15,572
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How Early Digital Experience Shapes Young Brains During 0-12 Years: A Scoping Review

, , & ORCID Icon

References

  • Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
  • Baker, J., Moyer-Packenham, P., Tucker, S., Shumway, J., Jordan, K., & Gilam, R. (2018). The brain’s response to digital math apps: A pilot study examining children’s cortical responses during touch-screen interactions. Journal of Computers in Mathematics & Science Teaching, 37(1), 69–86. Waynesville, NC USA: Association for the Advancement of Computing in Education (AACE). Retrieved May 17, 2023, from, https://www.learntechlib.org/p/180516
  • Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural correlate of spatial presence in an arousing and noninteractive virtual reality: An EEG and psychophysiology study. CyberPsychology & Behavior, 9(1), 30–45. https://doi.org/10.1089/cpb.2006.9.30
  • Bergen, D., Schroer, J. E., Thomas, R., Zhang, X., Chou, M., & Chou, T. (2017). ERP responses of elementary-age children to video game simulations of two stimuli types: Study 1 and 2 comparisons. Journal of Research in Childhood Education, 31(1), 160–175. https://doi.org/10.1080/02568543.2016.1242521
  • Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5: Changes and correlates. Developmental Review, 29(3), 180–200. https://doi.org/10.1016/j.dr.2009.05.002
  • Browne, D., Thompson, D. A., & Madigan, S. (2020). Digital media use in children: Clinical vs scientific responsibilities. JAMA Pediatrics, 174(2), 111–112. https://doi.org/10.1001/jamapediatrics.2019.4559
  • Bustamante, J. C., Fernández-Castilla, B., & Alcaraz-Iborra, M. (2023). Relation between executive functions and screen time exposure in under 6 year-olds: A meta-analysis. Computers in Human Behavior, 145, 107739. https://doi.org/10.1016/j.chb.2023.107739
  • Cantlon, J. F., Li, R., & Posner, M. (2013). Neural activity during natural viewing of sesame street statistically predicts test scores in early childhood. PLoS Biology, 11(1), e1001462. https://doi.org/10.1371/journal.pbio.1001462
  • Cao, S., & Li, H. (2023). A scoping review of digital well-being in early childhood: Definitions, measurements, contributors, and interventions. International Journal of Environmental Research and Public Health, 20(4), 3510. https://doi.org/10.3390/ijerph20043510
  • Chaarani, B., Ortigara, J., Yuan, D., Loso, H., Potter, A., & Garavan, H. P. (2022). Association of video gaming with cognitive performance among children. JAMA Network Open, 5(10), e2235721. https://doi.org/10.1001/jamanetworkopen.2022.35721
  • Chassiakos, Y. R., Radesky, J., Christakis, D., Moreno, M. A., Cross, C., Hill, D., Ameenuddin, N., Hutchinson, J., Levine, A., Boyd, R., Mendelson, R., & Swanson, W. S. (2016). Children and adolescents and digital media. Pediatrics, 138(5), e20162593. https://doi.org/10.1542/peds.2016-2593
  • Chen, Y.-Y., Yim, H., & Lee, T.-H. (2023). Negative impact of daily screen use on inhibitory control network in preadolescence: A two-year follow-up study. Developmental Cognitive Neuroscience, 60(1), 101218. https://doi.org/10.1016/j.dcn.2023.101218
  • Conway, A., & Stifter, C. A. (2012). Longitudinal antecedents of executive function in preschoolers. Child Development, 83(3), 1022–1036. https://doi.org/10.1111/j.1467-8624.2012.01756.x
  • Costandi, M. (2016). Neuroplasticity. MIt Press.
  • Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience, 15(5), 689–695. https://doi.org/10.1038/nn.3093
  • Ding, K., & Li, H. (2023). Digital addiction intervention for children and adolescents: A scoping review. International Journal of Environmental Research and Public Health, 20(6), 4777. https://doi.org/10.3390/ijerph20064777
  • Dong, C., Cao, S., & Li, H. (2020). Young children’s online learning during COVID-19 pandemic: Chinese parents’ beliefs and attitudes. Children and Youth Services Review, 118, 105440. https://doi.org/10.1016/j.childyouth.2020.105440
  • Dong, C., Cao, S., & Li, H. (2022). Profiles and predictors of young children’s digital literacy and multimodal practices in central China. Early Education and Development, 33(6), 1094–1115. https://doi.org/10.1080/10409289.2021.1930937
  • Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014, 1–10. https://doi.org/10.1155/2014/541870
  • Gabard-Durnam, L., & McLaughlin, K. A. (2020). Sensitive periods in human development: Charting a course for the future. Current Opinion in Behavioral Sciences, 36, 120–128. https://doi.org/10.1016/j.cobeha.2020.09.003
  • Goh, J. O., & Park, D. C. (2009). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 27(5), 391–403. https://doi.org/10.3233/RNN-2009-0493
  • Grafman, J. (2000). Conceptualizing functional neuroplasticity. Journal of Communication Disorders, 33(4), 345–356. https://doi.org/10.1016/S0021-9924(00)00030-7
  • Han, S., Jiang, Y., & Humphreys, G. W. (2007). Watching cartoons activates the medial prefrontal cortex in children. Chinese Science Bulletin, 52(24), 3371–3375. https://doi.org/10.1007/s11434-007-0505-5
  • Harley, D., Morgan, J., & Frith, H. (2018). Cyberpsychology as everyday digital experience across the lifespan. Springer.
  • Helsper, E. J., & Eynon, R. (2010). Digital natives: Where is the evidence? British Educational Research Journal, 36(3), 503–520. https://doi.org/10.1080/01411920902989227
  • Hermawati, D., Rahmadi, F. A., Sumekar, T. A., & Winarni, T. I. (2018). Early electronic screen exposure and autistic-like symptoms. Intractable & Rare Diseases Research, 7(1), 69–71. https://doi.org/10.5582/irdr.2018.01007
  • Horowitz-Kraus, T., Holland, S. K., & Freund, L. S. (2016). Imaging executive functions in typically and atypically developed children. In J. A. Griffin, P. McCardle, & L. S. Freund (Eds.), Executive function in preschool-age children: Integrating measurement, neurodevelopment, and translational research (pp. 181–213). American Psychological Association. https://doi.org/10.1037/14797-009
  • Horowitz-Kraus, T., & Hutton, J. S. (2017). Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatrica, 107(4), 685–693. https://doi.org/10.1111/apa.14176
  • Huber, B., Yeates, M., Meyer, D., Fleckhammer, L., & Kaufman, J. (2018). The effects of screen media content on young children’s executive functioning. Journal of Experimental Child Psychology, 170, 72–85. https://doi.org/10.1016/j.jecp.2018.01.006
  • Huda, M., Jasmi, K. A., Hehsan, A., Mustari, M. I., Shahrill, M., Basiron, B., & Gassama, S. K. (2017). Empowering children with adaptive technology skills: Careful engagement in the digital ınformation age. International Electronic Journal of Elementary Education, 9(3), 693–708. https://www.iejee.com/index.php/IEJEE
  • Hutton, J. S., Dudley, J., DeWitt, T., & Horowitz-Kraus, T. (2022). Associations between digital media use and brain surface structural measures in preschool-aged children. Scientific Reports, 12(1), 19095. https://doi.org/10.1038/s41598-022-20922-0
