. Le, G. Debyser, K. Dewettinck, B. Devreese, and J. Van Camp. 2013. Milk fat globule membrane glycoproteins prevent adhesion of the colonic microbiota and result in increased bacterial butyrate production. International Dairy Journal 32 (2):99–109. doi: 10.1016/j.idairyj.2013.05.001.
  • Sugano, G., I. Bernard-Pierrot, M. Laé, C. Battail, Y. Allory, N. Stransky, S. Krumeich, M.-L. Lepage, P. Maille, M.-H. Donnadieu, et al. 2011. Milk fat globule-epidermal growth factor-factor VIII (MFGE8)/lactadherin promotes bladder tumor development. Oncogene 30 (6):642–53. doi: 10.1038/onc.2010.446.
  • Sun, Y. X., C. N. Wang, X. M. Sun, and M. R. Guo. 2019. Comparative proteomics of whey and milk fat globule membrane proteins of guanzhong goat and holstein cow mature milk. Journal of Food Science 84 (2):244–53. doi: 10.1111/1750-3841.14428.
  • Sun, Y. X., C. N. Wang, X. M. Sun, S. L. Jiang, and M. R. Guo. 2020. Characterization of the milk fat globule membrane proteome in colostrum and mature milk of Xinong Saanen goats. Journal of Dairy Science 103 (4):3017–24. doi: 10.3168/jds.2019-17739.
  • Ten Bruggencate, S. J., P. D. Frederiksen, S. M. Pedersen, E. G. Floris-Vollenbroek, E. Lucas-van de Bos, E. van Hoffen, and P. L. Wejse. 2016. Dietary milk-fat-globule membrane affects resistance to diarrheagenic escherichia coli in healthy adults in a randomized, placebo-controlled, double-blind study. The Journal of Nutrition 146 (2):249–55. doi: 10.3945/jn.115.214098.
  • Thum, C., N. C. Roy, D. W. Everett, and W. C. McNabb. 2023. Variation in milk fat globule size and composition: A source of bioactives for human health. Critical Reviews in Food Science and Nutrition 63 (1):87–113. doi: 10.1080/10408398.2021.1944049.
  • Thum, C., C. Wall, L. Day, I. M. Y. Szeto, F. Li, Y. L. Yan, and M. P. G. Barnett. 2022. Changes in human milk fat globule composition throughout lactation: A review. Frontiers in Nutrition 9:835856. doi: 10.3389/fnut.2022.835856.
  • Timby, N., E. Domellöf, O. Hernell, B. Lönnerdal, and M. Domellöf. 2014. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. The American Journal of Clinical Nutrition 99 (4):860–8. doi: 10.3945/ajcn.113.064295.
  • Timby, N., M. Domellöf, B. Lönnerdal, and O. Hernell. 2015. Comment on "safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: a randomized controlled multicenter non-inferiority trial in healthy term infants. Clinical Medicine Insights. Pediatrics 9:63–4. doi: 10.4137/CMPed.S27185.
  • Tokuhara, D., Y. Kurashima, M. Kamioka, T. Nakayama, P. Ernst, and H. Kiyono. 2019. A comprehensive understanding of the gut mucosal immune system in allergic inflammation. Allergology International: Official Journal of the Japanese Society of Allergology 68 (1):17–25. doi: 10.1016/j.alit.2018.09.004.
  • Triantis, V., L. Bode, and R. J. J. van Neerven. 2018. Immunological effects of human milk Oligosaccharides. Frontiers in Pediatrics 6:190. doi: 10.3389/fped.2018.00190.
  • van Beelen, A. J., Z. Zelinkova, E. W. Taanman-Kueter, F. J. Muller, D. W. Hommes, S. A. J. Zaat, M. L. Kapsenberg, and E. C. de Jong. 2007. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27 (4):660–9. doi: 10.1016/j.immuni.2007.08.013.
  • Venkat, M., L. W. Chia, and T. T. Lambers. 2024. Milk polar lipids composition and functionality: A systematic review. Critical Reviews in Food Science and Nutrition 64 (1):31–75. doi: 10.1080/10408398.2022.2104211.
