1,723
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Modeling pediatric AML FLT3 mutations using CRISPR/Cas12a- mediated gene editing

, &
Pages 3078-3088 | Received 17 Apr 2020, Accepted 02 Aug 2020, Published online: 20 Aug 2020

References

  • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826.
  • Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–232.
  • Lee J, Bayarsaikhan D, Bayarsaikhan G, et al. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther. 2020;209:107501.
  • Shi J, Wang E, Milazzo JP, et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33(6):661–667.
  • Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for cancer research and therapeutics. Nat Rev Clin Oncol. 2019;16(5):281–295.
  • Quijada-Álamo M, Hernández-Sánchez M, Alonso-Pérez V, et al. CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. Leukemia. 2020;34(6):1599–1612.
  • Jiang C, Meng L, Yang B, et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet. 2020;97(1):73–88.
  • Stewart J, Banerjee S, Pettitt SJ, et al. Modelling the cancer phenotype in the era of CRISPR-Cas9 gene editing. Clin Oncol (R Coll Radiol). 2020;32(2):69–74.
  • Ng SR, Rideout WM, Akama-Garren EH, et al. CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proc Natl Acad Sci Usa. 2020;117(1):513–521.
  • Mollanoori H, Rahmati Y, Hassani B, et al. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy. Genes Dis. 2020. DOI:10.1016/j.gendis.2019.12.007
  • Dabrowska M, Ciolak A, Kozlowska E, et al. Generation of new isogenic models of Huntington’s disease using CRISPR-Cas9 technology. IJMS. 2020;21(5):1854.
  • Komáromy AM. CRISPR-Cas9 disruption of aquaporin 1: an alternative to glaucoma eye drop therapy? Mol Ther. 2020;28(3):706–708.
  • Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science (80-). 2020;367(6481):eaba7365.
  • Couzin-Frankel J. CRISPR takes on cancer. Vol. 367. Washington, DC: American Association for the Advancement of Science; 2020. p. 616.
  • Geurts MH, de Poel E, Amatngalim GD, et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell. 2020;26(4):503–510.e7.
  • Sansbury BM, Wagner AM, Tarcic G, et al. CRISPR-directed gene editing catalyzes precise gene segment replacement in vitro enabling a novel method for multiplex site-directed mutagenesis. Crispr J. 2019;2(2):121–132.
  • Meshinchi S, Arceci RJ. Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Oncologist. 2007;12(3):341–355.
  • Lee BH, Tothova Z, Levine RL, et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell. 2007;12(4):367–380.
  • Sakamoto KM, Grant S, Saleiro D, et al. Targeting novel signaling pathways for resistant acute myeloid leukemia [Internet]. Vol. 114, Molecular Genetics and Metabolism. 2015. Mol Genet Metab. 2015;114(3):397–402.
  • Gary Gilliland D, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–1542.
  • Cauchy P, James SR, Zacarias-Cabeza J, et al. Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep. 2015;12(5):821–836.
  • Leung AYHH, Man C-HH, Kwong Y-LL. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. Leukemia. 2013;27:260–268.
  • Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650–665.
  • Heidel F, Solem FK, Breitenbuecher F, et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood. 2006;107(1):293–300.
  • Fathi AT, Chen Y-B. Treatment of FLT3-ITD acute myeloid leukemia. Am J Blood Res. 2011;1(2):175–189.
  • Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United King. Blood. 2001;98(6):1752–1759.
  • Small D. FLT3 mutations: biology and treatment. Hematology. 2006;2006(1):178–184.
  • Libura M, Asnafi V, Tu A, et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood. 2003;102(6):2198–2204.
  • de Rooij J, Zwaan C, van den Heuvel-Eibrink M, et al. Pediatric AML: from biology to clinical management. J Clin Med. 2015;4(1):127–149.