  • Hutton, J. S., Dudley, J., Horowitz-Kraus, T., DeWitt, T., & Holland, S. K. (2018). Differences in functional brain network connectivity during stories presented in audio, illustrated, and animated format in preschool-age children. Brain Imaging and Behavior, 14(1), 130–141. https://doi.org/10.1007/s11682-018-9985-y
  • Hutton, J. S., Dudley, J., Horowitz-Kraus, T., DeWitt, T., & Holland, S. K. (2020). Associations between screen-based media use and brain white matter integrity in preschool-aged children. JAMA Pediatrics, 174(1), e193869. https://doi.org/10.1001/jamapediatrics.2019.3869
  • Kabali, H. K., Irigoyen, M. M., Nunez-Davis, R., Budacki, J. G., Mohanty, S. H., Leister, K. P., & Bonner, R. L. (2015). Exposure and use of mobile media devices by young children. Pediatrics, 136(6), 1044–1050. https://doi.org/10.1542/peds.2015-2151
  • Korte, M. (2020). The impact of the digital revolution on human brain and behavior: Where do we stand? Dialogues in Clinical Neuroscience, 22(2), 101–111. https://doi.org/10.31887/dcns.2020.22.2/mkorte
  • Kostyrka-Allchorne, K., Cooper, N. R., Kennett, S., Nestler, S., & Simpson, A. (2019). The short-term effect of video editing pace on children’s inhibition and N2 and P3 ERP components during visual go/no-go task. Developmental Neuropsychology, 44(4), 385–396. https://doi.org/10.1080/87565641.2019.1630628
  • Kucirkova, N., Littleton, K., & Kyparissiadis, A. (2018). The influence of children’s gender and age on children’s use of digital media at home. British Journal of Educational Technology, 49(3), 545–559. https://doi.org/10.1111/bjet.12543
  • Law, E. C., Han, M. X., Lai, Z., Lim, S., Ong, Z. Y., Ng, V., Gabard-Durnam, L. J., Wilkinson, C. L., Levin, A. R., Rifkin-Graboi, A., Daniel, L. M., Gluckman, P. D., Chong, Y. S., Meaney, M. J., & Nelson, C. A. (2023). Associations between infant screen use, electroencephalography markers, and cognitive outcomes. JAMA Pediatrics, 177(3), 311–318. https://doi.org/10.1001/jamapediatrics.2022.5674
  • Lewin, K. M., Meshi, D., Aladé, F., Lescht, E., Herring, C., Devaraju, D. S., & Hampton Wray, A. (2023). Children’s screentime is associated with reduced brain activation during an inhibitory control task: A pilot EEG study. Frontiers in Cognition, 2. https://doi.org/10.3389/fcogn.2023.1018096
  • Li, H., Hsueh, Y., Yu, H., & Kitzmann, K. M. (2020). Viewing fantastical events in animated television shows: Immediate effects on Chinese preschoolers’ executive function. Frontiers in Psychology, 11, 11. https://doi.org/10.3389/fpsyg.2020.583174
  • Li, H., Liu, T., Woolley, J. D., & Zhang, P. (2019). Reality status judgments of real and fantastical events in children’s prefrontal cortex: An fNIRS study. Frontiers in Human Neuroscience, 13, 13. https://doi.org/10.3389/fnhum.2019.00444
  • Li, H., Subrahmanyam, K., Bai, X., Xie, X., & Liu, T. (2017). Viewing fantastical events versus touching fantastical events: Short-term effects on children’s inhibitory control. Child Development, 89(1), 48–57. https://doi.org/10.1111/cdev.12820
  • Li, H., Wu, D., Yang, J., Luo, J., Xie, S., & Chang, C. (2021). Tablet use affects preschoolers’ executive function: FNIRS evidence from the dimensional change card sort task. Brain Sciences, 11(5), 567. https://doi.org/10.3390/brainsci11050567
  • Li, H., Wu, D., Yang, J., Xie, S., Chang, C., & Luo, J. (2023). Bilinguals have more effective executive function: Evidence from an fNIRS study of the neural correlates of cognitive shifting. International Journal of Bilingualism, 27(1), 22–38. https://doi.org/10.1177/13670069221076375
  • Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301–324. https://doi.org/10.1016/j.cortex.2014.05.001
  • Limone, P., & Toto, G. A. (2021). Psychological and emotional effects of digital technology on children in COVID-19 pandemic. Brain Sciences, 11(9), 1126. https://doi.org/10.3390/brainsci11091126
  • Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: A NIRS study of children. NeuroImage, 29(3), 706–711. https://doi.org/10.1016/j.neuroimage.2005.08.019
  • McEwen, B. S. (2018). Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Frontiers in Neuroendocrinology, 49, 8–30. https://doi.org/10.1016/j.yfrne.2017.11.001
  • McHarg, G., Ribner, A. D., Devine, R. T., & Hughes, C. (2020). Screen time and executive function in toddlerhood: A longitudinal study. Frontiers in Psychology, 11, 570392. https://doi.org/10.3389/fpsyg.2020.570392
  • Mondéjar, T., Hervás, R., Johnson, E., Gutierrez, C., & Latorre, J. M. (2016). Correlation between videogame mechanics and executive functions through EEG analysis. Journal of Biomedical Informatics, 63, 131–140. https://doi.org/10.1016/j.jbi.2016.08.006
  • Murray, J. P., Liotti, M., Ingmundson, P. T., Mayberg, H. S., Pu, Y., Zamarripa, F., Liu, Y., Woldorff, M. G., Gao, J.-H., & Fox, P. T. (2006). Children’s brain activations while viewing televised violence revealed by fMRI. Media Psychology, 8(1), 25–37. https://doi.org/10.1207/s1532785xmep0801_3
  • Ng, S., Valdes, P. A., Moritz-Gasser, S., Lemaitre, A. L., Duffau, H., & Herbet, G. (2023). Intraoperative functional remapping unveils evolving patterns of cortical plasticity. Brain, awad116. https://doi.org/10.1093/brain/awad116
  • Paulus, M. P., Squeglia, L. M., Bagot, K., Jacobus, J., Kuplicki, R., Breslin, F. J., Bodurka, J., Morris, A. S., Thompson, W. K., Bartsch, H., & Tapert, S. F. (2019). Screen media activity and brain structure in youth: Evidence for diverse structural correlation networks from the ABCD study. NeuroImage, 185, 140–153. https://doi.org/10.1016/j.neuroimage.2018.10.040
  • Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently? On the Horizon, 9(6), 1–6. https://doi.org/10.1108/10748120110424843
  • Pujol, J., Fenoll, R., Forns, J., Harrison, B. J., Martínez‐Vilavella, G., Macià, D., Alvarez‐Pedrerol, M., Blanco‐Hinojo, L., González‐Ortiz, S., Deus, J., & Sunyer, J. (2016). Video gaming in school children: How much is enough? Annals of Neurology, 80(3), 424–433. https://doi.org/10.1002/ana.24745
  • Rodriguez-Ayllon, M., Derks, I., van den Dries, M., Esteban Cornejo, I., Labrecque, J. A., Yang-Huang, J., Raat, H., Vernooij, M. W., White, T., Ortega, F. B., Tiemeier, H., & Muetzel, R. L. (2019). Associations of physical activity and screen time with white matter microstructure in children from the general population. NeuroImage, 205, 116258. https://doi.org/10.1016/j.neuroimage.2019.116258
  • Shaffer, J. (2016). Neuroplasticity and clinical practice: Building brain power for health. Frontiers in Psychology, 7, 1118. https://doi.org/10.3389/fpsyg.2016.01118
  • Shimada, S., & Hiraki, K. (2006). Infant’s brain responses to live and televised action. NeuroImage, 32(2), 930–939. https://doi.org/10.1016/j.neuroimage.2006.03.044
  • Small, G. W., Lee, J., Kaufman, A., Jalil, J., Siddarth, P., Gaddipati, H., Moody, T. D., & Bookheimer, S. Y. (2020). Brain health consequences of digital technology use. Dialogues in Clinical Neuroscience, 22(2), 179–187. https://doi.org/10.31887/dcns.2020.22.2/gsmall
  • Takeuchi, H., Taki, Y., Asano, K., Asano, M., Sassa, Y., Yokota, S., Kotozaki, Y., Nouchi, R., & Kawashima, R. (2018). Impact of frequency of internet use on development of brain structures and verbal intelligence: Longitudinal analyses. Human Brain Mapping, 39(11), 4471–4479. https://doi.org/10.1002/hbm.24286