  • Venkitaraman, A. R. 2002. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108 (2):171–82. doi: 10.1016/S0092-8674(02)00615-3.
  • Vojdani, A., A. W. Campbell, E. Anyanwu, A. Kashanian, K. Bock, and E. Vojdani. 2002. Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. Journal of Neuroimmunology 129 (1–2):168–77. doi: 10.1016/S0165-5728(02)00180-7.
  • Wang, J. H., B. Manick, G. P. Wu, and V. Kalabokis. 2016. Immune modulation by butyrophilin 1A1 (BTN1A1). The Journal of Immunology 196 (1_Supplement):199.1–.1. doi: 10.4049/jimmunol.196.Supp.199.1.
  • Webb, A. E., and A. Brunet. 2014. FOXO transcription factors: Key regulators of cellular quality control. Trends in Biochemical Sciences 39 (4):159–69. doi: 10.1016/j.tibs.2014.02.003.
  • Wu, Y. J., X. Y. Zhang, D. D. Han, Y. Pi, S. Y. Tao, S. Y. Zhang, S. L. Wang, J. Y. Zhao, L. J. Chen, and J. J. Wang. 2021. Early life administration of milk fat globule membrane promoted SCFA-producing bacteria colonization, intestinal barriers and growth performance of neonatal piglets. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 7 (2):346–55. doi: 10.1016/j.aninu.2020.07.012.
  • Xekouki, P., M. Azevedo, and C. A. Stratakis. 2010. Anterior pituitary adenomas: Inherited syndromes, novel genes and molecular pathways. Expert Review of Endocrinology & Metabolism 5 (5):697–709. doi: 10.1586/eem.10.47.
  • Xiao, Y. T., W. H. Yan, Y. Cao, J. K. Yan, and W. Cai. 2017. P38 MAPK pharmacological inhibitor SB203580 alleviates total parenteral nutrition-induced loss of intestinal barrier function but promotes hepatocyte lipoapoptosis. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 41 (2):623–34. doi: 10.1159/000457933.
  • Xu, X. T., X. Y. Cai, Y. T. Zhu, W. He, Q. Wu, X. L. Shi, Y. N. Fang, and Z. Pei. 2018. MFG-E8 inhibits A beta-induced microglial production of cathelicidin-related antimicrobial peptide: A suitable target against Alzheimer’s disease. Cellular Immunology 331:59–66. doi: 10.1016/j.cellimm.2018.05.008.
  • Xu, H. F., J. Luo, G. Z. Ma, X. Y. Zhang, D. W. Yao, M. Li, and J. J. Loor. 2018. Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. Journal of Cellular Physiology 233 (2):1005–16. doi: 10.1002/jcp.25954.
  • Xu, M. L., and X. D. Wang. 2017. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biology and Toxicology 33 (4):361–71. doi: 10.1007/s10565-017-9393-x.
  • Xu, M. L., D. C. Wang, X. D. Wang, and Y. Zhang. 2017. Correlation between mucin biology and tumor heterogeneity in lung cancer. Seminars in Cell & Developmental Biology 64:73–8. doi: 10.1016/j.semcdb.2016.08.027.
  • Yang, Y. X., D. P. Bu, X. W. Zhao, P. Sun, J. Q. Wang, and L. Y. Zhou. 2013. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns. Journal of Proteome Research 12 (4):1660–7. doi: 10.1021/pr301001m.
  • Yang, M., M. Cong, X. M. Peng, J. R. Wu, R. N. Wu, B. Liu, W. H. Ye, and X. Q. Yue. 2016. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food & Function 7 (5):2438–50. doi: 10.1039/c6fo00083e.
  • Yang, Y., N. Zheng, X. W. Zhao, Y. D. Zhang, R. W. Han, L. Ma, S. G. Zhao, S. L. Li, T. J. Guo, and J. Q. Wang. 2015. Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. Journal of Proteomics 116:34–43. doi: 10.1016/j.jprot.2014.12.017.
  • Yano, M., Y. Minegishi, S. Sugita, and N. Ota. 2017. Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice. Experimental Gerontology 97:29–37. doi: 10.1016/j.exger.2017.07.012.