  • Baker SD, Zimmerman EI, Wang Y-D, et al. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia. Clin Cancer Res. 2013;19(20):5758–5768.
  • Smith CC, Wang Q, Chin C-S, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260–263.
  • Sansbury BM, Wagner AM, Nitzan E, et al. CRISPR-directed in vitro gene editing of plasmid dna catalyzed by Cpf1 (Cas12a) nuclease and a mammalian cell-free extract. Crispr J. 2018;1(2):191–202.
  • Warmuth M, Kim S, Gu X, et al. Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2007;19(1):55–60.
  • Pradhan A, Lambert QT, Reuther GW, et al. Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci USA. 2007;104(47):18502–18507.
  • Chan PM. Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model. Protein Cell. 2011;2(2):108–115.
  • Reiter K, Polzer H, Krupka C, et al. Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 2018;32(2):313–322.
  • Moloney JN, Stanicka J, Cotter TG. Subcellular localization of the FLT3-ITD oncogene plays a significant role in the production of NOX- and p22phox-derived reactive oxygen species in acute myeloid leukemia. Leuk Res. 2017;52:34–42.
  • Schmidt-Arras D, Böhmer S-A, Koch S, et al. Anchoring of FLT3 in the endoplasmic reticulum alters signaling quality. Blood. 2009;113(15):3568–3576.
  • Koch S, Jacobi A, Ryser M, et al. Abnormal localization and accumulation of FLT3-ITD, a mutant receptor tyrosine kinase involved in leukemogenesis. Cells Tissues Organs. 2008;188(1-2):225–235.
  • Alvarado Y, Kantarjian HM, Ravandi F, et al. FLT3 inhibitor treatment in FLT3-mutated AML is associated with development of secondary FLT3-TKD mutations. Blood. 2011;118(21):1493–1493.
  • Schwartz GW, Manning B, Zhou Y, et al. Classes of ITD predict outcomes in AML patients treated with FLT3 inhibitors. Clin Cancer Res. 2019;25(2):572–583.
  • Hassanein M, Almahayni MH, Ahmed SO, et al. FLT3 inhibitors for treating acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(10):543–549.
  • Tarlock K, Hansen ME, Hylkema T, et al. Discovery and functional validation of novel pediatric specific flt3 activating mutations in acute myeloid leukemia: results from the COG/NCI target initiative. Blood. 2015;126(23):87–87.
  • Meshinchi S, Stirewalt DL, Alonzo TA, et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood. 2008;111(10):4930–4933.
  • Yamaguchi S, Niwa R, Kazuki Y, et al. Application of a bacterial artificial chromosome modification system for a human artificial chromosome vector. Yonago Acta Med. 2011;54(1):21–31.
  • Guo JC, Tang YD, Zhao K, et al. Highly efficient CRISPR/Cas9-mediated homologous recombination promotes the rapid generation of bacterial artificial chromosomes of pseudorabies virus. Front Microbiol. 2016. DOI:10.3389/fmicb.2016.02110
  • Narayanan K, Chen Q. Review article bacterial artificial chromosome mutagenesis using recombineering. J Biomed Biotechnol. 2011;2011:971296.
  • Kancha RK, Grundler R, Peschel C, et al. Sensitivity toward sorafenib and sunitinib varies between different activating and drug-resistant FLT3-ITD mutations. Exp Hematol. 2007;35(10):1522–1526.
  • Auclair D, Miller D, Yatsula V, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia. 2007;21(3):439–445.
  • Lierman E, Lahortiga I, Van Miegroet H, et al. The ability of sorafenib to inhibit oncogenic PDGFRβ and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica. 2007;92(1):27–34.
  • Edelheit O, Hanukoglu A, Hanukoglu I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 2009;9(1):61.
  • Tseng W-CC, Lin J-WW, Wei T-YY, et al. A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Anal Biochem. 2008;375(2):376–378.
  • Crowgey EL, Kolb A, Wu CH. Development of bioinformatics pipeline for analyzing clinical pediatric NGS data. AMIA Jt Summits Transl Sci Proc. 2015;2015:207–211.