  • Takeuchi, H., Taki, Y., Hashizume, H., Asano, K., Asano, M., Sassa, Y., Yokota, S., Kotozaki, Y., Nouchi, R., & Kawashima, R. (2013). The impact of television viewing on brain structures: Cross-sectional and longitudinal analyses. Cerebral Cortex, 25(5), 1188–1197. https://doi.org/10.1093/cercor/bht315
  • Takeuchi, H., Taki, Y., Hashizume, H., Asano, K., Asano, M., Sassa, Y., Yokota, S., Kotozaki, Y., Nouchi, R., & Kawashima, R. (2016). Impact of videogame play on the brain’s microstructural properties: Cross-sectional and longitudinal analyses. Molecular Psychiatry, 21(12), 1781–1789. https://doi.org/10.1038/mp.2015.193
  • Twait, E., Farah, R., Shamir, N., & Horowitz‐Kraus, T. (2019). Dialogic reading vs. screen exposure intervention is related to increased cognitive control in preschool‐age children. Acta Paediatrica, 108(11), 1993–2000. https://doi.org/10.1111/apa.14841
  • Undheim, M. (2021). Children and teachers engaging together with digital technology in early childhood education and care institutions: A literature review. European Early Childhood Education Research Journal, 30(3), 472–489. https://doi.org/10.1080/1350293x.2021.1971730
  • Wang, C., Qian, H., Li, H., & Wu, D. (2023). The status quo, contributors, consequences and models of digital overuse/problematic use in preschoolers: A scoping review. Frontiers in Psychology, 14, 1049102. https://doi.org/10.3389/fpsyg.2023.1049102
  • Wetzel, N., Kunke, D., & Widmann, A. (2021). Tablet PC use directly affects children’s perception and attention. Scientific Reports, 11(1), 21215. https://doi.org/10.1038/s41598-021-00551-9
  • World Health Organization. (2019). Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. The Author.
  • Yadav, S., & Chakraborty, P. (2021). Child–smartphone interaction: Relevance and positive and negative implications. Universal Access in the Information Society, 21(3), 573–586. https://doi.org/10.1007/s10209-021-00807-1
  • Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6(4), 354–360. https://doi.org/10.1111/j.1750-8606.2012.00246.x
  • Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. International Journal of Bilingual Education and Bilingualism, 13(5), 505–524. https://doi.org/10.1080/13670050.2010.488284
  • Zhao, Y., Paulus, M., Bagot, K. S., Constable, R. T., Yaggi, H. K., Redeker, N. S., & Potenza, M. N. (2022). Brain structural covariation linked to screen media activity and externalizing behaviors in children. Journal of Behavioral Addictions, 11(2), 417–426. https://doi.org/10.1556/2006.2022.00044
  • Zhao, Y., Paulus, M. P., & Potenza, M. N. (2023). Brain structural co-development is associated with internalizing symptoms two years later in the ABCD cohort. Journal of Behavioral Addictions, 12(1), 80–93. https://doi.org/10.1556/2006.2023.00006
  • Zimmerman, E., Carnaby, G., Lazarus, C. L., & Malandraki, G. A. (2020). Motor learning, neuroplasticity, and strength and skill training: Moving from compensation to retraining in behavioral management of dysphagia. American Journal of Speech-Language Pathology, 29(2S), 1065–1077. https://doi.org/10.1044/2019_AJSLP-19-00088
  • Zivan, M., Bar, S., Jing, X., Hutton, J., Farah, R., & Horowitz-Kraus, T. (2019). Screen-exposure and altered brain activation related to attention in preschool children: An EEG study. Trends in Neuroscience and Education, 17, 100117. https://doi.org/10.1016/j.tine.2019.100117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.