  • Yuan, Q. C., B. Y. Zhan, M. Du, R. Chang, T. G. Li, and X. Y. Mao. 2019. Dietary milk fat globule membrane regulates JNK and PI3K/Akt pathway and ameliorates type 2 diabetes in mice induced by a high-fat diet and streptozotocin. Journal of Functional Foods 60:103435. doi: 10.1016/j.jff.2019.103435.
  • Zanabria, R., M. W. Griffiths, and M. Corredig. 2020. Does structure affect biological function? Modifications to the protein and phospholipids fraction of the milk fat globule membrane after extraction affect the antiproliferative activity of colon cancer cells. Journal of Food Biochemistry 44 (2):e13104. doi: 10.1111/jfbc.13104.
  • Zavaleta, N., A. S. Kvistgaard, G. Graverholt, G. Respicio, H. Guija, N. Valencia, and B. Lönnerdal. 2011. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. Journal of Pediatric Gastroenterology and Nutrition 53 (5):561–8. doi: 10.1097/MPG.0b013e318225cdaf.
  • Zhang, L., S. Boeren, J. A. Hageman, T. van Hooijdonk, J. Vervoort, and K. Hettinga. 2015. Bovine milk proteome in the first 9 days: protein interactions in maturation of the immune and digestive system of the newborn. PloS One 10 (2):e0116710. doi: 10.1371/journal.pone.0116710.
  • Zhang, C. M., Y. Q. Guo, Z. P. Yuan, Y. M. Wu, J. K. Wang, J. X. Liu, and W. Y. Zhu. 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology 146 (3–4):259–69. doi: 10.1016/j.anifeedsci.2008.01.005.
  • Zhang, L., R. F. Tian, X. X. Yao, X. J. Zhang, P. Zhang, Y. P. Huang, Z. G. She, H. L. Li, Y. X. Ji, and J. J. Cai. 2021. Milk fat globule-epidermal growth factor-factor 8 improves hepatic steatosis and inflammation. Hepatology (Baltimore, MD) 73 (2):586–605. doi: 10.1002/hep.31277.
  • Zhang, D. D., J. Wen, J. F. Zhou, W. Cai, and L. X. Qian. 2019. Milk fat globule membrane ameliorates necrotizing enterocolitis in neonatal rats and suppresses lipopolysaccharide-induced inflammatory response in IEC-6 enterocytes. JPEN. Journal of Parenteral and Enteral Nutrition 43 (7):863–73. doi: 10.1002/jpen.1496.
  • Zhang, L. A., D. M. Yan, M. C. Roy, J. L. Huang, and P. Zhou. 2022. Variation in both proteome and N-glycoproteome of goat MFGM over lactation. Journal of Food Composition and Analysis 111:104635. doi: 10.1016/j.jfca.2022.104635.
  • Zhao, L. L., M. Du, J. Gao, B. Y. Zhan, and X. Y. Mao. 2019. Label-free quantitative proteomic analysis of milk fat globule membrane proteins of yak and cow and identification of proteins associated with glucose and lipid metabolism. Food Chemistry 275:59–68. doi: 10.1016/j.foodchem.2018.09.044.
  • Zhao, H. W., M. H. Li, Q. Zhu, A. C. Liu, J. Y. Bi, Z. Z. Quan, X. Luo, Y. Zheng, N. Yang, X. Q. Yue, et al. 2023. Label-free quantitative proteomic analysis of milk fat globule membrane proteins in porcine colostrum and mature milk. Food Chemistry 426:136447. doi: 10.1016/j.foodchem.2023.136447.
  • Zhu, H. L., H. B. Wang, S. H. Wang, Z. X. Tu, L. Zhang, X. Y. Wang, Y. Q. Hou, C. W. Wang, J. Chen, and Y. L. Liu. 2018. Flaxseed oil attenuates intestinal damage and inflammation by regulating necroptosis and TLR4/NOD signaling pathways following lipopolysaccharide challenge in a piglet model. Molecular Nutrition & Food Research 62 (9):e1700814. doi: 10.1002/mnfr.201700814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.